Gene and genome duplication
David Sankoff

Genomic sequencing projects have revealed the productivity of
processes duplicating genes or entire chromosome segments.
Substantial proportions of the yeast, Arabidopsis and human gene
complements are made up of duplicates. This has prompted much
interest in the processes of duplication, functional divergence and
loss of genes, has renewed the debate on whether an early
vertebrate genome was tetraploid, and has inspired mathematical
models and algorithms in computational biology.
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Abbreviation
Myr million years

Introduction

There are a number of different ways in which duplicate
genes can arise: tandem repeat through slippage during
recombination, gene conversion, horizontal transfer and
other transposition, hybridization, duplication of entire
segments of chromosomes and temporary (auto- or allo-)
tetraploidy leading, through processes of diploidization, to
an effective doubling of the whole genome. Whatever their
origin, duplicate genes may have three kinds of fate. Both
copies may persist in the genome with perfect (or near-
perfect) sequence identity, possibly resulting in a higher level
of expression of the gene product. Alternatively one copy is
suppressed, either by physical deletion or by accumulating
point mutations until it becomes a pseudogene. Finally, ran-
dom mutations may cause at least one of the two copies to
diverge functionally, either by finding a novel functional
role, or by specializing some aspect of its previous role.
Iterations and combinations of these processes can give rise
to gene families containing from two to hundreds of more or
less similar genes carrying out similar or divergent functions.

Several international workshops have focused on this topic
recently, including one on “Gene Order Dynamics,
Comparative Maps and Multigene Families” organized by
myself and JH Nadeau [1°] in Ste-Adeéle, Canada in
September 2000, another on “Whole Genome Analysis”,
organized by D Durand at Rutgers University, USA, in
February 2001, and a third in Aussois, France in April 2001,
organized by A Meyer and H Phillipe. In this review, |
concentrate on new information about the prevalence of
duplications in various genomes, rates of duplication and
loss, which mechanisms are responsible for the observed
patterns of duplication with respect to chromosomal
position, and the controversy about the role of temporary
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tetraploidization. I also summarize some mathematical
modeling and algorithmics inspired by duplication phenomena.

Gene duplication

Li er al. [2] find that duplicated genes, as identified through
fairly selective criteria, account for ~15% of the protein genes
in the human genome (counting both genes in each pair). In a
survey of eukaryotic genome sequences, Lynch and Conery
[3°°], using a somewhat different filter, accounted for ~8%,
10% and 20% of the gene complement of the fly, yeast and
worm genomes, respectively. (Other estimates put the figure
at 16% for yeast and 25% for Arabidopsis [4°].) They estimated
highly variable rates of gene duplication, averaging ~0.01 per
gene per Myr (million years). On the basis of ratios of silent
and replacement rearrangements, they found that there is
typically a period of neutral or (occasionally) even slightly
accelerated evolution, lasting a few Myr at most, with one of
the copies eventually being silenced in a large majority of
cases, and the remaining ones undergoing relatively stringent
purifying selection. In contrast, many prokaryotes are suscep-
tible to higher rates of duplication, but with a much more
rapid onset of duplicate-gene eradication mechanisms. These
authors, along with Force [5-7] and a number of others, make
much of ‘subfunctionalization’, whereby the functional
novelty acquired by one or both of the duplicates consists of a
specialization of its activity to particular developmental
periods, particular tissues, and so on, losing the generality of
the ancestral gene. Though supported by many examples,
these speculations seem logically independent of the system-
atic results on duplication and duplication-loss rates provided
in this study. Recent work on yeast mutations [8,9] has shown
recently that gene duplication does not play a major role in the
redundancy of genetic networks, both copies of a duplicate
pair tending to be equally essential, with unique functionality.

Segment duplication

Prior to genome sequencing, analyses of duplicated genes
could not usually take into account the totality of the
chromosomal environment of the genes. It is now clear that
many duplicated genes are part of larger duplicated segments.
Several studies have explored such segments at two scales of
magnitude. Some focused on recent (i.e. >90% sequence
similarity, most often >95%) duplications of segments of size
mostly in the range of 10-50 kb, though some are only 1 kb
and others may be 200 kb. Other studies searched for traces
of ancient duplications where the set of genes involved may
span many megabases and where successive pairs of matched
genes are not necessarily contiguous in either genome, and
may indeed be separated by long stretches of unrelated
sequence, including many other unduplicated genes.

