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Genome-scale metabolic networks can now be reconstructed based on annotated genomic
data augmented with biochemical and physiological information about the organism. Math-
ematical analysis can be performed to assess the capabilities of these reconstructed networks.
The constraints-based framework, with #ux balance analysis (FBA), has been used successfully
to predict time course of growth and by-product secretion, e!ects of mutation and knock-outs,
and gene expression pro"les. However, FBA leads to incorrect predictions in situations where
regulatory e!ects are a dominant in#uence on the behavior of the organism. Thus, there is
a need to include regulatory events within FBA to broaden its scope and predictive capabili-
ties. Here we represent transcriptional regulatory events as time-dependent constraints on the
capabilities of a reconstructed metabolic network to further constrain the space of possible
network functions. Using a simpli"ed metabolic/regulatory network, growth is simulated
under various conditions to illustrate systemic e!ects such as catabolite repression, the
aerobic/anaerobic diauxic shift and amino acid biosynthesis pathway repression. The incorpo-
ration of transcriptional regulatory events in FBA enables us to interpret, analyse and predict
the e!ects of transcriptional regulation on cellular metabolism at the systemic level.
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Introduction

The abundance of genomic data currently avail-
able has led to the construction of genome-scale
models of microbial metabolism (Covert et al.,
2001). These models may be used to analyse,
interpret and predict cellular phenotype from the
genotype under de"ned environmental condi-
tions. One method for the in silico analysis of
metabolic networks is the constraints-based ap-
proach. This approach is based on the fact that
the underlying cellular functions of biochemical
reaction networks are subject to certain con-
straints that limit their possible behaviors
(Palsson, 2000). In this approach, &&hard'' physico-
chemical constraints are used to de"ne a closed
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solution space within which the steady-state solu-
tion to the #ux vector must lie. The &&best'' solu-
tion is then found in the solution space using
linear optimization. This analysis method has
been called #ux-balance analysis (FBA) (Varma
& Palsson, 1994a, b; Bonarius et al., 1997; Ed-
wards et al., 1999; Gombert & Nielsen, 2000).
FBA has been described in detail and used
in a variety of recent applications (Edwards &
Palsson, 1999, 2000; Edwards et al., 2001).

FBA models to date have not accounted
for the constraints associated with regulation of
gene expression nor activity of the expressed gene
product. Until now, #ux-based simulations have
assumed that all gene products in the metabolic
reaction network are available to contribute to
an optimal solution, unconstrained by regulatory
processes. An in silico model of E. coli, for
( 2001 Academic Press
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example, accounts for 660 metabolic genes
thought to be in the genome (Edwards & Pal-
sson, 2000). However, it has been estimated that
about 400 regulatory genes exist in the genome of
E. coli (Thie!ry et al., 1998); of these, 178 regula-
tory and putative regulatory genes were found
during annotation of the K-12 MG 1655 genome
(Blattner et al., 1997). Currently, 539 transcrip-
tion units (sets of contiguously located genes with
a common expression condition, promoter and
terminator) are identi"ed in RegulonDB, a
database of transcriptional regulation and oper-
on organization for E. coli (Salgado et al., 2001).
The high level of transcriptional regulation in
this and other organisms has a signi"cant e!ect
on cell behavior. These regulatory e!ects have
not been accounted for in previous FBA models
of E. coli, which leads to certain incorrect predic-
tions of cellular-level behavior (Edwards & Pal-
sson, 2000). For FBA to be e!ectively used to
predict cell behavior on a more general scale,
these regulatory constraints must be incorpor-
ated. Unlike physico-chemical constraints,
regulatory constraints are self-imposed by the
organism, and presumably represent the result of
an optimal evolutionary process.

The ability to model transcriptional regulatory
events has several important applications. As
high throughput technologies such as gene chips
and microarrays have been developed to perform
genome-wide expression assessment (DeRisi
et al., 1996), there is a need to predict intracellu-
lar transcription and transcriptional regulation
on a whole-genome scale based on cellular envi-
ronment and intracellular conditions. Regulatory
modeling is also bene"cial to the "eld of meta-
bolic engineering. Using metabolic control
analysis, it has been demonstrated that control of
biosynthetic #uxes depends on multiple enzymes
(Fell, 1998; McAdams & Arkin, 1998). The engin-
eering of cell regulation, rather than of the ex-
pression of several related genes, may be a more
e$cient use of an organism's metabolism to
produce a desired product. Experiments have al-
ready been described wherein a regulatory, rather
than a metabolic, network was manipulated to
increase the #ux through a particular pathway
(Ostergaard et al., 2000). The results of such
experiments may lead to signi"cant advances in
the large-scale microbial generation of valuable
substances such as pharmaceuticals (Chartrain
et al., 2000) and biocommodities (Lynd et al.,
1999; Aristidou & PenttilaK , 2000; Fotheringham,
2000) or in pollutant degradation (Pieper &
Reineke, 2000).

