ABI Development: Representation, Visualization, and M odeling of Signaling
Pathwaysin Higher Plants

Intellectual Merits. Signal transduction pathways hold the key to understanding the early re-
sponse of higher plants to abiotic stresses, such as drought, floodiy,clld, ozone, and salt.
Traditionally, signaling pathways have been difficult to synthesize and isifgesto manipulate
computationally. Current pathway tools and databases provide only limitga<udpr manipulat-
ing pathways as networks. In particular, it is not possible for a biologist® an existing signaling
pathway and ask hypothetical questions that are answered computatididlyroject builds the
Beacon system to provide computational support for biologists’ questiomst &ignaling path-
ways. The user interface is an editing environment that represents aniputades a pathway in a
standard graphical notation called SBGN Activity Flow language. The grrimjeludes the curation
of signaling pathways for plant abiotic stress response by recognizbdréies and their archiv-
ing in a Beacon database. The database representation allows the btolagigbse a semantics,
such as boolean semantics, on a pathway. The Beacon simulation engineablidné computa-
tionally implement those semantics and provide results that can be queriecsaalized. Adding
or removing relationships in a pathway (adding or removing edges in a Hgtvaises the diffi-
cult question of causal inference: Does activity of molecule A causeitgadf molecule B? Such
guestions can be assessed computationally and statistically using such tGoéger causality,
Bayesian networks, and structural equation modeling. The Beacosriciengine provides these
tools to allow the biologist to develop testable hypotheses about pathway nentpoThe Beacon
system is not specific to plant signaling pathways but rather enjoys moezajeisability.

Broader Impacts. The project will include training and education through well-established out-
reach programs at Virginia Tech. These include the Multicultural Acadeppo@unities Program
(MAOP), which provides research opportunities for students frorrcphege through the doctor-
ate; S-STEM, which enhances the competitiveness of undergradisitgsresearch experiences;
and PREP and PREP-U, which use NSF funding to expose high schibahdergraduate students
to biological research that contrasts phenotypes of Arabidopsis mutdntitl-type plants.



PROJECT DESCRIPTION
1 Motivation

A signal transduction pathway is a collection of interacting cellular comporieatgerform the
response of the cell to an external or developmental signal. A pathwaysisaooveniently rep-
resented by a network with the components as nodes and the interactianscésddedges. This
representation assists both computational manipulation and user visualiZigoal transduction
pathways are keys to understanding the dynamic logic of, for examplé rpkponses to stress.

Responses and accommodations to adverse changes in the environnteas draught, salin-
ity, cold, and oxygen availability, are at the heart of many plant activitidsna@e change events
are expected to exacerbate the severity and duration of currensadu@rironmental conditions.
Elucidation of the genetic response networks regulating plant dynamiorresg to changing en-
vironments is daily becoming more of a reality [24, 59, 87, 88, 99, 100, 128, Bioinformatics
approaches are increasingly available to address these questionsvdilatie full details of even
one stress signaling pathway are still not clear. Furthermore, althoogb-signaling is clearly an
important part of adaptive responses [59, 75, 86, 184, 185], itdeeanto what extent recognition
and response pathways for the various abiotic stresses overlap imacpase.

We propose to expedite the consolidation of existing understanding of stggmling in plants,
facilitate its expansion, and broaden participation in knowledge buildingsadhe plant biology
community. To this end, we propose to facilitate a systems biology depiction dbicitérg molec-
ular signaling pathways in plants that respond to abiotic stresses, usingiel¢ecurated pathways
drawn by authorities in a common graphical language as our starting point.

Deep sequencing of non-model species, of several ecotypes of thed phant Arabidopsis, and
of specific crop genotypes, is rapidly increasing our understandipépaf genomic responses to
abiotic stress [26, 38, 97, 151, 166, 189, 191]. Information is availabdeit the nature of cell-
specific signaling in some cases [9, 34, 119]. Regulatory events at mufiggétranscriptional,
organizational levels are integral components of stress responseé&3[18L7, 188]. Potentially of
equal or greater importance for plants is the recently discovered roteaf RNAs in epigenetic
events that modify gene expression in response to abiotic stress [H}4, 15

Challenges Identified. Existing cyberinfrastructure does not support a systems view of signalin
pathways in plants. Current tools for signaling pathways are drawing, teatse of which only
result in images [50, 133], while others store true networks [73, 74¢ Wbrk of creating a sig-
naling pathway is painstaking, requiring a thorough understanding of thatlite and a careful
presentation to convey all the concepts present in the literature. THeaksuch work is typically

a figure in an article and perhaps an entry in a signaling pathway datatreseesult is only suited
for limited computational manipulation, because the semantics of the signalinggyatemain in
human-readable form only. This limitation has a number of negative coasegs. Biologists are
not able to take an arbitrary signaling pathway and paint it with omics data dsgrariments to
gain insight into the operation of the pathway under experimental condit@erserally applicable
simulation facilities for signaling pathways are limited, so that “what-if” (e.g.,dkooit or knock-
down) experiments are rarely performadilico. Inferring new causal links in an existing pathway
remains a difficult task; there is limited computational support for suggestisgilpie new causal
links. Finally, there are no widely accepted standards for the syntaxeandrgics of signaling
pathways.
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Figure 1: Prototype discovery environment based on iPlant Collaber&teb Services API.
A user uploads results of a multi-experiment microarray analysis and isvd@k€rototype, an
HTML/Ajax-based web application running at the iPlant Collaborative, tvimerforms GO en-
richment analysis for each experiment. Results are returned as a J3@B~ked data structure
and rendered by VAPrototype (top panel) in a table color-coded by signidfe. The user can
mouse over a table cell to see the list of genes associated with the term. Sedec@thgubmits
the cell’'s gene list to a web service implementing the GeneMANIA functional ortinference
tool [113, 171]. Results (lower left) are rendered using Cytoscape siieh that seed genes are
yellow circles and inferred genes are magenta circles. The user can marsedges and nodes
to see a full list of attributes. Selecting a node invokes the eFP browse; [&flich shows (lower
right) the gross anatomical expression profile for the gene of interest.