O’Keefe and Eichler have summarized two patterns of
recent segmental duplication widespread in the human
genome [10°°]. One involves chromosome-specific repeats
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such as an 18 kb segment (CH16LLAR) that recurs 15 times
scattered along the length of the p arm of chromosome 16.
The other involves interchromosomal duplications where
material located on some chromosomal arm is copied to the
pericentromeric or subtelomeric regions of one or more other
chromosomes, such as a 10 kb segment (ALLD) copied from
Xq28 to sites near the centromeres of chromosomes 2, 10, 16
and 22, or a 22 kb segment containing olfactory genes that
appears near the telomeres of 10 different chromosomes. It is
estimated that 5% of the human genome consists of highly
conserved repeats of this kind [11]. Not all the repeated
segments contain genes or parts of genes, and for those that
do, it is not yet known to what extent they are expressed, if
at all. Although some of the sequence similarity occurs as
a result of conversion processes, comparative primate
genomics confirms the origin of the pericentromeric repeats
within the hominoid lineage, within the last 12 Myr.

In the context of the Celera project, a search for ancient
duplicated segments in the human genome was based on
finding three or more pairs of paralogous genes in relative
close proximity on two different chromosomes [12]. More
than 1000 such ‘blocks’ were found, most of them contain-
ing five or more genes. Piecing these together led to the
identification of a number of very long chromosomal
segments that may be relics of ancient duplication
events — for example, a region containing 33 proteins
genes spanning 20 Mb (and 97 protein genes) on chromo-
some 2 and 63 Mb (and 332 genes) on chromosome 14.
The identification of these segments leads to speculation
about their relative timing and the hypothesis of whole
genome duplication several hundred Myr ago.

Horizontal gene transfer

Lateral transfer of genes from one organism to another is a
mechanism for introducing new genes into a genome.
However, it may also create paralogs within the host
genome if it already contains a homolog of the transferred
gene(s). Eisen [13] has published a comprehensive review
of horizontal gene transfer.

Tandem duplication

Models to account for non-contiguous duplicated genes have
been explored in genomes as different as mitochondria and
yeast [14-16]. The recurrent idea is that tandem duplication
of chromosomal segments, by well-understood mechanisms
of unequal recombination, are followed by episodes of local
chromosomal rearrangement and silencing of most of the
duplicate genes in one or the other of the duplicate segments.
There are, however, other processes of gene or segment
transposition likely to be of greater importance [10°°].

Genome duplication

Since the proposals of Ohno in the 1960s, the question of
whether vertebrates are the product of two rounds of whole-
genome duplication has been hotly debated, and this has
been intensified in the past year or two. The establishment
of a rigorous protocol for proving a doubling event in the

case of yeast [17] (but see [15]) has provided solid criteria for
assessing whether the pattern of segmental duplications in a
genome is evidence either for or against a history that
includes tetraploidization. This produced a clear answer in
the case of the Arabidopsis genome but not yet for the
human genome.

Wolfe [4°] has called for more investigation of the processes
of diploidization, whereby a tetraploid, characterized by
quadrivalent meiotic figures is returned to a normal state of
diploidy. This clearly does not happen instantaneously,
even on the evolutionary time scale, and evidence for
successive chromosome by chromosome diploidization
from the allotetraploid state is available from maize [18,19]
and from the autotetraploid state in Salmonid fishes,
where the transition from tetraploidy to diploidy is still
incomplete and multivalent figures are observed [20].

Arabidopsis genome

Though it has been clear for some time that the Arabidopsis
thaliana genome has undergone a great deal of segmental
duplication [21-26], a convincing analysis has now been
published showing that the entire genome was duplicated
~112 Myr ago [27], with no evidence (such as triplicated
segments) of multiple independent segmental duplication
events or multiple episodes of whole-genome duplication.
This is also supported by an independent estimate of
duplication times [3°°] which shows a relatively sharp
peak — though at a somewhat more recent time — as well as
comparative mapping evidence [28]. Other authors recon-
struct a much more complicated history [29], but this is likely
an artifact of inappropriate phylogenetic methodology [4°].