Metabolic regulation and cell dynamics have
been modeled using several approaches (Rao &
Arkin, 2001; Hasty et al., 2001). For example,
Boolean logic may be used to examine the vari-
ous states of a regulatory circuit (Thomas, 1973;
Kau!man, 1993; Somogyi & Sniegoski, 1996),
such as the regulatory networks controlling
the lambda phage decision circuit (Thie!ry &
Thomas, 1995) as well as the immune response
(Kaufman et al., 1985). Such mathematical de-
scriptions enable the qualitative study of regula-
tory structure and lead to general analytical
insights which can be usefully applied to the
analysis of complex metabolic networks, but
must be used in connection with other techniques
to make truly quantitative predictions. Mixed-
integer linear optimization has also been used to
predict optimal regulatory structures for meta-
bolic engineering (Hatzimanikatis et al., 1996).
Another approach is the use of kinetic theory to
solve systems of ordinary di!erential equations
(Reich & Sel'kov, 1981; Shuler & Domach, 1983;
Fell, 1996; Heinrich & Schuster, 1996; Stephano-
poulos et al., 1998), as has been done to study E.
coli growth on glucose and lactose (Wong et al.,
1997). Kinetic theory may also be combined with
Boolean logic as in a hybrid model of the lambda
phage (McAdams & Shapiro, 1995), using fuzzy
logic as has been done with E. coli core metabol-
ism (Lee et al., 1999) or in conjunction with
cybernetic principles (Guardia et al., 2000;
Varner, 2000). Other approaches to the analysis
of genetic regulatory circuits include the use of
fractal kinetic theory (Savageau, 1998) and
stochastic modeling techniques (McAdams &
Arkin, 1997, 1998, 1999; Carrier & Keasling, 1999).

Detailed deterministic and stochastic models
require extensive information, such as temper-
ature, substrate availability, the presence of
signaling molecules, and other environmental
parameters, many of which have yet to be
completely speci"ed. The di$culty inherent in
constructing detailed deterministic or stochastic
models is therefore that most of the parameters
required to develop them are typically very



REGULATED FLUX BALANCE MODELS 75
di$cult to obtain under all possible environ-
mental conditions, although some progress has
been made (Vaseghi et al., 1999). For this reason,
none of the above models has been able to be
adopted on a scale large enough to represent the
entire metabolism of an organism, as recently
observed (Bailey, 2001), and thus the systemic
regulatory/ metabolic properties of an entire or-
ganism have yet to be analysed.

This paper describes a framework whereby the
development of a transcriptional regulatory
structure may be used together with FBA to
generate time pro"les as well as steady-state solu-
tions of cell growth, substrate utilization and
by-product secretion for organisms for which the
metabolism and regulation have been character-
ized, either from the genome or experimentally.

Methods

CONSTRAINTS-BASED ANALYSIS

The constraints-based approach to metabolic
network analysis has been recently described
(Palsson, 2000) and is illustrated in Fig. 1. The
axes represent #uxes through all individual reac-
tions in the metabolic network. Not all the points
in this space are attainable because of constraints
on the system, such as the interrelatedness of the
#uxes, thermodynamics or maximum capacity.
By imposing these constraints, one can restrict
the behaviors available to the cell to an enclosed
solution space which contains a "nite number of
possibilities (shown on the right-hand side of
Fig. 1), from which an optimal solution (gray
FIG. 1. Constraints-based analysis of metabolic reaction
described in geometrical terms. On the left is an unbounded sp
each reaction in the network. Many of the points in the space ar
these constraints, such as system stoichiometry, thermodynami
the set of all possible behaviors is reduced to a bounded convex s
#ux distributions represent phenotypes which may be exhibite
circle) may be determined using linear program-
ming (Schilling et al., 1999; Gombert & Nielsen,
2000).