Proposed Solution. We propose Beacon, a new systems biology tool, to address these cégalleng
Within Beacon, an expert curator can construct and edit signaling psithallowing the integration
of current and future data over multiple scales of cellular organizatioraaraks species, with a
central focus, in this first phase, on abiotic stress response pathWwhaggproposed consolidation
of expert knowledge across plant stress biology will eliminate wasted effioite a section of the
plant biology community, and afford the possibility of fresh insights into fumelatal biological
mechanisms. Equally important, Beacon will serve as a valuable teachingilabde to students
of plant biology. Users of Beacon will be able to upload inferred canetationships among entities,
based on their own data. They will be able to store the resulting amendedayatvd share it.
Beacon will interact with the cyberinfrastructure of the iPlant Collaboeaisee letter from Dr. D.
Stanzione, Co-PI of the iPlant Collaborative). Beacon will use an omiesidi@gration workflow
instituted in iPlant, in the Data Analysis and Visualization Working Group (of widchne is the
co-leader). A prototype of this workflow exists (see Figure 1). Beagifinuse the iPlant web
services API, which will provide tools shown in the prototype and alsosscteedata converters,
storage, and computational resources, and the ability to invoke othelizédioan and analysis tools
through a consistent web service interface. The iPlant team will provéderesources to support
the Beacon developers in the use of the API, both through training arat thedinical support.



Signaling

Pathway
Inferred Database - ViVA

Pathways ¢ Visualization
» Beacon | ) !
SBML | q User . Simulation
BioPax »  Interface |¢ Engine
Omics Inference
Data g Engine

Figure 2: Beacon system diagram.

As a computational system, Beacon will be able to represent, visualize, ashel signaling
pathways. While Beacon will be general enough to support a largeafiagmaling pathways (see
Section 4.2), we will focus on abiotic stress signaling pathways in highetsplarBeacon system
diagram is in Figure 2. The central component is the Beacon user irgewacch supports editing
and visualizing pathways in the Systems Biology Graphical Notation Activity fémguage (see
Section 3). The user interface also controls the movement of data, mod&simuand inference.
In particular, Beacon will import and export pathways in several stahfdamats, including BioPax
and SBML and will import omics data and inferred pathways from tools availiabm the iPlant
Collaborative and other sources (see Section 4.2). Beacon will allonstireta select semantics
for the components in a pathway and to simulate “what if” scenarios implementisg #emantics
(see Section 4.3). Beacon will support the inference of new pathwaypaoents from imported
omics data (see Section 4.3). Omics data and simulation results can be visuatizedrpulated
with the incorporation of the ViVA interactive visual tool into Beacon (seeti®a 4.2).

Sample Questions to be Addressed Using BeacoWhat is understood about specific events in
abiotic stress signaling in model plants, crop species, and specific ges@tWieat similarities or
differences exist among responses to different abiotic stressestavéithe unique features of the
responses of specific cell types or tissues? In each case, whaniodsrcan we make about the
causal relationships that drive cellular responses to abiotic stressenafrtpact on phenotype?
The Availability of Interdisciplinary Scientists. Few plant biologists possess the skills to develop
a system such as Beacon. However, the combination of expertise in ticerBesam provides
the requisite skill set for the project. The Genetics, Bioinformatics and Ctatipoal Biology
Program at Virginia Tech provides the requisite training for the next ig¢ioa (see Section 7).
Our proposed work will expand this training to other participating institutionsuidjin the virtual
community created by the authorities and the tools described below.

2 Objectives
To attain the Beacon system and database, we have the following spefsfitives.

e Objective 1. Provide a curation tool for the SBGN Activity Flow language to a set of aittho
ties to create an initial collection of pathways. Provide curation tool educatmworkshop.

e Objective 2: Expand the curation tool to support data import and export and to maintain
data in the Beacon database. Make the database available on the Wehotlateothe ViVA
visualization tool.

e Objective 3: Add the simulation and inference engines to the Beacon system.



] AUTHORITY | AFFILIATION | STRESS \

Julia Bailey-Serres University of California, Riverside Flooding
Mikael Brosche University of Helsinki Ozone
Jaakko Kangasjavri
Tzyy-Jen Chiou Academia Sinica, Nankang, Taipei Phosphate,
small RNAs
Viswanathan Chinnusamy Indian Agricultural Research Institute Cold
Alejandra A. Covarrubias| Instituto de Biotecnologia-UNAM, Mexico Small RNAs
Jo% Reyes and stress
John C. Cushman University of Nevada Root responses tp
Mel Oliver USDA/ARS drought stress
Sixue Chen University of Florida Guard cells
Radhika Desikan Imperial College, London and stress
Ruth Finkelstein University of California, Santa Barbara Abscisic acid
Jose M. Pardo Instituto de Recursos Naturales y Agrobiologia, Spgin Salt
Bjorn Usadel Max Planck Institute of Molecular Plant Physiology| C,N
Olena Vatamaniuk Cornell University Heavy metals

Table 1. Plant stress authorities who have agreed to provide curatedgyathin addition, Grene
and Pereira will provide generalized drought stress pathways.

e Objective 4: Validate Beacon simulation predictions in collaboration with PREP.

3 Background
3.1 Abiotic Stress Signaling

Much data already exist, pointing to genotype-specific variation in the nsggoof herbaceous
plant and tree species to abiotic stress [8, 21, 23, 55, 85, 102, 1841648, 170, 176, 177, 181].
Valuable insights have been obtained through these studies identifying ge@d Ls that indicate
possible molecular pathways explaining intra-specific differential resoleading to stress resis-
tance. To date, it appears that genotype-based variation in stresagsespnay well offer clues as to
bases for differential resistance to stress. “Pre-adapted” statalsarienportant for superior stress
tolerance [35, 61, 92, 93, 102]. Nonetheless, such variation, toidatearly exclusively based on
fitting genes into known, putative, and, in some instances, even conjgctrgsistance” pathways.
We propose to first lay out generalized images of molecular stress mspathways in plants that
represent current, conventionally held, views. (See below for sommes.) Expert authorities
will provide specific information in visual form during the first phase of timplementation of
Beacon. Pathway graphs have been promised (see Table 1), angddbeses of the labs contacted
have been very positive. As a second phase, the interlocking pathvilaige further elaborated to
show variations in responses and/or constitutive states that are docdrfwrnitelividual genotypes
and/or crop cultivars, together with any phenotypic observations thatailable.

