
ABI Development: Representation, Visualization, and Modeling of Signaling
Pathways in Higher Plants

Intellectual Merits. Signal transduction pathways hold the key to understanding the early re-
sponse of higher plants to abiotic stresses, such as drought, flooding, heat, cold, ozone, and salt.
Traditionally, signaling pathways have been difficult to synthesize and impossible to manipulate
computationally. Current pathway tools and databases provide only limited support for manipulat-
ing pathways as networks. In particular, it is not possible for a biologist totake an existing signaling
pathway and ask hypothetical questions that are answered computationally. This project builds the
Beacon system to provide computational support for biologists’ questions about signaling path-
ways. The user interface is an editing environment that represents and manipulates a pathway in a
standard graphical notation called SBGN Activity Flow language. The project includes the curation
of signaling pathways for plant abiotic stress response by recognized authorities and their archiv-
ing in a Beacon database. The database representation allows the biologistto impose a semantics,
such as boolean semantics, on a pathway. The Beacon simulation engine is then able to computa-
tionally implement those semantics and provide results that can be queried and visualized. Adding
or removing relationships in a pathway (adding or removing edges in a network) raises the diffi-
cult question of causal inference: Does activity of molecule A cause activity of molecule B? Such
questions can be assessed computationally and statistically using such tools asGranger causality,
Bayesian networks, and structural equation modeling. The Beacon inference engine provides these
tools to allow the biologist to develop testable hypotheses about pathway components. The Beacon
system is not specific to plant signaling pathways but rather enjoys more general usability.

Broader Impacts. The project will include training and education through well-established out-
reach programs at Virginia Tech. These include the Multicultural Academic Opportunities Program
(MAOP), which provides research opportunities for students from pre-college through the doctor-
ate; S-STEM, which enhances the competitiveness of undergraduates using research experiences;
and PREP and PREP-U, which use NSF funding to expose high school and undergraduate students
to biological research that contrasts phenotypes of Arabidopsis mutant and wild-type plants.



PROJECT DESCRIPTION

1 Motivation
A signal transduction pathway is a collection of interacting cellular componentsthat perform the
response of the cell to an external or developmental signal. A pathway is most conveniently rep-
resented by a network with the components as nodes and the interactions as directed edges. This
representation assists both computational manipulation and user visualization.Signal transduction
pathways are keys to understanding the dynamic logic of, for example, plant responses to stress.

Responses and accommodations to adverse changes in the environment, such as drought, salin-
ity, cold, and oxygen availability, are at the heart of many plant activities. Climate change events
are expected to exacerbate the severity and duration of current adverse environmental conditions.
Elucidation of the genetic response networks regulating plant dynamic responses to changing en-
vironments is daily becoming more of a reality [24, 59, 87, 88, 99, 100, 116,123]. Bioinformatics
approaches are increasingly available to address these questions. However, the full details of even
one stress signaling pathway are still not clear. Furthermore, although cross-signaling is clearly an
important part of adaptive responses [59, 75, 86, 184, 185], it is unclear to what extent recognition
and response pathways for the various abiotic stresses overlap in any one case.

We propose to expedite the consolidation of existing understanding of stress signaling in plants,
facilitate its expansion, and broaden participation in knowledge building across the plant biology
community. To this end, we propose to facilitate a systems biology depiction of interlocking molec-
ular signaling pathways in plants that respond to abiotic stresses, using extensible curated pathways
drawn by authorities in a common graphical language as our starting point.

Deep sequencing of non-model species, of several ecotypes of the model plant Arabidopsis, and
of specific crop genotypes, is rapidly increasing our understanding ofplant genomic responses to
abiotic stress [26, 38, 97, 151, 166, 189, 191]. Information is availableabout the nature of cell-
specific signaling in some cases [9, 34, 119]. Regulatory events at multiple,post-transcriptional,
organizational levels are integral components of stress responses [18, 63, 117, 188]. Potentially of
equal or greater importance for plants is the recently discovered role of small RNAs in epigenetic
events that modify gene expression in response to abiotic stress [104, 155].

Challenges Identified. Existing cyberinfrastructure does not support a systems view of signaling
pathways in plants. Current tools for signaling pathways are drawing tools, some of which only
result in images [50, 133], while others store true networks [73, 74]. The work of creating a sig-
naling pathway is painstaking, requiring a thorough understanding of the literature and a careful
presentation to convey all the concepts present in the literature. The result of such work is typically
a figure in an article and perhaps an entry in a signaling pathway database.The result is only suited
for limited computational manipulation, because the semantics of the signaling pathway remain in
human-readable form only. This limitation has a number of negative consequences. Biologists are
not able to take an arbitrary signaling pathway and paint it with omics data fromexperiments to
gain insight into the operation of the pathway under experimental conditions.Generally applicable
simulation facilities for signaling pathways are limited, so that “what-if” (e.g., knockout or knock-
down) experiments are rarely performedin silico. Inferring new causal links in an existing pathway
remains a difficult task; there is limited computational support for suggesting possible new causal
links. Finally, there are no widely accepted standards for the syntax and semantics of signaling
pathways.
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Figure 1: Prototype discovery environment based on iPlant Collaborative Web Services API.
A user uploads results of a multi-experiment microarray analysis and invokes VAPrototype, an
HTML/Ajax-based web application running at the iPlant Collaborative, which performs GO en-
richment analysis for each experiment. Results are returned as a JSON-formatted data structure
and rendered by VAPrototype (top panel) in a table color-coded by significance. The user can
mouse over a table cell to see the list of genes associated with the term. Selectinga cell submits
the cell’s gene list to a web service implementing the GeneMANIA functional network inference
tool [113, 171]. Results (lower left) are rendered using Cytoscape Web such that seed genes are
yellow circles and inferred genes are magenta circles. The user can mouseover edges and nodes
to see a full list of attributes. Selecting a node invokes the eFP browser [179], which shows (lower
right) the gross anatomical expression profile for the gene of interest.