FBA AND THE INTERPRETATION OF MICROBIAL
GROWTH EXPERIMENTS

FBA can be used to quantitatively predict the
time pro"les of cell density as well as substrate
and by-product concentrations (Varma & Pal-
sson, 1994a, b). In general, mass balances are
written around every metabolite concentration in
a metabolic network; the resulting equations may
be written in matrix notation as

dX
dt

"S ) v, (1)

where S is the stoichiometric matrix, v is a vector
which contains the value of all reaction and
transport #uxes and X is a vector of metabolite
concentration. Since the time constants which
describe metabolic transients are fast (on the or-
der of milli-seconds to tens of seconds; McAdams
& Arkin, 1998) as compared to the time constants
associated with cell growth, on the order of hours
to days, the system may be treated by considering
the behavior inside the cell to be in a quasi-steady
state, and eqn (1) reduces to

S ) v"0. (2)

The steady-state equation contains the mass
balance constraints imposed on the system.
networks. The metabolic network of an organism may be
ace containing every possible distribution of #uxes through
e unattainable due to constraints on the system. By applying
cs (e.g. the reversibility of reactions) and maximum capacity,
ubset (right) in which the solution (gray circle) must lie. These
d by a reconstructed metabolic network.



FIG. 2. Regulatory constraints change the shape of the
solution space. The hypothetical solution space and solution
as given in Fig. 1, de"ned by various non-adjustable con-
straints, is shown in (a). The #ux through a certain reaction
may be constrained by a transcriptional regulatory event,
leading to the removal of one or more extreme vectors from
the boundaries of the solution space. These constraints fur-
ther reduce the size of the solution space. After regulatory
constraints have been applied, the original solution may
either remain in the smaller solution space (b), or may no
longer be located inside the space (c), in which case, a new
solution (i.e. a new behavior) will be determined by the cell.
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Thermodynamic and capacity constraints or
experimental data can be used to limit the
magnitude of each individual metabolic #ux in
the network

a
i
)v

i
)b

i
. (3)

Using the above equation, a
i
or b

i
may be set to

zero or to another "nite value to constrain the
direction or magnitude of a #ux. Such constraints
correspond to thermodynamic constraints (e.g.
e!ective irreversibility of a given reaction due to
an extremely high equilibrium constant) or
capacity constraints (e.g. maximum uptake rate
for a given transport protein), respectively. Ex-
perimental data on #ux levels, as obtained by
isotope labeling (Wiechert & de Graaf, 1996) or
other methods, can also be used to set a

i
and

b
i
(an approach called metabolic #ux analysis, see

Stephanopoulos et al., 1998). These equality and
inequality constraints de"ne a closed solution
space.

REPRESENTING TRANSCRIPTIONAL REGULATORY

CONSTRAINTS

Cells are subject to both invariant (i.e. non-
adjustable) and adjustable constraints. The for-
mer are physico-chemical in origin and include
stoichiometric, capacity and thermodynamic
constraints. They can be used to bracket the
range of possible behaviors as described above.
Adjustable constraints are biological in origin,
and they can be used to further limit allowable
behavior. These constraints will change in a
condition-dependent manner.

Regulatory events impose temporary, adjust-
able constraints on the solution space as shown
in Fig. 2. This "gure depicts a solution space and
optimal solution (gray circle) for a hypothetical
metabolic network. The solution space de"ned
by non-adjustable constraints is shown in
Fig. 2(a). If the #ux through a certain reaction is
repressed due to transcriptional regulation, then
one or more extreme vectors that de"ne the
boundaries of the solution space are removed
and the volume of the space (i.e. the range
of allowable cellular behaviors) is reduced.
For example, when the vectors are removed as
illustrated in Fig. 2(b) and (c), respectively, the
solution space is restricted to a smaller space.
This restricted space is analogous to a cell with
fewer metabolic behavioral possibilities. Note
that the optimal solution remains in the subspace
shown in Fig. 2(b) but not in the subspace shown
in Fig. 2(c). If the optimal solution is no longer in
the space, the phenotype that it corresponds to
cannot be expressed and a new optimal solution
will be determined corresponding to a di!erent
behavior exhibited by the cell.

The transcriptional regulatory structure can
be described using Boolean logic equations. This
approach involves restricting expression of a
transcription unit to the value 1 if the transcrip-
tion unit is transcribed and 0 if it is not. Similarly,
the presence of an enzyme or regulatory protein,
or the presence of certain conditions inside or
outside of the cell, may be expressed as 1 if the
enzyme, protein, or a certain condition is present
and 0 if it is not.