Abscisic Acid (ABA) and Abiotic Stress.ABA is a major regulator of plant responses to abi-
otic stresses such as drought, salinity, and cold. These responsesdiag¢ed by changes in gene
expression as well as rapid effects on ion fluxes, such as those idviohaomatal closure. Ex-
tensive genetic and biochemical studies have implicated well over 100 loce iIABA response
and have demonstrated both direct and indirect interactions among theircggso These loci com-
prise numerous families with both redundant and distinct functions at ésxel/of the ABA sig-
naling network: multiple receptor families, protein phosphatases (PP2Qsintaeact with the
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PYR/PYL/RCAR receptors, kinases (e.g. SnRKs) regulated directly bPB®Cs, and transcrip-
tion factors, ion channels, and numerous other substrates of the SnRétlsT kinase families
(reviewed in [31, 137]). Although some signaling components participate itipleuABA re-
sponses, others are specific to subsets of responses, probabightteacombination of limited
expression and preferential interactions. Currently, the best dbammed ABA signaling network
is that controlling guard cell function in stomatal regulation, which has beegaldped as an ex-
ample of a systems biology approach to signaling (reviewed in [9]). While raapgcts of this
single-cell system may function in other ABA responses, the diversitglidlar responses to this
one signal indicates that it is unlikely that there is a universal ABA respanodule. There is a
wealth of information that could be assembled to display interactions amongicpeembers of
the families described above, regulation by secondary messengeitheancbllective effects on
gene expression and cellular metabolism in seeds and seedlings, asiwgliasd cells. Over half
of ABA-induced changes in gene expression are induced by dreughsalinity [144].

The Central Role of Reactive Oxygen Species (ROS) Signaling in Respotsébiotic Stress.
Organisms can sense changes in their environment through the employinoemtrolled ROS-
generating and reporting systems [109, 121]. ROS-mediated respathseags constitute a major
component of plant cell responses to biotic and abiotic stresses, allodjugfraent of functional
processes to altered conditions [7, 89]. For example, significant flexihilityprecise control over
photosynthesis-related processes is provided by metabolism driveadby processes [19, 132].
Mediating environmental awareness are ROS generators, transmenfdiciitegors, signal am-
plifiers, calcium-dependent elements, and genes whose activity is cotitogllne cellular redox
state, resulting in altered hormone biosynthesis and metabolic transpaspesas crucial down-
stream components [66]. ROS responses, which are condition-(i.es)stqgecific, are suggested
by gene clusters that imply the existence of networks. Distinct signalingdasdarget regula-
tory factors that shuttle between cytosol and nucleus [66]. Redoxlgigna initiated through
ligands, enzymes, or changes in membrane potential at, for example, theapi@smbrane that
are perceived and internalized by protein tyrosine phosphatases)(RiEReromeric proteins, and
transmitted through MAPK cascades [89, 108].

An Example of ROS-Mediated Signaling — Ozone Stres®lant exposure to elevated atmo-
spheric ozone at acute levels can lead to cell death. Ozone enters e tle@ugh open stomata
and immediately degrades to other ROS in the apoplast, including superoxidg/@drmogen per-
oxide. This ROS production initiates a signaling cascade that involves apiopGR1 (GRIM
REAPER 1) and an, as yet unidentified, receptor(s) that transferighal 4o the inside of the
cell [182]. As a consequence of exposure to ozone, a downstréaradtion with plant hormone
signaling pathways occurs, which have a crucial role — salicylic acid &mdeme promote cell
death, whereas jasmonic acid is proposed to contain cell death [125¢d Baschemical treat-
ments, phosphorylation and Ca2+ are involved in this signaling pathwayughhhbe exact proteins
are not identified yet. The rcd1l (RADICAL-INDUCED CELL DEATH) mutgs ozone sensitive,
showing higher rates of cell death than wild type Arabidopsis plants, indictitat RCD1 regulates
some aspects of cell death, possibly related to its interaction with seveisdrigion factors [65].
ROS scavenging through antioxidant defenses are important to corari@vil of cell death; low
ascorbic acid mutants (vtc) are ozone sensitive [29]. Ozone entry topth@ast leads to ROS
production and activation of as yet unidentified receptor(s) that eatisé signal to the inside of
the cell. The Ca2+ transporter DND1 (DEFENSE NO DEATH 1) mediates senéial signaling
step, since ozone induced changes in gene expression are absait A83]. Inside the cell, one
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of the earliest events detected in response to ozone is activation of MigRKliag (MPK3 and
MPK®6) and transport of MPK3 and MPKG6 from the cytosol to the nucldlisThe plant hormones
salicylic acid and ethylene act as positive regulators, and NPR1 actsegstve regulator.

ROS, ABA, and Secondary Messengers: Water Deficit and Floodingtlced Responses.The
frequency and severity of droughts and flooding are expected tcagei@ many regions of the
world, while decreased runoff can be expected to impair reservoir emuhd water recharge.
Inter- and intra-specific gene expression studies have identified multiiievgygs that are regu-
lated in response to water stress [80, 110, 164, 173, 174], and fpgtili7, 118]. In the case
of severe flooding and submergence, plants are faced with an en@igyticat requires effective
management of energy reserves. Submergence tolerant rice adajgtseeqce strategy, limit-
ing gibberellin-activated elongation growth and conserving carbobgslfd5, 42]. Study of low
oxygen and submergence responses in Arabidopsis and wild spegesRi@mex) indicate that
a quiescence strategy can also outweigh the benefit of rapid growthdpeesabmergence. In
general, in the case of drought, osmotic changes, “recorded” at lheembrane, are transduced
in the form of rapid metabolic changes involving generation of ROS, ABAyithesis, and long
distance transport from its site of synthesis to cellular sites of action vigoweies-mediated pro-
cesses, where it binds to specific receptors, phospholipid metabolisni, ivbligdes the generation
of secondary messengers such as phosphatidic acid, calcium semgitigeaction of calcium on
signaling pathway components, antioxidant signaling and defense pahamay the synthesis of
protective molecules [16, 45, 91, 137, 141, 186]. It is increasinglgrdieat the ubiquitination
machinery also plays a crucial role in the modulation of drought signalingyagth[27, 134, 192].