Proposed Solution. We propose Beacon, a new systems biology tool, to address these challenges.
Within Beacon, an expert curator can construct and edit signaling pathways, allowing the integration
of current and future data over multiple scales of cellular organization andacross species, with a
central focus, in this first phase, on abiotic stress response pathways. The proposed consolidation
of expert knowledge across plant stress biology will eliminate wasted effort, unite a section of the
plant biology community, and afford the possibility of fresh insights into fundamental biological
mechanisms. Equally important, Beacon will serve as a valuable teaching tool available to students
of plant biology. Users of Beacon will be able to upload inferred causalrelationships among entities,
based on their own data. They will be able to store the resulting amended pathway, and share it.
Beacon will interact with the cyberinfrastructure of the iPlant Collaborative (see letter from Dr. D.
Stanzione, Co-PI of the iPlant Collaborative). Beacon will use an omics data integration workflow
instituted in iPlant, in the Data Analysis and Visualization Working Group (of whichGrene is the
co-leader). A prototype of this workflow exists (see Figure 1). Beaconwill use the iPlant web
services API, which will provide tools shown in the prototype and also access to data converters,
storage, and computational resources, and the ability to invoke other visualization and analysis tools
through a consistent web service interface. The iPlant team will provide staff resources to support
the Beacon developers in the use of the API, both through training and direct technical support.
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Figure 2: Beacon system diagram.

As a computational system, Beacon will be able to represent, visualize, and model signaling
pathways. While Beacon will be general enough to support a large classof signaling pathways (see
Section 4.2), we will focus on abiotic stress signaling pathways in higher plants. A Beacon system
diagram is in Figure 2. The central component is the Beacon user interface, which supports editing
and visualizing pathways in the Systems Biology Graphical Notation Activity Flowlanguage (see
Section 3). The user interface also controls the movement of data, model simulation, and inference.
In particular, Beacon will import and export pathways in several standard formats, including BioPax
and SBML and will import omics data and inferred pathways from tools available from the iPlant
Collaborative and other sources (see Section 4.2). Beacon will allow the user to select semantics
for the components in a pathway and to simulate “what if” scenarios implementing those semantics
(see Section 4.3). Beacon will support the inference of new pathway components from imported
omics data (see Section 4.3). Omics data and simulation results can be visualized and manipulated
with the incorporation of the ViVA interactive visual tool into Beacon (see Section 4.2).

Sample Questions to be Addressed Using Beacon.What is understood about specific events in
abiotic stress signaling in model plants, crop species, and specific genotypes? What similarities or
differences exist among responses to different abiotic stresses? What are the unique features of the
responses of specific cell types or tissues? In each case, what inferences can we make about the
causal relationships that drive cellular responses to abiotic stress and their impact on phenotype?

The Availability of Interdisciplinary Scientists. Few plant biologists possess the skills to develop
a system such as Beacon. However, the combination of expertise in the Beacon team provides
the requisite skill set for the project. The Genetics, Bioinformatics and Computational Biology
Program at Virginia Tech provides the requisite training for the next generation (see Section 7).
Our proposed work will expand this training to other participating institutions through the virtual
community created by the authorities and the tools described below.

2 Objectives
To attain the Beacon system and database, we have the following specific objectives.

• Objective 1: Provide a curation tool for the SBGN Activity Flow language to a set of authori-
ties to create an initial collection of pathways. Provide curation tool educationin a workshop.

• Objective 2: Expand the curation tool to support data import and export and to maintain
data in the Beacon database. Make the database available on the Web. Incorporate the ViVA
visualization tool.

• Objective 3: Add the simulation and inference engines to the Beacon system.
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AUTHORITY AFFILIATION STRESS

Julia Bailey-Serres University of California, Riverside Flooding
Mikael Brosche University of Helsinki Ozone
Jaakko Kangasjavri
Tzyy-Jen Chiou Academia Sinica, Nankang, Taipei Phosphate,

small RNAs
Viswanathan Chinnusamy Indian Agricultural Research Institute Cold
Alejandra A. Covarrubias Instituto de Biotecnologia-UNAM, Mexico Small RNAs
Jośe Reyes and stress
John C. Cushman University of Nevada Root responses to
Mel Oliver USDA/ARS drought stress
Sixue Chen University of Florida Guard cells
Radhika Desikan Imperial College, London and stress
Ruth Finkelstein University of California, Santa Barbara Abscisic acid
Jose M. Pardo Instituto de Recursos Naturales y Agrobiologia, Spain Salt
Björn Usadel Max Planck Institute of Molecular Plant Physiology C, N
Olena Vatamaniuk Cornell University Heavy metals

Table 1: Plant stress authorities who have agreed to provide curated pathways. In addition, Grene
and Pereira will provide generalized drought stress pathways.

• Objective 4: Validate Beacon simulation predictions in collaboration with PREP.

3 Background
3.1 Abiotic Stress Signaling

Much data already exist, pointing to genotype-specific variation in the responses of herbaceous
plant and tree species to abiotic stress [8, 21, 23, 55, 85, 102, 114, 138, 164, 170, 176, 177, 181].
Valuable insights have been obtained through these studies identifying genes or QTLs that indicate
possible molecular pathways explaining intra-specific differential responses leading to stress resis-
tance. To date, it appears that genotype-based variation in stress responses may well offer clues as to
bases for differential resistance to stress. “Pre-adapted” states arealso important for superior stress
tolerance [35, 61, 92, 93, 102]. Nonetheless, such variation, to date,is nearly exclusively based on
fitting genes into known, putative, and, in some instances, even conjectured, “resistance” pathways.
We propose to first lay out generalized images of molecular stress response pathways in plants that
represent current, conventionally held, views. (See below for some examples.) Expert authorities
will provide specific information in visual form during the first phase of theimplementation of
Beacon. Pathway graphs have been promised (see Table 1), and the responses of the labs contacted
have been very positive. As a second phase, the interlocking pathwayswill be further elaborated to
show variations in responses and/or constitutive states that are documented for individual genotypes
and/or crop cultivars, together with any phenotypic observations that are available.