The Boolean logic representation includes
well-known modi"ers such as AND, OR, and
NO¹, which can be used to develop equations



FIG. 3. A simple regulatory circuit. Here, gene G is tran-
scribed by a process trans to produce an enzyme E. This
enzyme then catalyses a reaction rxn which converts
substrate A into product B. Product B then represses tran-
scription of G, leading to depletion of E.

REGULATED FLUX BALANCE MODELS 77
governing the expression of transcription units.
Consider a simple system, as depicted in Fig. 3
(adapted from Thomas, 1973), containing one
gene G which is transcribed by a process trans,
resulting in an enzyme E. This enzyme then
catalyses the reaction rxn which is the conversion
of substrate A to product B. Product B interacts
with a binding site near G such that the transcrip-
tion process trans is inhibited. In other words, the
transcription event trans will occur if the gene
G is present in the genome and the product B is
not present to bind to the DNA. A logic equation
which describes this circumstance is

trans"IF (G) AND NO¹ (B). (4)

After a certain time for protein synthesis has
elapsed, progression of the transcription/transla-
tion process trans will result in signi"cant
amounts of enzyme E. Similarly, after a certain
protein decay time, the absence of process
trans will result in decay and eventual depletion
of E.

The requirement for the reaction rxn to pro-
ceed is the presence of A and of E, for which
a logical equation can be written as

rxn"IF (A) AND (E). (5)

The presence of enzymes or regulatory proteins
in a cell at a given point in time depends both on
the previous transcription history of the cell and
on the rates of protein synthesis and decay. If
su$cient time for protein synthesis has elapsed
since a transcription event for a particular tran-
scription unit occurred, we say that enzyme E is
present in the cell and remains present until the
time for E to decay has elapsed without the cell
experiencing another transcription event for that
speci"c transcription unit. In other words, dy-
namic parameters*the time delays of protein
synthesis and degradation*are required in addi-
tion to the known causal relationships that rep-
resent regulation of gene transcription. Under
steady-state conditions, the average protein syn-
thesis and degradation times are equal.

Once the presence of all regulated enzymes in
the metabolic network has been determined for
a given time interval (t

1
Pt

2
), if an enzyme has

been determined &&not present'' for the time inter-
val, then the #ux through that enzyme is set to
zero. This restriction may be thought of as
adding a temporary constraint on the metabolic
network

v
k
(t)"0, when t

1
)t)t

2
, (6)

where v
k
is the #ux though a reaction at the given

time point t. If an enzyme is &&present'' during
a given time interval, the corresponding #ux is
left unconstrained by regulation and determined
instead using FBA. This approach thereby
retains the quantitative aspects of FBA while
incorporating qualitative regulatory information.

Thus, known regulation of gene expression in
cells can be represented by Boolean logic and
incorporated into #ux balance models. Such
regulation represents additional condition-
dependent constraints on the v

max
through a

particular reaction.

TIME COURSE OF GROWTH

The quasi-steady-state assumption on the
metabolic network can be used to generate dy-
namic pro"les of cell growth. The experimental
time is divided into small time steps, Dt. Begin-
ning at t"0 where the initial conditions of
the experiment are speci"ed, the metabolic
model may be used to predict the optimal #ux
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distribution for the metabolic network. From the
transport #uxes, the extracellular concentrations
may be calculated in a time-dependent fashion, as
previously described (Varma & Palsson, 1994).
These concentrations are then used as the initial
conditions for the next time step. This type of
dynamic modeling was shown to correlate well
with the growth of E. coli on glucose minimal
media under aerobic and anaerobic conditions,
predicting quantitatively the uptake of glucose
and growth rate as well as by-product secretion
(Varma & Palsson, 1994).

The time constants characterizing transcrip-
tional regulation are generally on the order of
a few minutes or slower (Zubay, 1973; Rivett,
1986; McAdams & Arkin, 1998), which are slower
than the time constants associated with metabo-
lism. Therefore, the FBA generation of time
pro"les for dynamic cellular behavior may be
integrated with a set of transcriptional regulatory
rules which are represented by Boolean logic
equations. The status of transcription is found
from the given conditions at a particular time
interval. Speci"cally, transcription may be alter-
ed by the presence or surplus of an intracellular
metabolite, an extracellular metabolite, regula-
tory proteins, signaling molecule, or any combi-
nation of these or other factors. The logic
equation governing transcription of each tran-
scriptional unit is used to determine whether
transcription occurs or does not occur.

We now apply this approach to analyse a
simple example that represents the skeleton of
core metabolism.