Role of Small RNAs in Stress Signaling. The many different types of small non-coding RNAs,
their genes, expression characteristics, and influence on the codingf plae transcriptome are
already beginning to revolutionize our views of how phenotypes arerdeted [120, 193]. Small
RNAs have also been implicated in the regulation of proline biosynthesis sadtestress [17].
Regulatory effects of specific microRNAs (miRNAs) exerted by modulatingstdpt amount or
turnover of those genes that are their targets have been shown éighdirealt, nutrient (phosphate,
nitrogen, and sulfur), and temperature stress in a range of plant spa6jer6, 126, 156, 157]. In
addition to transcriptional control, small RNAs may also exert inhibitory éffen translation [20].
At this time, various stress-responsive miRNAs have been identified inugpiant species, and
putative targets have been assigned for many of them; however, theseedein to be verified
(reviewed in [30]). The identity of the validated targets indicate that miRNAsraplicated in the
regulation of transcripts encoding a wide variety of proteins, e.g., trigtiscral factors (involved in
cold, drought, salinity and ABA responses), antioxidant enzymes, iospiaters, F-box proteins,
AGO1, hormone metabolism and signaling, among others (reviewed in [BO, 67

3.2 Computational Background

Signaling Pathway Databases.PathGuide [14] lists 62 signaling databases, most of which sup-
port rendering pathway drawings (visualization) and many of which stateways as networks,
allowing the export of pathways in standard formats such as SBML andaRioRe review some
key signaling pathway databases here. The Arabidopsis ReactomadE5@¢neral plant systems
biology resource that is built on a generalized notion of “reaction”. KEGA}is a general resource
for pathway information that emphasizes metabolic pathways. NetPath [78htslase of curated
human signaling pathways stored as networks and with reactions annogatesigublished liter-
ature; it is supported by the PathBuilder system [72]. Science’s Sigaalkdiuction Knowledge



Environment (STKE; [49, 50]) is a small database of curated pathvgaggported by the literature
and available only as images. Reactome [106] is a general resourasnfientand other pathways
that includes analysis of user-supplied omics data to identify events or ggdhivat are overrep-
resented in the data. TRANSPATH [28] is a signaling pathways databgseeated with Array-
Analyzer software to interpret microarray (up- and down-regulati@ta do extract subnetworks
from the genes or proteins identified as significant in the microarray. TWS®database [169]
takes protein-protein interaction information as the basis for mathematical mpdalirsimulation
of signaling pathways using the traditional ordinary differential equatibE) style of modeling.
SPIKE [36] is a signaling pathway database combined with an algorithmic etigiheoes basic
graph-theoretic analysis of paths and connections as well as identifgthg/ays that are enriched
with respect to a set of user-supplied genes. One signal transduetiaimage of popular interest
is Wikipathways [77, 133], which follows the Wiki paradigm of collaboratiediting and hence
includes a visual editing tool PathVisio [162]. The system does not stippp standard graphical
language and only represents a pathway as a drawing, not as a nefivesgle systems are generally
limited by a lack of a means to infer new pathway components and by pathwaytiesithat are
restricted to the ODE view. Beacon will overcome both of these limitations (sg®6d.3).

Systems Biology Graphical Notation (SBGN).SBGN [122] is a standard visual notation for sys-
tems biology diagrams, consisting of three languages: Process Desc(pbpnEntity Relation-
ship (ER), and Activity Flow (AF). PD supports temporal changes in thivigcof metabolic
pathways [64]. AF depicts the information flow in a biological network and istrsaited to rep-
resenting signaling pathways, where intermediary metabolism plays a legserA node in an
AF diagram is either an activity node or a container node (for encapsulasing SBGN, Beacon
will be able to support cellular compartments). Most activity nodes repteise activity of some
biological entity, with the remainder representing either a perturbation oegbhype (broadly in-
terpreted, ranging from apoptosis to life span). An arc (edge) typicafisessents either a positive
influence, with a—, or a negative influence, with-&4 AF also supports boolean logic (AND, OR,
and NOT). See Figure 3 for an example; it is a rendering of the ABA sigmalathway in the
nucleus of guard cells in Figure 2(b) of Raghavendra et al. [137Aval drawn with SBGN-ED
(see below). The polygon at the top labeled “ABA’ is a perturbation nogl@esenting a change
in ABA levels. Rectangles represent the activities of biological entitiesgfample, rectangle
“ABI5” represents the DNA binding of transcription factor ABI5, whilectangle “transcription”
with the decoration “ABRE” represents transcription regulated by an A& onsive element. This
AF diagram is a typical rendering of signaling pathways found in the litezatuhere biological
information flow, either positive or negative, is represented. mEPN [4jdsher proposed visual
representation but does not enjoy the level of community support thahSR@s.

Pathway Drawing Tools. Most pathway drawing tools are especially for metabolic pathways, but
a few have functionality specific to signaling pathways. Few are basedyographical standard.
We do not survey general network visualization tools, such as Cytestagy are not well-suited

to drawing signaling pathways and annotating their semantics, becausekbéry l@rge networks

for visualization and rely on automatic layout algorithms. PathText [78] sdpmonstruction of
pathways by automatic text mining of the literature; it uses the Payao syste@edizbsigner

to visualize pathways. Payao [105] is a collaborative web service piatfor curating SBML
models. CellDesigner [43] provides the drawing environment for Paydaises the SBGN Process
Description language, making it most suitable for metabolic pathways; Cellasig not open
source. Arcadia [168] translates SBML into SBGN Process Descriptiukge and is specifically
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Coupling Element

Figure 3: SBGN Activity Flow language. ABA is made under drought conagio This ABA
increase relieves inhibition of OST1, which activates ABI5. IncreaseSBA also result in an
increase in calcium, culminating in activation of transcription factors (TFk)¢hvbind to ABRE
with ensuing gene activation. CPK4 is a calcium-dependent protein kiAds@ted from [137].

for metabolic pathways. ChiBE [13] is a tool for visualizing pathways regméed in BioPAX

format. Schreiber et al. [140] provide a general-purpose drawingneant to allow the user to
draw any kind of biological network and customize the layout. Byrnes g2jldevelop a Pathway
Editor in the Biopathways Workbench that allows for drawing and data Nzsui@n; it is especially

suited to KEGG pathways. SNAVI [101] is a tool for visualizing signaling patys, with an

emphasis on analyzing clusters, connectivity, and motifs. PathVisio [1&2¢iaphical editor for
biological pathways based on a new XML file format but with no semantic cbn&GN-ED is

currently the only graphical editor that supports SBGN Activity Flow lamgguand will soon be
available as an open source project (Tobias Czauderna, persomalunication).