Abscisic Acid (ABA) and Abiotic Stress.ABA is a major regulator of plant responses to abi-
otic stresses such as drought, salinity, and cold. These responses aremediated by changes in gene
expression as well as rapid effects on ion fluxes, such as those involved in stomatal closure. Ex-
tensive genetic and biochemical studies have implicated well over 100 loci in the ABA response
and have demonstrated both direct and indirect interactions among their products. These loci com-
prise numerous families with both redundant and distinct functions at everylevel of the ABA sig-
naling network: multiple receptor families, protein phosphatases (PP2Cs) that interact with the
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PYR/PYL/RCAR receptors, kinases (e.g. SnRKs) regulated directly by thePP2Cs, and transcrip-
tion factors, ion channels, and numerous other substrates of the SnRK and other kinase families
(reviewed in [31, 137]). Although some signaling components participate in multiple ABA re-
sponses, others are specific to subsets of responses, probably through a combination of limited
expression and preferential interactions. Currently, the best characterized ABA signaling network
is that controlling guard cell function in stomatal regulation, which has been developed as an ex-
ample of a systems biology approach to signaling (reviewed in [9]). While manyaspects of this
single-cell system may function in other ABA responses, the diversity of cellular responses to this
one signal indicates that it is unlikely that there is a universal ABA response module. There is a
wealth of information that could be assembled to display interactions among specific members of
the families described above, regulation by secondary messengers, andtheir collective effects on
gene expression and cellular metabolism in seeds and seedlings, as well asin guard cells. Over half
of ABA-induced changes in gene expression are induced by droughtand salinity [144].

The Central Role of Reactive Oxygen Species (ROS) Signaling in Responses to Abiotic Stress.
Organisms can sense changes in their environment through the employment of controlled ROS-
generating and reporting systems [109, 121]. ROS-mediated response pathways constitute a major
component of plant cell responses to biotic and abiotic stresses, allowing adjustment of functional
processes to altered conditions [7, 89]. For example, significant flexibilityand precise control over
photosynthesis-related processes is provided by metabolism driven by redox processes [19, 132].
Mediating environmental awareness are ROS generators, transmembranefacilitators, signal am-
plifiers, calcium-dependent elements, and genes whose activity is controlled by the cellular redox
state, resulting in altered hormone biosynthesis and metabolic transport processes as crucial down-
stream components [66]. ROS responses, which are condition-(i.e. stress)-specific, are suggested
by gene clusters that imply the existence of networks. Distinct signaling cascades target regula-
tory factors that shuttle between cytosol and nucleus [66]. Redox signaling is initiated through
ligands, enzymes, or changes in membrane potential at, for example, the plasma membrane that
are perceived and internalized by protein tyrosine phosphatases (PTPs), heteromeric proteins, and
transmitted through MAPK cascades [89, 108].

An Example of ROS-Mediated Signaling — Ozone Stress.Plant exposure to elevated atmo-
spheric ozone at acute levels can lead to cell death. Ozone enters the leaves through open stomata
and immediately degrades to other ROS in the apoplast, including superoxide and hydrogen per-
oxide. This ROS production initiates a signaling cascade that involves apoplastic GR1 (GRIM
REAPER 1) and an, as yet unidentified, receptor(s) that transfer the signal to the inside of the
cell [182]. As a consequence of exposure to ozone, a downstream interaction with plant hormone
signaling pathways occurs, which have a crucial role — salicylic acid and ethylene promote cell
death, whereas jasmonic acid is proposed to contain cell death [125]. Based on chemical treat-
ments, phosphorylation and Ca2+ are involved in this signaling pathway, although the exact proteins
are not identified yet. The rcd1 (RADICAL-INDUCED CELL DEATH) mutant is ozone sensitive,
showing higher rates of cell death than wild type Arabidopsis plants, indicating that RCD1 regulates
some aspects of cell death, possibly related to its interaction with several transcription factors [65].
ROS scavenging through antioxidant defenses are important to control the level of cell death; low
ascorbic acid mutants (vtc) are ozone sensitive [29]. Ozone entry to the apoplast leads to ROS
production and activation of as yet unidentified receptor(s) that transfer the signal to the inside of
the cell. The Ca2+ transporter DND1 (DEFENSE NO DEATH 1) mediates an essential signaling
step, since ozone induced changes in gene expression are absent in dnd1 [183]. Inside the cell, one
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of the earliest events detected in response to ozone is activation of MAPK signaling (MPK3 and
MPK6) and transport of MPK3 and MPK6 from the cytosol to the nucleus [1]. The plant hormones
salicylic acid and ethylene act as positive regulators, and NPR1 acts as a negative regulator.

ROS, ABA, and Secondary Messengers: Water Deficit and Flooding-Induced Responses.The
frequency and severity of droughts and flooding are expected to increase in many regions of the
world, while decreased runoff can be expected to impair reservoir and ground water recharge.
Inter- and intra-specific gene expression studies have identified multiple pathways that are regu-
lated in response to water stress [80, 110, 164, 173, 174], and flooding [117, 118]. In the case
of severe flooding and submergence, plants are faced with an energy crisis that requires effective
management of energy reserves. Submergence tolerant rice adopts a quiescence strategy, limit-
ing gibberellin-activated elongation growth and conserving carbohydrates [15, 42]. Study of low
oxygen and submergence responses in Arabidopsis and wild species (e.g., Rumex) indicate that
a quiescence strategy can also outweigh the benefit of rapid growth to escape submergence. In
general, in the case of drought, osmotic changes, “recorded” at the cell membrane, are transduced
in the form of rapid metabolic changes involving generation of ROS, ABA biosynthesis, and long
distance transport from its site of synthesis to cellular sites of action via transporter-mediated pro-
cesses, where it binds to specific receptors, phospholipid metabolism, which includes the generation
of secondary messengers such as phosphatidic acid, calcium sensing and the action of calcium on
signaling pathway components, antioxidant signaling and defense pathways, and the synthesis of
protective molecules [16, 45, 91, 137, 141, 186]. It is increasingly clear that the ubiquitination
machinery also plays a crucial role in the modulation of drought signaling pathways [27, 134, 192].