SAMPLE NETWORK

A simpli"ed metabolic network is represented
in Fig. 4; the reactions and regulatory rules are
given in Table 1. The network contains 20 reac-
tions, seven of which are regulated by four regu-
latory proteins. For the purposes of this example,
the following instances of transcriptional regula-
tion were examined:

1. Preferential carbon source uptake/cata-
bolite repression (Saier et al., 1996). For this
example, Carbon1 is arbitrarily de"ned as
the preferred carbon source. For our purposes,
we say that the presence of Carbon1 in the
extracellular medium activates a regulatory pro-
tein which inhibits the transcription of the gene
which encodes a protein for transport of Carbon2
into the cell, via a transport process Tc2. Framed
in terms of Thomas' Boolean formalism, the re-
sulting equations for this system are

RPc1"IF (Carbon1), (7)

t¹c2"IF NO¹ (RPc1), (8)

where RPc1 is the regulatory protein which
senses extracellular Carbon1, t¹c2 is the occur-
rence of a transcription event (which will event-
ually result in the protein enabling transport
process ¹c2 and the relaxation of one regulatory
constraint, QvTc2"0, on the solution space).

2. Anaerobic growth. The transcription of
many enzymes is regulated according to whether
or not oxygen is available to the cell (Lynch &
Lin, 1996). In this case, the presence of Oxygen
will inactivate regulatory protein RPO2, which
inhibits transcription of the genes for Rres and
R5a but induces transcription of the gene for
R5b. Note that R5a and R5b are reactions
catalyzed by isozymes. The logic equations
follow this form:

RPO2"IF NO¹ (Oxygen), (9)

tRres"IF NO¹ (RPO2), (10)

tR5a"IF NO¹ (RPO2), (11)

tR5b"IF (RPO2). (12)

3. Amino acid biosynthesis pathway repres-
sion. The transcription of amino acid biosynth-
esis genes is often induced by a low intracellular
concentration of the amino acid (Patte, 1996).
Intracellular concentrations as yet cannot be
obtained using FBA; instead we use #uxes to
approximate the regulation. Metabolite H rep-
resents the &&amino acid'' in this example, and can
be made by the cell via reaction R8a or trans-
ported from the extracellular media through
transport process ¹h. For the regulatory struc-
ture, ¹h will be used to activate RPh which will
repress transcription of the gene encode R8a.
In other words, we assume that if ¹h is active



FIG. 4. A simpli"ed core carbon metabolic network, mimicking core metabolism.
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(due to the presence of extracellular H), the con-
centration of amino acid is relatively high and
therefore that transcription of H biosynthesis
genes will not be induced.

RPh"IF (v
Th
'0), (13)

tR8a"IF NO¹ (RPh). (14)

4. Transcriptional regulation to maintain con-
centration levels of important metabolites (Saier
et al., 1996). The activation or repression of these
genes depends on the level of B in the cell. Again,
rather than attempting to determine an internal
concentration, we may use a #ux rather than
concentration to turn &&o! '' an enzyme. We
choose R2b as the determining factor; it will
activate RPb which in turn will inactivate tR2a
and tR7.

RPb"IF (v
R2b

'0), (15)

tR2a"IF NO¹ (RPb), (16)

tR7"IF NO¹ (RPb). (17)

The theoretical metabolic capabilities of the sim-
pli"ed metabolic network shown in Fig. 4 com-
bined with a regulatory structure as de"ned in
Table 1 were examined using the constraints-
based approaches described above. Speci"cally,
at a given time point, a commercially available
linear programming package (LINDO, Lindo
Sytems, Chicago) was used to identify an optimal
metabolic #ux distribution within the solution
space. The optimal metabolic #ux distribution
was identi"ed as the #ux distribution which
maximized the Growth #ux in Table 1, a #ux
which represents growth of an organism by re-
moving necessary precursors of growth from the
system:

C#F#H#10 ATPPBiomass. (18)

The hypothesis that microbial cells behave in
such a way that their growth is optimized has
been veri"ed experimentally under certain condi-
tions (Edwards et al., 2001). Using the resulting
#ux distribution and the conditions of the system
in a previous time step, the conditions of the next
time step were calculated on a commercially
available spreadsheet package (EXCEL, Micro-
soft Corporation, Redmond), following a proced-
ure previously described (Varma & Palsson,
1994) to obtain biomass as well as extracellular
substrate and by-product concentrations. Nume-
rical values for the parameters used in the simula-
tion, such as the protein transcription and decay
time as well as maximum uptake rates for all
possible substrates, are shown in Table 2.