Interactive Data Visualization. In interactive data visualization, the scientist operates on data “on
the fly” and drives the analysis in real time based on hypotheses, intuiindspbservations. In-
teractive visualization has become increasingly prevalent in biologycediyetools for studying
“omics” data, such as Spotfire [33], Genespring, and EGAN [127}.ifteractive data visualiza-
tion, Beacon will use ViVA, an analysts workbench developed by the Eafoy Visualization
Group at the IBM T.J. Watson Research Center [135, 136]. Bernigewitz, group manager and
a Beacon collaborator, contributed visual analysis methods based om lpareeption [53, 54].
ViVA is open source (SourceForge) through the iPlant Collaborativefférs multiple comple-
mentary pictures of the data and supports direct manipulation of objectsegyed in the pictures
and dynamic linking, where applying a feature (such as color) to a sob#et data is automati-
cally reflected in all the pictures. The pictures include not only standavesy®uch as histograms
and scatter plots, but also category tables, metadata tables, tree listgyrdemnsicand others. The
dynamically-computed univariate and bivariate statistics tables provide anriai of descriptive
statistics, supporting comparison and convenient data subsetting. ViVAlexRE0 mathematical
functions, allowing the user to transform variables and create new oribe dly.



4 Proposed Research
4.1 Objective1l: Curation

Provide a curation tool for the SBGN Activity Flow language to a set of autherttiecreate an
initial collection of pathways. Provide curation tool education in a workshop

We will have authorities on individual signaling pathways (see Table 13teysathways in
higher plants. To facilitate curation, initial development will concentrate orettitng capabil-
ities of the user interface. The result will be a curation tool that will allow euities to enter
pathways in SBGN Activity Flow language, edit them, annotate them, and sawetthan initial
Beacon database. The user interface will be built on the network vistiatizaol VANTED [69]
and SBGN-ED, an extension of VANTED. We will extend SBGN-ED to createcuration tool.
Usability of the tool will be addressed via a continual feedback loop betwsers and developers.

A 2-day training workshop for two members of each authority’s group veilhbld at Virginia
Tech early in Year 2. Attendance at the workshop will be capped at 20rgisCo-Pls Grene and
Heath and their students will serve as instructors. One session will béedeiinteractive dis-
cussions and informal presentations by each visitor to establish a commawigbin the group.
Other sessions will be hands-on, in groups of two, with a final sessidinated to presentations in
Beacon. Students and post-doctoral fellows will give the presentatfemrsgroups not attending
the workshop, we will have subsequent online training sessions on tagorutool.

4.2 Objective2: Initial Beacon System

Expand the curation tool to support data import and export and to maintata th the Beacon
database. Make the database available on the Web. Incorporate the Miv&#lization tool.

Beacon Pathway Representation Pathway representation is central to the power and flexibility of
Beacon. SBGN activity nodes, as used in Beacon, can be moleculegppéions (e.g., “moisture
level” or “ABA"), phenotypes (e.g., “apoptosis” or “stomatal closuredjy unknown mechanisms.
The last three types of nodes are founddhhocsignaling pathways from the literature, such as the
one in the Assmann review [9], but they are not available in STKE, SBMIBioPax. Standard
edge types, such as “positive influence” and “negative influenceBi@$ Activity Flow language,
are typically used when Boolean semantics (i.e., nodes are either switahieor ‘®witched “off”)

are used to interpret (model) the pathway. Beacon will fully support Boosemantics, including
arbitrary logical functions for nodes and propagation delays on edgeacon will also support
more general variable values at nodes, including more than two discrete éd continuous val-
ues (see Section 4.3). Hence, the Beacon pathway representation lwdeisemantic information,
such as variables and transfer functions, for each node. This sermdatimation will constitute

a semantic model for the pathway, which can be simulated using Beacong@@mS!t.3). Anno-
tations for nodes, such as cellular location, will be provided in the datayaksthe visualizations.
Note that pathways may overlap (have common components). Beacon vathrslipks between
overlapping pathways and merging them into more comprehensive pathways

Beacon Data Import and Export. Beacon can import and export pathways in the standard formats
SBML and BioPax. Many pathway databases support export in onesé ttormats, so it will be
feasible to import pathways into Beacon from those databases. Note tiRe8moan OWL-based
ontology for metabolic and signaling pathways. Beacon will import and éioPax signaling
pathways only. Beacon has the capability to import omics data to overlay oattmeqy visualiza-

tion and to use in inferring possible new relations or annotations for the pgtfsge Section 4.3).



Beacon Database. The signaling pathway database implements the Beacon pathway representa-
tion (see above) in a relational database. The database supportaivey,sso that multiple versions

of a particular pathway can be present and accessible at any time. Fdicgymgmere will always

be a default (most current) pathway. (In the case of controversg toelld be two or more current
pathways.) There can, in fact, be multiple Beacon signaling pathway daslether local or re-
mote; a simple addressing scheme will be used to select among non-defab#isks. Any Beacon
database can host multiple versions of a single pathway; this is done to fatiipatthetical explo-

ration of different elaborations of one version of the pathway. Fomgie, the same simulations
could be run on multiple versions to determine which version best fits a partiatia set.

ViVA. As ViVA (see Section 3.2) is written in Java and is available as open souomprating
it into the Beacon system will be straightforward. ViVA has two uses in Beadtirst, it is an
alternate way to visualize imported omics data (see above). Second, simwti@eerate large
quantities of data (thousands of runs) that can be readily visualizedhahdzad in ViVA.

4.3 Objective 3: Simulation and Inference Engines

Add the simulation and inference engines to the Beacon system.

Simulation Engine. The simulation engine design will be based on semantic network models that
have been used to provide meaning for signaling pathways [2, 12, Z291%8], including Boolean
networks [5, 9, 10, 62, 94, 112], multilevel logic [139], and differelnéiquations [44, 180]. The
various models have two important subtypes, deterministic and stochastic.