Role of Small RNAs in Stress Signaling.The many different types of small non-coding RNAs,
their genes, expression characteristics, and influence on the coding part of the transcriptome are
already beginning to revolutionize our views of how phenotypes are determined [120, 193]. Small
RNAs have also been implicated in the regulation of proline biosynthesis undersalt stress [17].
Regulatory effects of specific microRNAs (miRNAs) exerted by modulating transcript amount or
turnover of those genes that are their targets have been shown for drought, salt, nutrient (phosphate,
nitrogen, and sulfur), and temperature stress in a range of plant species [25, 76, 126, 156, 157]. In
addition to transcriptional control, small RNAs may also exert inhibitory effects on translation [20].
At this time, various stress-responsive miRNAs have been identified in various plant species, and
putative targets have been assigned for many of them; however, these data remain to be verified
(reviewed in [30]). The identity of the validated targets indicate that miRNAs are implicated in the
regulation of transcripts encoding a wide variety of proteins, e.g., transcriptional factors (involved in
cold, drought, salinity and ABA responses), antioxidant enzymes, ion transporters, F-box proteins,
AGO1, hormone metabolism and signaling, among others (reviewed in [30, 67]).

3.2 Computational Background

Signaling Pathway Databases.PathGuide [14] lists 62 signaling databases, most of which sup-
port rendering pathway drawings (visualization) and many of which storepathways as networks,
allowing the export of pathways in standard formats such as SBML and BioPax. We review some
key signaling pathway databases here. The Arabidopsis Reactome [159]is a general plant systems
biology resource that is built on a generalized notion of “reaction”. KEGG[74] is a general resource
for pathway information that emphasizes metabolic pathways. NetPath [73] is adatabase of curated
human signaling pathways stored as networks and with reactions annotated by the published liter-
ature; it is supported by the PathBuilder system [72]. Science’s Signal Transduction Knowledge
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Environment (STKE; [49, 50]) is a small database of curated pathways,supported by the literature
and available only as images. Reactome [106] is a general resource for human and other pathways
that includes analysis of user-supplied omics data to identify events or pathways that are overrep-
resented in the data. TRANSPATH [28] is a signaling pathways database augmented with Array-
Analyzer software to interpret microarray (up- and down-regulation) data to extract subnetworks
from the genes or proteins identified as significant in the microarray. The DMSP database [169]
takes protein-protein interaction information as the basis for mathematical modeling and simulation
of signaling pathways using the traditional ordinary differential equation (ODE) style of modeling.
SPIKE [36] is a signaling pathway database combined with an algorithmic enginethat does basic
graph-theoretic analysis of paths and connections as well as identifying pathways that are enriched
with respect to a set of user-supplied genes. One signal transduction database of popular interest
is Wikipathways [77, 133], which follows the Wiki paradigm of collaborative editing and hence
includes a visual editing tool PathVisio [162]. The system does not support any standard graphical
language and only represents a pathway as a drawing, not as a network. These systems are generally
limited by a lack of a means to infer new pathway components and by pathway semantics that are
restricted to the ODE view. Beacon will overcome both of these limitations (see Section 4.3).

Systems Biology Graphical Notation (SBGN).SBGN [122] is a standard visual notation for sys-
tems biology diagrams, consisting of three languages: Process Description(PD), Entity Relation-
ship (ER), and Activity Flow (AF). PD supports temporal changes in the activity of metabolic
pathways [64]. AF depicts the information flow in a biological network and is most suited to rep-
resenting signaling pathways, where intermediary metabolism plays a lesser role. A node in an
AF diagram is either an activity node or a container node (for encapsulation; using SBGN, Beacon
will be able to support cellular compartments). Most activity nodes represent the activity of some
biological entity, with the remainder representing either a perturbation or a phenotype (broadly in-
terpreted, ranging from apoptosis to life span). An arc (edge) typically represents either a positive
influence, with a→, or a negative influence, with a⊣. AF also supports boolean logic (AND, OR,
and NOT). See Figure 3 for an example; it is a rendering of the ABA signaling pathway in the
nucleus of guard cells in Figure 2(b) of Raghavendra et al. [137]. Itwas drawn with SBGN-ED
(see below). The polygon at the top labeled “ABA” is a perturbation node,representing a change
in ABA levels. Rectangles represent the activities of biological entities; forexample, rectangle
“ABI5” represents the DNA binding of transcription factor ABI5, while rectangle “transcription”
with the decoration “ABRE” represents transcription regulated by an ABA responsive element. This
AF diagram is a typical rendering of signaling pathways found in the literature, where biological
information flow, either positive or negative, is represented. mEPN [40] isanother proposed visual
representation but does not enjoy the level of community support that SBGN does.

Pathway Drawing Tools. Most pathway drawing tools are especially for metabolic pathways, but
a few have functionality specific to signaling pathways. Few are based on any graphical standard.
We do not survey general network visualization tools, such as Cytoscape; they are not well-suited
to drawing signaling pathways and annotating their semantics, because they take in large networks
for visualization and rely on automatic layout algorithms. PathText [78] supports construction of
pathways by automatic text mining of the literature; it uses the Payao system andCellDesigner
to visualize pathways. Payao [105] is a collaborative web service platform for curating SBML
models. CellDesigner [43] provides the drawing environment for Payao and uses the SBGN Process
Description language, making it most suitable for metabolic pathways; CellDesigner is not open
source. Arcadia [168] translates SBML into SBGN Process Description language and is specifically
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Figure 3: SBGN Activity Flow language. ABA is made under drought conditions. This ABA
increase relieves inhibition of OST1, which activates ABI5. Increases inABA also result in an
increase in calcium, culminating in activation of transcription factors (TFs), which bind to ABRE
with ensuing gene activation. CPK4 is a calcium-dependent protein kinase.Adapted from [137].

for metabolic pathways. ChiBE [13] is a tool for visualizing pathways represented in BioPAX
format. Schreiber et al. [140] provide a general-purpose drawing tool meant to allow the user to
draw any kind of biological network and customize the layout. Byrnes et al.[22] develop a Pathway
Editor in the Biopathways Workbench that allows for drawing and data visualization; it is especially
suited to KEGG pathways. SNAVI [101] is a tool for visualizing signaling pathways, with an
emphasis on analyzing clusters, connectivity, and motifs. PathVisio [162] isa graphical editor for
biological pathways based on a new XML file format but with no semantic content. SBGN-ED is
currently the only graphical editor that supports SBGN Activity Flow language and will soon be
available as an open source project (Tobias Czauderna, personal communication).