TABLE 1
Reactions and regulatory rules for the simpli,ed metabolic network shown
in Fig. 4. ¹he network contains 20 reactions, seven of which are regulated

by four regulatory proteins

Reaction Name Regulation

Metabolic reactions
!1 A!1 ATP#1 B R1
!1 B#2 ATP#2 NADH#1 C R2a IF NO¹(RPb)
!1 C!2 ATP!2 NADH#1 B R2b
!1 B#1 F R3
!1 C#1 G R4
!1 G#0.8 C#2 NADH R5a IF NO¹ (RPO2)
!1 G#0.8 C#2 NADH R5b IF RPO2
!1 C#2 ATP#3 D R6
!1 C!4 NADH#3 E R7 IF NO¹ (RPb)
!1 G!1 ATP!2 NADH#1 H R8a IF NO¹ (RPh)
#1 G#1 ATP#2 NADH!1 H R8b
!1 NADH!1 O2#1 ATP Rres IF NO¹ (RPO2)

¹ransport processes
!1 Carbon1#1 A ¹c1
!1 Carbon2#1 A ¹c2 IF NO¹(RPc1)
!1 F

ext
#1 F ¹f

!1 D#1 D
ext

¹d
!1 E#1 E

ext
¹e

!1 H
ext

#1 H ¹h
!1 Oxygen#1 O2 ¹o2

Maintenance and growth processes
!1 C!1 F!1 H!10 ATP#1 Biomass Growth

Regulatory proteins
RPO2 IF NO¹(Oxygen)
RPc1 IF Carbon1
RPh IF (v

Th
'0)

RPb IF (vR2b'0)

TABLE 2
Numerical values of parameters used in growth
simulations of the sample metabolic/regulatory

network

Parameter Value

Maximum transport rates (mmol g-DCW~1 hr~1)
Carbon1 10.5
Carbon2 10.5
D 12.0
E 12.0
F 5.0
H 5.0
O2 15.0
Protein synthesis/decay delay (hr) 0.25
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Results

Using the sample metabolic network shown in
Fig. 4, modeling the dynamic growth of a cell
with the incorporation of temporary regulatory
constraints as shown in Table 1 can be illustrated
with several insightful examples. The results of
"ve simulations, chosen to illustrate each regu-
latory element separately and in a complex
medium, are described below.

EXAMPLE 1*DIAUXIE ON TWO CARBON SOURCES

The "rst example concerns the growth of the
cell on two carbon sources, Carbon1 and Car-
bon2. For this example, the initial concentrations
of both carbon sources in the media were set to
10 mM and the simulation was run with oxygen
in excess. The simulation was run until both



FIG. 5. Catabolite repression in the simpli"ed network. A time pro"le of calculated growth and metabolism is shown
(top), divided into three regions with dotted lines. For regions A and C, the network maps are shown (bottom) with the
inactive #uxes denoted by thin dotted lines and the active #uxes shown as solid, or in the case of the biomass #ux dashed,
black lines. Certain #uxes are emphasized with a thick arrow to indicate the change in #ux distributions due to regulation.
Underneath each network map is an in silico array which shows whether a particular reaction is activated (dark gray) or
inactivated (white). Labels correspond to metabolites shown in Table 1, with three additions: C1" Carbon1, C2"Carbon2,
X"Biomass. ( ) C1; ( ) C2; ( ) D; ( ) X.
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carbon sources had been completely exhausted.
The results are shown in Fig. 5. The upper half of
Fig. 5 is a time plot which shows the concentra-
tions of Carbon1, Carbon2, by-product D, and the
biomass X. The typical diauxic growth curve
found in instances of catabolite repression is eas-
ily seen. The time plot is divided into three re-
gions with dotted lines. The #ux maps generated
using FBA are qualitatively identical in each re-
gion, and the bars beneath the #ux maps indicate
whether the regulated genes are being transcribed
(dark gray) or not (white). In region A (#ux map
shown on bottom left of Fig. 5), the cell grows
using Carbon1 as the preferred carbon source; in
region C (bottom right), Carbon2 is used. Region
B (not shown) is a short period where the cell
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does not grow while the transport protein which
enables the transport process ¹c2 is being up-
regulated and synthesized. Without the addition
of regulatory constraints, the system would grow
on both carbon sources together to maximize
production of the biomass conditions and fail to
predict a diauxic shift.