The simulation engine will support Boolean semantics, including arbitrarydofyiactions for
nodes and propagation delays on edges, as the default pathway sememti@oolean simulation
functionality, which will be implemented first, will be an extension of that in [4], $4ipporting
synchronous, asynchronous, and user-supplied timing models fodges eind user-controlled
logic and noise models for nodes. We will generalize the Boolean model to mildtiple discrete
levels at nodes, which could be useful in a drought stress settingxdanme, where there may be
five moisture levels (perturbations) of interest. Effects such as a gergkiaut can be simulated
by setting a variable at the corresponding node to a fixed constantgsuolf”). In both Boolean
and multilevel models, stochastic effects can be introduced by having soiaklea set randomly;
a simulation is then run multiple times to obtain statistically significant results.

While not usually suited to signaling pathways, continuous semantics will bgosigpl by
Beacon through its ability to exchange pathways as SBML models. In parfigudawill access
COPASI [60] through the iPlant API to provide both ODE and stochastic siioalan continuous
semantics. Many of the situations (e.g., abiotic stress) in which pathway kageweill be applied
involve time-varying environments. Yet a major shortcoming of many systemsglyiotmdeling
packages (e.g., SBML) is the inability to link inputs to specific sources ofr@atonmental time-
series data. Beacon will build upon and extend features currently exiati@G@PASI parameter
estimation procedures to address this issue (see letter from Dr. Steve VIReshlts of simulations
can be output in tabular form or visualized in the user interface as plots ix. ViV

Inference Engine. Network inferencés the problem of reconstructing a biological network from
biological data, also callegtverse engineering biological networksthe DREAM (Dialogue on
Reverse-Engineering Assessment and Methods) project [154]hwkidresses network inference
in metabolic pathways, gene regulatory networks, molecular interaction rietwand signaling
pathways. Numerous methods have been used to infer network consedtioluding correla-
tion [96, 115, 124], regression [82, 128], Bayesian approaeties], probabilistic graphical mod-
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els [32, 187], information theory [172, 194], algebraic methods [168]cal methods [51, 62, 81],
machine learning [71, 111], and evolutionary algorithms [148]. Most es¢hmethods are not
applicable to signaling networks due to the directed edges that connotdityaus

Computationalcausal inferencg46, 131] narrows the problem considerably, as each causal
relationship (directed edge) is taken to mean that the antecedent is thef#sellbrecedent through
some, perhaps unknown, mechanism. Such causal relationships caggested by various types
of omics data. We first discuss time-course data and then contrast datanj&gype versus
mutant) in which an experimental intervention (e.g., gene knockout) sets slularcactivity to
always on or always off (for boolean semantics). Some prior workiBpally utilizes time-course
data in network inference [6, 32, 115, 145], with some of it especiallgigmaling networks [48,
68, 90]. Granger causality is a popular method for causal inferennetfme-course data [56, 115,
142, 195]. This method uses statistical correlation to infer whether omebla(e.g., expression
of gene A) is causally related to another (e.g., expression of gene BBd&#acon inference engine
will implement Granger causality, which is generally applicable when ther@deguate time-series
data [195]. Beacon will borrow from existing code for Granger chiys@.g., [142]).

For experimental data that shows a contrast between treatments, Beadéinonstrates how
to use directed graph-based models and suitable algorithms to infer theqaeseabsence of
causal links. He covers Bayesian networks [37, 46, 187], whictbased on directed acyclic
graphs, and pathway analysis in structural equation modeling [83, 3%, Wwhiich may have di-
rected cycles and hence are more directly applicable in the context ofisggpathways. (Note
that MetaReg [161] does causal inference in Bayesian networkssmoe ldloes not support directed
cycles.) Application of these models to causal inference proceeds asgolfo small number of
models (graphs) to test are proposed, and the implications of each medsiaduated statistically
against empirical data [83]. In the case of structural equation modeliagtalistical analysis can
be provided by OpenMx, open source software based on the R pnogrg language; Beacon will
incorporate OpenMx into the inference engine. The Beacon inferemirewill return the models
in a ranked list in order of probability given the data. In most cases frentitdrature, each model
has to be constructed from scratch by integrating whatever omics anddattzers available. In
Beacon, we have the advantage of already having curated signalivggyatfsee Section 4.1) and
only needing to extend or edit a pathway with additional nodes and edges) general guidance
from the user, Beacon can automatically generate all the models to be tested.

There is also the issue of removing edges that may be redundant, dispoovepresent an
indirect rather than a direct causal influence. In the literature, this ieeaseld with the graph-
theoretic algorithm of transitive reduction [3, 4]. In the Beacon inferesrogine, we will also
implement transitive reduction, or use the existing NET-SYNTHESIS so#tW#b], to suggest
edges that may be redundant.

4.4 Objective 4. Experimental Validation

Validate Beacon simulation predictions in collaboration with PREP.

Predictive roles of genes involved in signaling pathways and the diredtgigral transduction
needs to be validated to be able to base further studies on integrating thexpsthis a proof
of concept, phenotypic characterization of Arabidopsis mutations in sdlgetees predicted in
Beacon simulations to play a crucial role in stress signaling will be carrietho(gars 3 and 4, in
collaboration with Dr. Erin Dolan of PREP and PREP-U (see Section 7)uddrioand salt stress
pathways will be experimentally dissected for early signaling and cross-Aattumber of useful
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standardized phenotypic assays and conditions for assessing thesrwbtrance of Arabidopsis
have been described [167], and several of these assays (1+8 dlbbe used in the proposed
project. The effect of mutations in signaling genes will be assessed ffiripations in the abiotic
stress pathways by comparing the effects of stress imposition on mutantldmgje genotypes on:
(1) growth characteristics: leaf number, leaf area, biomass accumulagie y&ld, root length,
and growth; (2) phenology: bolting and flowering time; (3) leaf water aunighotosynthetic rate,
and stomatal conductance; and (4) the expression of selected getree® thiedicted by Beacon to
be downstream of the mutant gene in each case, using quantitative RT-PCR