Interactive Data Visualization. In interactive data visualization, the scientist operates on data “on
the fly” and drives the analysis in real time based on hypotheses, intuitions,and observations. In-
teractive visualization has become increasingly prevalent in biology, especially tools for studying
“omics” data, such as Spotfire [33], Genespring, and EGAN [127]. For interactive data visualiza-
tion, Beacon will use ViVA, an analysts workbench developed by the Exploratory Visualization
Group at the IBM T.J. Watson Research Center [135, 136]. Bernice Rogowitz, group manager and
a Beacon collaborator, contributed visual analysis methods based on human perception [53, 54].
ViVA is open source (SourceForge) through the iPlant Collaborative. It offers multiple comple-
mentary pictures of the data and supports direct manipulation of objects represented in the pictures
and dynamic linking, where applying a feature (such as color) to a subsetof the data is automati-
cally reflected in all the pictures. The pictures include not only standard views, such as histograms
and scatter plots, but also category tables, metadata tables, tree lists, dendograms, and others. The
dynamically-computed univariate and bivariate statistics tables provide a richarray of descriptive
statistics, supporting comparison and convenient data subsetting. ViVA includes 250 mathematical
functions, allowing the user to transform variables and create new ones on the fly.
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4 Proposed Research
4.1 Objective 1: Curation

Provide a curation tool for the SBGN Activity Flow language to a set of authorities to create an
initial collection of pathways. Provide curation tool education in a workshop.

We will have authorities on individual signaling pathways (see Table 1) curate pathways in
higher plants. To facilitate curation, initial development will concentrate on theediting capabil-
ities of the user interface. The result will be a curation tool that will allow authorities to enter
pathways in SBGN Activity Flow language, edit them, annotate them, and save them to an initial
Beacon database. The user interface will be built on the network visualization tool VANTED [69]
and SBGN-ED, an extension of VANTED. We will extend SBGN-ED to createour curation tool.
Usability of the tool will be addressed via a continual feedback loop between users and developers.

A 2-day training workshop for two members of each authority’s group will be held at Virginia
Tech early in Year 2. Attendance at the workshop will be capped at 20 visitors. Co-PIs Grene and
Heath and their students will serve as instructors. One session will be devoted to interactive dis-
cussions and informal presentations by each visitor to establish a common focus within the group.
Other sessions will be hands-on, in groups of two, with a final session dedicated to presentations in
Beacon. Students and post-doctoral fellows will give the presentations.For groups not attending
the workshop, we will have subsequent online training sessions on the curation tool.

4.2 Objective 2: Initial Beacon System

Expand the curation tool to support data import and export and to maintain data in the Beacon
database. Make the database available on the Web. Incorporate the ViVA visualization tool.

Beacon Pathway Representation.Pathway representation is central to the power and flexibility of
Beacon. SBGN activity nodes, as used in Beacon, can be molecules, perturbations (e.g., “moisture
level” or “ABA”), phenotypes (e.g., “apoptosis” or “stomatal closure”), or unknown mechanisms.
The last three types of nodes are found inad hocsignaling pathways from the literature, such as the
one in the Assmann review [9], but they are not available in STKE, SBML, or BioPax. Standard
edge types, such as “positive influence” and “negative influence” in SBGN Activity Flow language,
are typically used when Boolean semantics (i.e., nodes are either switched “on” or switched “off”)
are used to interpret (model) the pathway. Beacon will fully support Boolean semantics, including
arbitrary logical functions for nodes and propagation delays on edges. Beacon will also support
more general variable values at nodes, including more than two discrete levels and continuous val-
ues (see Section 4.3). Hence, the Beacon pathway representation will include semantic information,
such as variables and transfer functions, for each node. This semanticinformation will constitute
a semantic model for the pathway, which can be simulated using Beacon (see Section 4.3). Anno-
tations for nodes, such as cellular location, will be provided in the databaseand the visualizations.
Note that pathways may overlap (have common components). Beacon will support links between
overlapping pathways and merging them into more comprehensive pathways.

Beacon Data Import and Export. Beacon can import and export pathways in the standard formats
SBML and BioPax. Many pathway databases support export in one of these formats, so it will be
feasible to import pathways into Beacon from those databases. Note that BioPax is an OWL-based
ontology for metabolic and signaling pathways. Beacon will import and export BioPax signaling
pathways only. Beacon has the capability to import omics data to overlay on the pathway visualiza-
tion and to use in inferring possible new relations or annotations for the pathway (see Section 4.3).
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Beacon Database. The signaling pathway database implements the Beacon pathway representa-
tion (see above) in a relational database. The database supports versioning, so that multiple versions
of a particular pathway can be present and accessible at any time. For simplicity, there will always
be a default (most current) pathway. (In the case of controversy, there could be two or more current
pathways.) There can, in fact, be multiple Beacon signaling pathway databases, either local or re-
mote; a simple addressing scheme will be used to select among non-default databases. Any Beacon
database can host multiple versions of a single pathway; this is done to facilitatehypothetical explo-
ration of different elaborations of one version of the pathway. For example, the same simulations
could be run on multiple versions to determine which version best fits a particular data set.

ViVA. As ViVA (see Section 3.2) is written in Java and is available as open source, incorporating
it into the Beacon system will be straightforward. ViVA has two uses in Beacon. First, it is an
alternate way to visualize imported omics data (see above). Second, simulationswill generate large
quantities of data (thousands of runs) that can be readily visualized and analyzed in ViVA.

4.3 Objective 3: Simulation and Inference Engines

Add the simulation and inference engines to the Beacon system.

Simulation Engine. The simulation engine design will be based on semantic network models that
have been used to provide meaning for signaling pathways [2, 12, 79, 152, 158], including Boolean
networks [5, 9, 10, 62, 94, 112], multilevel logic [139], and differential equations [44, 180]. The
various models have two important subtypes, deterministic and stochastic.