EXAMPLE 2*AEROBIC/ANAEROBIC-DIAUXIE

The second example of transcriptional regula-
tory modeling is the diauxic shift associated with
a sudden removal of available oxygen to the
culture (Fig. 6). Again, the dynamic pro"le may
be divided into three areas. First, in region A, the
culture grows with Carbon2 as the primary car-
bon source. At 2 hr, the oxygen supply to the
culture is removed and the culture grows anaer-
FIG. 6. Aerobic/anaerobic growth calculated using the
the dynamic pro"le may be divided into three areas, with the me
E; ( ) C2; ( ) D; ( ) X.
obically (regions B and C). It can readily be seen
from Fig. 6 that regions B and C have similar #ux
distributions and that the regulatory constraints,
unlike in Fig. 5 where they actually restrict the
optimal solution, act redundantly (the regulation
is not necessary for the solution). Therefore, the
regulatory structure allows unnecessary proteins
to decay in this case, without changing the
optimal solution.

EXAMPLE 3*GROWTH ON CARBON AND AMINO ACID
WITH CARBON IN EXCESS

In this case, shown in Fig. 7, the simpli"ed
amino acid H is present in the medium with
Carbon2, where it is used both to satisfy the
H biomass requirement and as a supplementary
simpli"ed network. Similar in format to Fig. 5. Again,
tabolic network maps and in silico arrays shown below. ( )



FIG. 7. Amino acid biosynthesis. Similar in format to Figs 5 and 6. ( ) C2; ( ) D; ( ) E; ( ) H; ( ) X.
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source of C (Region A). After the extracellular
supply of H is depleted there is a region of no
growth (Region B) while the cell upregulates its
H biosynthesis machinery to catalyze R8a. This
example is similar to Example 1 in that there is
a pause where no growth occurs while the regula-
tory structure is expanding the solution space to
allow the cell to synthesize H.
EXAMPLE 4*GROWTH ON CARBON AND AMINO ACID
WITH AMINO ACID IN EXCESS

Figure 8 shows a graph of simulated growth on
Carbon2 and H where H is in excess. This case is
designed to demonstrate the regulation of RPb;
initially, the Carbon2 and H are taken up to-
gether as in Example 3 (Region A). However, as



FIG. 8. Growth on carbon and amino acid with amino acid in excess. Similar in format to Figs 5}7. ( ) C2; ( ) D;
( ) E; ( ) H; ( ) X.
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the Carbon2 is depleted, RPb is activated and the
transcription of enzymes catalyzing R2a and R7
ceases (Region C). As in Example 2, the #ux
distribution changes as the process moves to Re-
gion B and remains constant as regulatory events
constrain the cell to stop producing certain un-
necessary proteins.

EXAMPLE 5*COMPLEX MEDIUM

Figure 9 depicts growth of the cell on a com-
plex medium, with initial substrate concentra-
tions strategically chosen so that the status of all
regulatory proteins will be changed over the
course of the experiment. Carbon1, Carbon2,
F and H are all initially present in the medium; at
1 hr, oxygen is also allowed into the culture. The
"gure illustrates the interplay of several regula-
tory actions to control the growth of the cell on
multiple substrates and under changing condi-
tions. The plot is divided into 15 regions, with
Regions 12 and 15 as transitory periods with no
growth while certain regulatory changes are oc-
curring. The reactions which are being regulated
are thick black arrows, with the exceptions of
R5a and R5b which are light and dark gray
arrows, respectively. In seven of these (Regions 1,
2, 4}6, 8, 10) the internal #ux distribution is
qualitatively similar, with minor changes as Car-
bon1 or F is depleted. Another more interesting
change occurs in the transition from Regions 2 to
3. The simpli"ed TCA cycle uses R5b in Regions
1 and 2 and begins using R5a (catalyzed by an
isozyme which is expressed under aerobic condi-
tions) in Region 3, after oxygen has been allowed
to enter the system. Since R5a and R5b are equiv-
alent stoichiometrically, FBA alone does not fa-
vor one reaction over the other and would fail to
predict which of the two isozymes are active
under given conditions. The growth of the cell on
the complex medium also exhibits unusual #ux



FIG. 9. Growth on complex media. Similar in format to Figs 5}8, except in the case of R5a and R5b, where the activity of
these isozymes has been highlighted with a light-gray arrow in the case of R5a and with a dark-gray arrow in the case of R5b.
Additionally, similar #ux distributions have been grouped together as shown. ( ) C1; ( ) C2; ( ) D; ( ) F; ( ) H;
( ) E; ( ) X.
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distributions, which represent unstable transitory
states while the organism's regulation is chang-
ing. For example, Region 9 shows a situation
where Carbon2 is used only to ful"ll the F
biomass requirement while H is used as a
C, H and energy source, due to the repression
of R2a.