Drought Stress Screens. Arabidopsis plants will be grown in Metro-Mix 350 in a controlled
environment chamber (Conviron, 16 hour photoperiod, @&y, 18 night). Water will be withheld
until 50% RWC is reached in each case, after which time the plants will be teredband allowed
to recover until the wild type genotype has reached pre-stress levéis.eifent of recovery from
drought stress at the 50% RWC level in the mutants will be revealed in theecofithe exper-
iments.) The time of drought imposition will be ca. 20 days after sowing. Photiosgis and
leaf water content will be measured daily from the time of imposition of stresg (@aximum)
stress and one recovery time point will be tak8alinity Stress. Plants will be grown as described
above for drought stress exposure prior to the stress imposition stépitySstress will be initi-
ated at the same developmental stage as drought stress. Leaf numberméblured at the time
that the stress is initiated. At the start of the experiment, plants will be watdtbdwcontrol),
or 150 mM NacCl in steps of 50mM separated in time to allow for adjustment by thé [@li@h
Phenology. Bolting and flowering time will be recorded for each genotype and each tregtase
well as leaf number at bolting, and seed yield. (Note that these measuresaarie represented
as SBGN phenotype nodes.) Gas exchange will be measured with a LhGasgnthesis meter,
with Arabidopsis chamber, as is routine in the Grene laboratory [103,11M82, In each case, sta-
tistical tests (e.g., ANOVA) will be applied to the data, and differences betweaotypes at the
95% confidence level determineQuantitative RT-PCR (gRT-PCR). gRT-PCR will be carried
out on selected samples by the method of Vandesompele et al. [163], whichireely used in the
Grene laboratory [102, 164, 165]. The control transcripts usest&odardization will be UQ10 for
salinity stress [47] and adenosine kinase for drought stress [164].

5 Beacon User Scenario

This scenario is fictional, although relevant to work to which our groupridmried [92].

Experiment. Two genotypes of Arabidopsis thaliana are subjected to long-term, low @b
sure to the oxidizing air pollutant ozone. The genotypes differ only byoakout mutation at a sin-
gle locus G, a candidate regulatory gene, belonging to a large transcifgtton (TF) family. The
time course experiment has several samples taken over the expectedllifierryale of Arabidop-

sis for gene expression and phenotypic measurements. Since ongypiemanifestation of ozone
stress, at least at acute levels, is early senescence, “senedednetis assessed through measure-
ments of photosynthesis, chlorophyll levels, and the expression of Watkcterized Senescence
Associated Proteins (SAGS) and of the regulatory gene WRKY53 [1,11,(BR 190].

Question Posed. What effect does knocking out gene G have on molecular defenagsalpng-
term ozone stress, such as that experienced by field-grown plargsaurdent and expected future
climatic conditions?
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Objective

Obijective 1: Curation

Objective 2: Initial Beacon system
Objective 3: Simulation and inference engines
Objective 4: Validation

Table 2: Activity schedule for Beacon objectives

Data Mining. The results of applying a GO enrichment algorithm to the transcriptomic results
(see Figure 1) suggest that Pathways A and B did not respond in treatacht genotype plants,
and that putative Regulator X was expressed to a lesser extent, andtet tnh@ point, than in
ozone-exposed wild type plants. (Expression of X did not differ betvtbe two genotypes in the
absence of ozone stress.) The phenotypic data suggest an eatlpfisesgescence in the absence
of a functioning Gene G in the mutant genotype, and a partial, gradual, atiolini@ ozone stress
in the wild type plants. Using the Beacon simulation and inference enginesMaeia [113, 171],
and eFP Browser [179], a view of the current understanding of kignaathways in which G
and/or X are thought to participate is obtained, in addition to actual data atimrtexperimental
conditions under which the expression of these genes is affectecer@lyrthere is no comprehen-
sive repository of stress signaling pathways in plants and no integraticesolts from different
sources. The implementation of Beacon will fill the first need and the iPlarkflow the second.

Results. Results obtained computationally suggest that X, the timing and extent of wkpses-
sion is partially controlled by TF G, acts downstream to affect the timing of hoearegulated
processes associated with defense against ozone [98, 178],thprenmusly associated with the
onset of senescence. The data-processing tools employed and tieeafidiie experimental design
allow distinctions to be made between early responses to the stress anddhmeatimn processes.
There was also an association with a ubiquitination pathway that was nevebtsefore for ozone
action, although this connection was already reported for drought §ir84].

6 Management Plan

Objectives, task distribution, milestones indicated in Tabl®Bjective 1 Curation: GRA/Grene
(PPWS), PD/Pereira (VBI)Objective 2 Initial Beacon system: GRA/Heath (CS)Objective 3
Simulation and inference engines: GRA/Heath (CS), GRA/Grene (PPW%)bjective 4 Exper-
imental validation: GRA/Grene (PPWS), PD/Pereira (VBResponsibility: Co-Pl Grene coor-
dinates the Curation effort in communication with external collaborators @etfecommitment).
Co-PI Heath supervises the training of GRAs/PD for accomplishment of etatpnal tasks. Pl
Pereira supervises tasks under objectives 1 ardhdual milestonesand deliverables: Year 1 —
Curation of biological data and workshop for dissemination of methodologygtobal consortium
of Collaborators. Year 2 — Beacon databases and tools establishetefaction with users. Year
3 — Simulation and inference engines available for user studies. Year 4acoB@ipeline based
predictions validated by case studidsiternal communication is done by weekly project meet-
ings, including bi-weekly video/tele-conferencing with collaborators, tousis specific signaling
pathways. Workshop in the second year will be used for initial training<tgreal collaborators.
Beacon will be implemented in a portable language (e.g., Python or JavaMy®@L relational
database system will be used for the Beacon database (H&atbginability Plan. All code for
Beacon will be freely available through an appropriate open sourcesticand distributed perma-
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nently through SourceForge. Once completed, tools will be made availakitgparf the iPlant
infrastructure, allowing both tools and data to remain on active servetrtheasnd of funding.

7 Broader Impacts

The proposed Beacon system, to serve as a repository and simulatioa famgimolecular signaling
pathways in plants and their relationships to phenotypic effects, will intenelgrgraduate students
in the computational sciences or computational biology, as well as experirbeitaists. Well-
established outreach programs will be used to provide training and echalaiigtreach activities.