The simulation engine will support Boolean semantics, including arbitrary logical functions for
nodes and propagation delays on edges, as the default pathway semantics. The Boolean simulation
functionality, which will be implemented first, will be an extension of that in [4, 94], supporting
synchronous, asynchronous, and user-supplied timing models for the edges and user-controlled
logic and noise models for nodes. We will generalize the Boolean model to allowmultiple discrete
levels at nodes, which could be useful in a drought stress setting, for example, where there may be
five moisture levels (perturbations) of interest. Effects such as a gene knock-out can be simulated
by setting a variable at the corresponding node to a fixed constant (suchas “off”). In both Boolean
and multilevel models, stochastic effects can be introduced by having some variables set randomly;
a simulation is then run multiple times to obtain statistically significant results.

While not usually suited to signaling pathways, continuous semantics will be supported by
Beacon through its ability to exchange pathways as SBML models. In particular, we will access
COPASI [60] through the iPlant API to provide both ODE and stochastic simulation in continuous
semantics. Many of the situations (e.g., abiotic stress) in which pathway knowledge will be applied
involve time-varying environments. Yet a major shortcoming of many systems biology modeling
packages (e.g., SBML) is the inability to link inputs to specific sources of realenvironmental time-
series data. Beacon will build upon and extend features currently existingin COPASI parameter
estimation procedures to address this issue (see letter from Dr. Steve Welch). Results of simulations
can be output in tabular form or visualized in the user interface as plots in ViVA.

Inference Engine. Network inferenceis the problem of reconstructing a biological network from
biological data, also calledreverse engineering biological networksin the DREAM (Dialogue on
Reverse-Engineering Assessment and Methods) project [154], which addresses network inference
in metabolic pathways, gene regulatory networks, molecular interaction networks, and signaling
pathways. Numerous methods have been used to infer network connections, including correla-
tion [96, 115, 124], regression [82, 128], Bayesian approaches [41, 84], probabilistic graphical mod-
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els [32, 187], information theory [172, 194], algebraic methods [153],logical methods [51, 62, 81],
machine learning [71, 111], and evolutionary algorithms [148]. Most of these methods are not
applicable to signaling networks due to the directed edges that connote causality.

Computationalcausal inference[46, 131] narrows the problem considerably, as each causal
relationship (directed edge) is taken to mean that the antecedent is the resultof the precedent through
some, perhaps unknown, mechanism. Such causal relationships can be suggested by various types
of omics data. We first discuss time-course data and then contrast data (e.g., wild type versus
mutant) in which an experimental intervention (e.g., gene knockout) sets some cellular activity to
always on or always off (for boolean semantics). Some prior work specifically utilizes time-course
data in network inference [6, 32, 115, 145], with some of it especially forsignaling networks [48,
68, 90]. Granger causality is a popular method for causal inference from time-course data [56, 115,
142, 195]. This method uses statistical correlation to infer whether one variable (e.g., expression
of gene A) is causally related to another (e.g., expression of gene B). The Beacon inference engine
will implement Granger causality, which is generally applicable when there areadequate time-series
data [195]. Beacon will borrow from existing code for Granger causality (e.g., [142]).

For experimental data that shows a contrast between treatments, Pearl [130] demonstrates how
to use directed graph-based models and suitable algorithms to infer the presence or absence of
causal links. He covers Bayesian networks [37, 46, 187], which arebased on directed acyclic
graphs, and pathway analysis in structural equation modeling [83, 95, 143], which may have di-
rected cycles and hence are more directly applicable in the context of signaling pathways. (Note
that MetaReg [161] does causal inference in Bayesian networks and hence does not support directed
cycles.) Application of these models to causal inference proceeds as follows: A small number of
models (graphs) to test are proposed, and the implications of each model are evaluated statistically
against empirical data [83]. In the case of structural equation modeling, the statistical analysis can
be provided by OpenMx, open source software based on the R programming language; Beacon will
incorporate OpenMx into the inference engine. The Beacon inference engine will return the models
in a ranked list in order of probability given the data. In most cases from the literature, each model
has to be constructed from scratch by integrating whatever omics and otherdata is available. In
Beacon, we have the advantage of already having curated signaling pathways (see Section 4.1) and
only needing to extend or edit a pathway with additional nodes and edges. Given general guidance
from the user, Beacon can automatically generate all the models to be tested.

There is also the issue of removing edges that may be redundant, disproven, or represent an
indirect rather than a direct causal influence. In the literature, this is addressed with the graph-
theoretic algorithm of transitive reduction [3, 4]. In the Beacon inferenceengine, we will also
implement transitive reduction, or use the existing NET-SYNTHESIS software [70], to suggest
edges that may be redundant.

4.4 Objective 4: Experimental Validation

Validate Beacon simulation predictions in collaboration with PREP.
Predictive roles of genes involved in signaling pathways and the direction of signal transduction

needs to be validated to be able to base further studies on integrating the pathways. As a proof
of concept, phenotypic characterization of Arabidopsis mutations in selected genes predicted in
Beacon simulations to play a crucial role in stress signaling will be carried outin Years 3 and 4, in
collaboration with Dr. Erin Dolan of PREP and PREP-U (see Section 7). Drought and salt stress
pathways will be experimentally dissected for early signaling and cross-talk. A number of useful
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standardized phenotypic assays and conditions for assessing the relative tolerance of Arabidopsis
have been described [167], and several of these assays (1–3 below) will be used in the proposed
project. The effect of mutations in signaling genes will be assessed for perturbations in the abiotic
stress pathways by comparing the effects of stress imposition on mutant and wild type genotypes on:
(1) growth characteristics: leaf number, leaf area, biomass accumulation, seed yield, root length,
and growth; (2) phenology: bolting and flowering time; (3) leaf water content, photosynthetic rate,
and stomatal conductance; and (4) the expression of selected genes that are predicted by Beacon to
be downstream of the mutant gene in each case, using quantitative RT-PCR.