Discussion

This manuscript describes the procedure for
incorporating transcriptional regulatory struc-
ture into FBA to more accurately predict dy-
namic #ux pro"les of microbial growth. This
procedure has major advantages over FBA in the
following areas:

1. quantitative dynamic simulation of substra-
te uptake, cell growth and by-product secretion;

2. qualitative simulation of gene transcription
events and the presence of proteins in the cell;
and

3. investigation of the systemic e!ects of
imposing temporary regulatory constraints on
the solution space.

The quantitative predictions made by the com-
bined regulatory/metabolic model are completely
unpredictable using FBA alone under many
conditions. Example 1 illustrates this point. The
diauxic growth curve shown in Fig. 5 is a com-
pletely di!erent result than would be obtained by
FBA alone, which would incorrectly predict the
maximal possible uptake of both Carbon1 and
Carbon2. It is interesting that the addition of one
simple constraint to the solution space (vTc2"0)
results in such a dramatic change in the predicted
phenotype. Similarly, from Example 5 it is clear
that FBA alone would fail to predict which of
two isozymes plays the more active role in cataly-
sis under given conditions. Again, it is the addi-
tion of one simple constraint which results in the
more correct prediction.

The combined regulatory/metabolic model is
also capable of making qualitative predictions
about the up- and down-regulation of enzyme
production. This capability is shown in Examples
2 and 4, where FBA and the combined regula-
tory/metabolic approach predict similar #ux
distributions, but the combined approach also
predicts the down-regulation of certain enzymes
which are no longer required to obtain the opti-
mal solution. FBA is unable to consistently make
such predictions due to the fact that an enzyme
may be present in a cell and still have a zero #ux.

Finally, this approach allows an investigation
of the systemic e!ects of transcriptional regula-
tion. The individual operations required to
model the combined metabolic/regulatory net-
work as described are simple. However, when
combined to represent biological networks of
even modest complexity, they reproduce quite
complex behavioral patterns. The sample net-
work examined here, although two orders of
magnitude smaller than the metabolic networks
of commonly studied bacteria, exhibits surpris-
ingly complex behavior, as shown by the unusual
intermediate #ux distributions during growth on
the complex medium. For a more complicated
network, the multiple constraints applied to
the system can cause the solution space to
change dramatically in response to a changing
environment.

Besides simply determining whether or not
regulatory constraints are implemented, the envi-
ronment also has an important in#uence on the
regulatory constraints themselves. Unlike the
non-adjustable physico-chemical constraints,
regulatory constraints are biological in nature
and can change with evolution. The demand the-
ory of gene regulation indicates that the evolu-
tion of gene regulation may be governed by rules,
predicting a correlation between demand for
gene expression and the mode of control exhib-
ited (Savageau, 1977, 1998a, b). This correlation
has been supported experimentally (Savageau,
1989). The constraints-based approach to
modeling regulatory events, by providing a
framework for analysing, interpreting and pre-
dicting the systemic e!ects of transcriptional
regulation, may therefore also contribute to our
understanding of the rules which govern evolu-
tion and the subsequent e!ects of evolutionary
forces on an organism's solution space.

The method is presented here in its simplest
form. However, the use of Boolean logic to rep-
resent genetic regulatory networks qualitatively
has grown in sophistication, including such fea-
tures as multilevel logic variables and asyn-
chronous updating of protein synthesis (Thomas,
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1991). These features may be incorporated into
this approach at some time in the future. Another
important development in this approach will be
its application to a real network. Databases have
already been developed and made available on-
line which detail the known regulation of E. coli
(Karp et al., 2000; Salgado et al., 2001); such
information, made available for this and other
organisms, will enable the construction of
genome-scale metabolic/regulatory microbial
models. The ability of the approach described
here to generate quantitative hypotheses which
may be experimentally tested will lead to an
ongoing iterative model-building process, result-
ing in advanced models and augmented scienti"c
knowledge.

In summary, FBA has been used to calculate
time courses of growth under certain limited con-
ditions; however, the approach described here
also accounts for the systemic e!ects of tempor-
ary regulatory constraints on cellular behavior.
Such an approach is potentially more versatile
and may be used to simulate a wider range of
experimental conditions.

This work was funded by the NIH (GM57089) and
the NSF (MCB 98-73384 and BES 98-14092).
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