Multicultural Academic Opportunities Program (MAOP). The mission of the MAOP program is
to encourage and support the academic achievements of a diversa stodigin STEM fields from

Virginia Tech. Programs and activities serve students from the pre-ealiegugh the doctorate
level with a continuum of financial, academic, and social support, as wedissearch opportunities.
VBI (the PI's affiliation) participates in the MAOP program by sponsoring/ar hosting summer
research internships for undergraduates [160]. Co-Pl Grenddeesties with the MAOP program
and has served on the Advisory Board for an NSF-funded projemtiginr MAOP from 2007—-2009
(see letter of support from Dr. Karen Sanders, Interim Vice PresideDiversity and Inclusion).

S-STEM. (See letter of support from Dr. Jill Sible, Associate Dean, College onBeieVirginia
Tech). The NSF-funded S-STEM Program trains a cohort of umdédugtes in the classroom and
laboratory to be competitive for careers in biotechnology. S-STEM schtdie common classes
and participate in a weekly seminar dedicated to academic and careergpi@paesearch skills,
ethics, and diversity. Beginning in their sophomore year, students aceie&ged to participate in
laboratory research. These research experiences will be emhattbefunds from the proposed
project. S-STEM students can be important early users of the Beademsyserforming complete
pathway analyses. The Co-Pls will supervise the S-STEM studentgin§tasth relevant omics
data, they will be invited to visualize those data in the context of a Beaconlisigrmathway,
use the data to infer new pathway fragments with the Beacon inferencesengimduct “what-if”
exploratory simulations with the Beacon simulation engine, and commit any newaattersions
to a Beacon database. Their feedback to the team will be highly valued.

PREP and PREP-U. We will collaborate with Dr. Erin Dolan at Virginia Tech, principal investi-
gator of the Partnership for Research and Education in Plants (PR&PREP for Undergraduates
(PREP-U), and David Lally, PREP coordinator. Through PREP (suegdy a Science Education
Partnership Award from the National Center for Research Resquseesattached support letter),
and PREP-U (initiated with funding from the NSF Course, Curriculum, arabtatory Improve-
ment Program), high school students and undergraduates challealgieldpsis mutant and wild-
type plants with abiotic stresses, therefore providing opportunities to coadthentic scientific
research. Beacon results will be utilized to frame investigations appropoiateese students.
Students will then design and conduct experiments as tests of Beaceratgehhypotheses and
report their findings back to project investigators. The Pls will be dirantlglved in PREP and
PREP-U activities in three ways. First, they will collaborate with Dolan and Ltallyevelop brief
video pieces explaining in non-technical language the types of experimerttsy of investigation.
Second, they will provide laboratory materials appropriate for studentsdigml and conduct the
investigations. Third, in collaboration with Dolan, Lally, and PREP and PRE#®/structors, the Pls
will discuss students’ investigations with them, either in person or using wehaéagies such as
PREP/PREP-U discussion boards, wikis, or video chats. These dmtsigsll encourage students
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to develop reasoning and argumentation skills by prompting them to supporefperimental
decisions with evidence (e.g., why an investigation is worth doing, why a pkatiexperimental
design makes sense, and what interpretations are supported givesxgf@imental results).

Genetics, Bioinformatics, and Computational Biology (GBCB)The interdisciplinary GBCB
Ph.D. program is a new area of study tailored to students’ individualgsaokds. Co-Pls Grene
and Heath are founding members of GBCB and serve on its steering commitie@rdgram en-
compasses the applications of molecular biology, genomics, mathematics, statisficomputer
science to the life sciences. GBCB is designed to provide a combination gdltlieespecific and
cross-disciplinary course work, as well as a multidisciplinary reseamechiaament. GBCB fac-
ulty members come from 11 departments and the Virginia Bioinformatics Institute. Specialty
tracks are defined: Life Sciences, Computer Science, Statistics, an@rvktibs. Each student
specializes in a track to which he or she is suited and is required to gairtisggarat least one
other track. All students are required to receive some training in the lifaceseregardless of their
chosen track. The Beacon project will hire GBCB students for the cortipuigé part of the project
and will recruit GBCB students in the life sciences track to assist with Obgedtiv

8 Resultsfrom NSF Support

Current: Plant Genome Award. Pereira (PI), Grene (Co-Pl), and others obtained the Plant Ge-
nome Research Program award DBI-0922747 ($2.4M; 9/15/09 — 8)3Zk2eal Drought Stress
Response and Resistance Networks”. Drought gene interaction Reteu@ being created in rice
and maize to provide a systems view of drought gene functions. Tratsoemata from Arabidop-
sis and cereals were generated for a comparative analysis acrass péamg standardized drought
treatments to simulate field drought conditions. Differentially regulated geersa@mpared using
orthologous loci, and significant species-common drought down-regutgenes identified repre-
sented by the GO-slim categories. Putative drought responsive gickatery genes were identified
with available Ds/dSpm transposon inserts (approximately 150). The hgooegynutant lines
are being generated to characterize the drought responsive ppesofyhe rice-maize common
regulatory genes will be used to identify candidate drought responsilielogs in maize, to be
validated by association analysis for dissection of drought respors®pipes. The gene interac-
tion networks developed for Arabidopsis and rice are being used to sthdybiological pathways.

Prior: ITR Award. Heath (PI) and Grene (Co-Pl) had “ITR-0219322: UnderstandingsS Re-
sistance Mechanisms in Plants: Multimodal Models Integrating Experimental Databases,
and the Literature” ($499k, 09/01/2002 — 12/31/2006, and a DCC suppteiorework with the
International Potato Center in Peru) and developed the multimodal netwodebto integrate
biological information from functional genomic data on drought stress abi&lopsis genotypes,
online databases, and the literature to represent and analyze mole@dsirsgistance mechanisms
in plants. XcisClique, a system developed in the Grene/Heath groupjatesoannotated genome
and gene expression data; models known cis-elements as regularsexmse#entifies maximal
bicliques in a bipartite gene-motif graph; and ranks bicliques based on theputed statistical
significance. XcisClique analysis of the promoter regions of ArabidopSRB30s and their putative
co-chaperones identified candidate co-chaperones for each H&&80tic stress-responsive genes
at the Nottingham web site. Wet lab projects in the areas of drought sizs® stress, and effects
of elevated carbon dioxide were completed. The central focus was aeshenses of particular
accessions to stress. Response diversity reflected differencesstitutive and inducible networks.
Publications include [52, 57, 58, 92, 93, 102, 103, 129, 146, 14, 150, 164, 165, 173, 174].
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