Drought Stress Screens. Arabidopsis plants will be grown in Metro-Mix 350 in a controlled
environment chamber (Conviron, 16 hour photoperiod, 22◦ day, 18◦ night). Water will be withheld
until 50% RWC is reached in each case, after which time the plants will be re-watered and allowed
to recover until the wild type genotype has reached pre-stress levels. (The extent of recovery from
drought stress at the 50% RWC level in the mutants will be revealed in the course of the exper-
iments.) The time of drought imposition will be ca. 20 days after sowing. Photosynthesis and
leaf water content will be measured daily from the time of imposition of stress. One (maximum)
stress and one recovery time point will be taken.Salinity Stress. Plants will be grown as described
above for drought stress exposure prior to the stress imposition step. Salinity stress will be initi-
ated at the same developmental stage as drought stress. Leaf number will be measured at the time
that the stress is initiated. At the start of the experiment, plants will be watered with 0 (control),
or 150 mM NaCl in steps of 50mM separated in time to allow for adjustment by the plant [47].
Phenology. Bolting and flowering time will be recorded for each genotype and each treatment, as
well as leaf number at bolting, and seed yield. (Note that these measurementscan be represented
as SBGN phenotype nodes.) Gas exchange will be measured with a Li-Cor photosynthesis meter,
with Arabidopsis chamber, as is routine in the Grene laboratory [103, 102,175]. In each case, sta-
tistical tests (e.g., ANOVA) will be applied to the data, and differences between genotypes at the
95% confidence level determined.Quantitative RT-PCR (qRT-PCR). qRT-PCR will be carried
out on selected samples by the method of Vandesompele et al. [163], which isroutinely used in the
Grene laboratory [102, 164, 165]. The control transcripts used forstandardization will be UQ10 for
salinity stress [47] and adenosine kinase for drought stress [164].

5 Beacon User Scenario
This scenario is fictional, although relevant to work to which our group contributed [92].

Experiment. Two genotypes of Arabidopsis thaliana are subjected to long-term, low level,expo-
sure to the oxidizing air pollutant ozone. The genotypes differ only by a knockout mutation at a sin-
gle locus G, a candidate regulatory gene, belonging to a large transcriptionfactor (TF) family. The
time course experiment has several samples taken over the expected normal life cycle of Arabidop-
sis for gene expression and phenotypic measurements. Since one phenotypic manifestation of ozone
stress, at least at acute levels, is early senescence, “senescence status” is assessed through measure-
ments of photosynthesis, chlorophyll levels, and the expression of well-characterized Senescence
Associated Proteins (SAGS) and of the regulatory gene WRKY53 [11, 39, 107, 190].

Question Posed. What effect does knocking out gene G have on molecular defenses against long-
term ozone stress, such as that experienced by field-grown plants under current and expected future
climatic conditions?
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Year 1 Year 2 Year 3 Year 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Objective
Objective 1: Curation
Objective 2: Initial Beacon system
Objective 3: Simulation and inference engines
Objective 4: Validation

Table 2: Activity schedule for Beacon objectives

Data Mining. The results of applying a GO enrichment algorithm to the transcriptomic results
(see Figure 1) suggest that Pathways A and B did not respond in treatedmutant genotype plants,
and that putative Regulator X was expressed to a lesser extent, and at a later time point, than in
ozone-exposed wild type plants. (Expression of X did not differ between the two genotypes in the
absence of ozone stress.) The phenotypic data suggest an early onset of senescence in the absence
of a functioning Gene G in the mutant genotype, and a partial, gradual, acclimation to ozone stress
in the wild type plants. Using the Beacon simulation and inference engines, GeneMania [113, 171],
and eFP Browser [179], a view of the current understanding of signaling pathways in which G
and/or X are thought to participate is obtained, in addition to actual data aboutother experimental
conditions under which the expression of these genes is affected. Currently, there is no comprehen-
sive repository of stress signaling pathways in plants and no integration ofresults from different
sources. The implementation of Beacon will fill the first need and the iPlant workflow the second.

Results. Results obtained computationally suggest that X, the timing and extent of whoseexpres-
sion is partially controlled by TF G, acts downstream to affect the timing of hormone-regulated
processes associated with defense against ozone [98, 178], but not previously associated with the
onset of senescence. The data-processing tools employed and the nature of the experimental design
allow distinctions to be made between early responses to the stress and later acclimation processes.
There was also an association with a ubiquitination pathway that was not observed before for ozone
action, although this connection was already reported for drought stress [134].

6 Management Plan
Objectives, task distribution, milestones indicated in Table 2.Objective 1 Curation: GRA/Grene
(PPWS), PD/Pereira (VBI).Objective 2 Initial Beacon system: GRA/Heath (CS).Objective 3
Simulation and inference engines: GRA/Heath (CS), GRA/Grene (PPWS).Objective 4 Exper-
imental validation: GRA/Grene (PPWS), PD/Pereira (VBI).Responsibility: Co-PI Grene coor-
dinates the Curation effort in communication with external collaborators (letters of commitment).
Co-PI Heath supervises the training of GRAs/PD for accomplishment of computational tasks. PI
Pereira supervises tasks under objectives 1 and 4.Annual milestones and deliverables: Year 1 —
Curation of biological data and workshop for dissemination of methodology toa global consortium
of Collaborators. Year 2 — Beacon databases and tools established for interaction with users. Year
3 — Simulation and inference engines available for user studies. Year 4 — Beacon pipeline based
predictions validated by case studies.Internal communication is done by weekly project meet-
ings, including bi-weekly video/tele-conferencing with collaborators, to discuss specific signaling
pathways. Workshop in the second year will be used for initial training of external collaborators.
Beacon will be implemented in a portable language (e.g., Python or Java). TheMySQL relational
database system will be used for the Beacon database (Heath).Sustainability Plan. All code for
Beacon will be freely available through an appropriate open source license and distributed perma-
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nently through SourceForge. Once completed, tools will be made available ontop of the iPlant
infrastructure, allowing both tools and data to remain on active servers past the end of funding.

7 Broader Impacts
The proposed Beacon system, to serve as a repository and simulation engine for molecular signaling
pathways in plants and their relationships to phenotypic effects, will interestundergraduate students
in the computational sciences or computational biology, as well as experimental biologists. Well-
established outreach programs will be used to provide training and educational outreach activities.