Human genome

T'he publication of the human genome sequence early in
2001 did not by itself help resolve the long-standing contro-
versy of whether the vertebrate lineage leading to the jawed
fishes and thence eventually to humans underwent two
rounds of genome duplication. Both the paper from the
Celera project [12] and that from the Human Genome
Sequencing Consortium [11] mention the extensive seg-
mental duplication that can be detected in the genome but
declare that current analyses are insufficient to determine
whether these are the result of two whole-genome
doublings or a larger number of unrelated duplications of
chromosomal segments. Several authors have adduced new
evidence in favor [30-33] of the doubling hypothesis and
against it [34]. The extreme position against it is advanced
by Hughes [35-37] who has marshaled several lines of evi-
dence, most notably a type of phylogenetic analysis in which
the four duplicate genes descending from a single ancestor
after two genome-doubling events should group together as
(AB)(CD) and not as A(B(CD)). The former pattern does
not show up more often than would be expected by chance.
Both human genome publications reflect the stance taken
by Wolfe and co-workers [4°,38] on the basis of a critical
assessment of the available data for and against the genome-
doubling hypothesis, including an evenhanded assessment



of Hughes’ argumentation. Most recently, MclLysaght,
Hokamp and Wolfe (personal communication) have extracted
evidence for a highly significant prevalence of segmental
duplications in a relatively short time frame ~450 Myr ago,
suggestive of at least one round of tetraploidization.

Algorithms and models

Comparative genomics has given rise to a computational
methodology based on gene order rather different from tech-
niques for comparing either nucleotide or amino acid
sequences. Here, instead of nucleotide replacements, inser-
tions and deletions, the mathematical comparisons are based
on chromosomal rearrangements, such as inversions and
translocations [39]. These methods, some requiring rather
claborate theoretical development, are predicated on the
hypothesis that the gene orders of two genomes being
compared are basically permutations of each other, which is fine
for certain small genome comparisons (e.g. metazoan mito-
chondrial genomes). With larger genomes, most especially
the higher eukaryotes, this approach runs into the problem of
duplicate genes, paralogy and gene families in general. The
gene order of one genome is no longer a permutation of
another, and requires a more general type of mathematical
description, so that existing algorithms cannot be applied. A
solution is found for this generalized version of the gene
order comparison problem, where each gene may be present
in a number of copies in the same genome, in the notion of
‘exemplars’, single members of each gene family in each of
the two genomes [40]. Exemplars are all identified simulta-
neously so as to minimize gene order differences between
the genomes when all non-exemplars are deleted, so that
existing, permutation-based, algorithms are again applicable.

Exemplar analysis may be justified in terms of the biology of
rearrangement and duplication processes but is most clearly
relevant in the phylogenetic context, where the object is to
reconstruct ancestral gene orders on the basis of a given phy-
logeny. Permutation-based algorithms are available for simple
genomes, and are even applicable to the case where some
genes are absent from some genomes, but not where genomes
may contain gene families. To handle the latter case, we need
the additional data represented by the ‘gene trees’ for each
gene family in the data genomes, as produced by standard
phylogenetic programs for comparing nucleotide sequence
data. Reconciliation analysis [41,42] for projecting the gene
trees on the given phylogeny (the ‘species tree’) can then be
used to reconstruct the gene content of the ancestral nodes as
well as the ancestral lineages for each member of each gene
family. Then, to reconstruct gene orders, we combine exem-
plar analysis with any of the existing permutation-based gene
order phylogeny programs [43°]. Here, we consider, for each
ancestral genome (including the root of the tree) and any of its
immediate descendants, for each gene in the ancestor, all of its
copies produced by duplication processes in the descendant,
to be a ‘family’ for the purposes of the exemplar analysis.

In another algorithmic development, the problem of
reconstructing the gene order of the chromosomes of a

Gene and genome duplication Sankoff 683

genome just as it underwent tetraploidization, based on the
rearranged (translocated and inverted) genome of a modern-
day descendant, has been solved in complete generality by
El-Mabrouk [44°]. Her complex but rapid algorithm
requires only the chromosomal gene orders and knowledge
of all pairs of paralogs resulting from the genome doubling.

Turning from the algorithmics to modeling, a number of
abstract probabilistic models have been produced for the
generation of multigene families [45-47]. Though of
theoretical interest, for the moment they seem little
connected to known dynamics of gene duplication.
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