Multicultural Academic Opportunities Program (MAOP). The mission of the MAOP program is
to encourage and support the academic achievements of a diverse student body in STEM fields from
Virginia Tech. Programs and activities serve students from the pre-college through the doctorate
level with a continuum of financial, academic, and social support, as well as research opportunities.
VBI (the PI’s affiliation) participates in the MAOP program by sponsoring and/or hosting summer
research internships for undergraduates [160]. Co-PI Grene hasclose ties with the MAOP program
and has served on the Advisory Board for an NSF-funded project through MAOP from 2007–2009
(see letter of support from Dr. Karen Sanders, Interim Vice President for Diversity and Inclusion).

S-STEM. (See letter of support from Dr. Jill Sible, Associate Dean, College of Science, Virginia
Tech). The NSF-funded S-STEM Program trains a cohort of undergraduates in the classroom and
laboratory to be competitive for careers in biotechnology. S-STEM scholars take common classes
and participate in a weekly seminar dedicated to academic and career preparation, research skills,
ethics, and diversity. Beginning in their sophomore year, students are encouraged to participate in
laboratory research. These research experiences will be enhanced with funds from the proposed
project. S-STEM students can be important early users of the Beacon system, performing complete
pathway analyses. The Co-PIs will supervise the S-STEM students. Starting with relevant omics
data, they will be invited to visualize those data in the context of a Beacon signaling pathway,
use the data to infer new pathway fragments with the Beacon inference engine, conduct “what-if”
exploratory simulations with the Beacon simulation engine, and commit any new pathway versions
to a Beacon database. Their feedback to the team will be highly valued.

PREP and PREP-U. We will collaborate with Dr. Erin Dolan at Virginia Tech, principal investi-
gator of the Partnership for Research and Education in Plants (PREP) and PREP for Undergraduates
(PREP-U), and David Lally, PREP coordinator. Through PREP (supported by a Science Education
Partnership Award from the National Center for Research Resources; see attached support letter),
and PREP-U (initiated with funding from the NSF Course, Curriculum, and Laboratory Improve-
ment Program), high school students and undergraduates challenge Arabidopsis mutant and wild-
type plants with abiotic stresses, therefore providing opportunities to conduct authentic scientific
research. Beacon results will be utilized to frame investigations appropriatefor these students.
Students will then design and conduct experiments as tests of Beacon-generated hypotheses and
report their findings back to project investigators. The PIs will be directlyinvolved in PREP and
PREP-U activities in three ways. First, they will collaborate with Dolan and Lallyto develop brief
video pieces explaining in non-technical language the types of experimentsworthy of investigation.
Second, they will provide laboratory materials appropriate for students to design and conduct the
investigations. Third, in collaboration with Dolan, Lally, and PREP and PREP-U instructors, the PIs
will discuss students’ investigations with them, either in person or using web technologies such as
PREP/PREP-U discussion boards, wikis, or video chats. These discussions will encourage students
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to develop reasoning and argumentation skills by prompting them to support their experimental
decisions with evidence (e.g., why an investigation is worth doing, why a particular experimental
design makes sense, and what interpretations are supported given theirexperimental results).

Genetics, Bioinformatics, and Computational Biology (GBCB).The interdisciplinary GBCB
Ph.D. program is a new area of study tailored to students’ individual backgrounds. Co-PIs Grene
and Heath are founding members of GBCB and serve on its steering committee. The program en-
compasses the applications of molecular biology, genomics, mathematics, statistics, and computer
science to the life sciences. GBCB is designed to provide a combination of discipline-specific and
cross-disciplinary course work, as well as a multidisciplinary research environment. GBCB fac-
ulty members come from 11 departments and the Virginia Bioinformatics Institute. Four specialty
tracks are defined: Life Sciences, Computer Science, Statistics, and Mathematics. Each student
specializes in a track to which he or she is suited and is required to gain expertise in at least one
other track. All students are required to receive some training in the life sciences, regardless of their
chosen track. The Beacon project will hire GBCB students for the computational part of the project
and will recruit GBCB students in the life sciences track to assist with Objective 4.

8 Results from NSF Support
Current: Plant Genome Award. Pereira (PI), Grene (Co-PI), and others obtained the Plant Ge-
nome Research Program award DBI-0922747 ($2.4M; 9/15/09 – 8/31/12) “Cereal Drought Stress
Response and Resistance Networks”. Drought gene interaction networks are being created in rice
and maize to provide a systems view of drought gene functions. Transcriptome data from Arabidop-
sis and cereals were generated for a comparative analysis across plants, using standardized drought
treatments to simulate field drought conditions. Differentially regulated genes were compared using
orthologous loci, and significant species-common drought down-regulated genes identified repre-
sented by the GO-slim categories. Putative drought responsive rice regulatory genes were identified
with available Ds/dSpm transposon inserts (approximately 150). The homozygous mutant lines
are being generated to characterize the drought responsive phenotypes. The rice-maize common
regulatory genes will be used to identify candidate drought responsiveorthologs in maize, to be
validated by association analysis for dissection of drought response phenotypes. The gene interac-
tion networks developed for Arabidopsis and rice are being used to studyother biological pathways.

Prior: ITR Award. Heath (PI) and Grene (Co-PI) had “ITR-0219322: Understanding Stress Re-
sistance Mechanisms in Plants: Multimodal Models Integrating Experimental Data, Databases,
and the Literature” ($499k, 09/01/2002 – 12/31/2006, and a DCC supplement for work with the
International Potato Center in Peru) and developed the multimodal network concept to integrate
biological information from functional genomic data on drought stress in Arabidopsis genotypes,
online databases, and the literature to represent and analyze molecular stress-resistance mechanisms
in plants. XcisClique, a system developed in the Grene/Heath group, associates annotated genome
and gene expression data; models known cis-elements as regular expressions; identifies maximal
bicliques in a bipartite gene-motif graph; and ranks bicliques based on their computed statistical
significance. XcisClique analysis of the promoter regions of Arabidopsis HSP90s and their putative
co-chaperones identified candidate co-chaperones for each HSP90in abiotic stress-responsive genes
at the Nottingham web site. Wet lab projects in the areas of drought stress,ozone stress, and effects
of elevated carbon dioxide were completed. The central focus was on theresponses of particular
accessions to stress. Response diversity reflected differences in constitutive and inducible networks.
Publications include [52, 57, 58, 92, 93, 102, 103, 129, 146, 147, 149, 150, 164, 165, 173, 174].
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