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Algorithms for Phylogenetic Footprinting

MATHIEU BLANCHETTE, BENNO SCHWIKOWSKI, and MARTIN TOMPA

ABSTRACT

Phylogenetic footprinting is a technique that identi� es regulatory elements by � nding unusu-
ally well conserved regions in a set of orthologous noncoding DNA sequences from multiple
species. We introduce a new motif-� nding problem, the Substring Parsimony Problem, which
is a formalization of the ideas behind phylogenetic footprinting, and we present an exact
dynamic programming algorithm to solve it. We then present a number of algorithmic op-
timizations that allow our program to run quickly on most biologically interesting datasets.
We show how to handle data sets in which only an unknown subset of the sequences con-
tains the regulatory element. Finally, we describe how to empirically assess the statistical
signi� cance of the motifs found. Each technique is implemented and successfully identi� es
a number of known binding sites, as well as several highly conserved but uncharacterized
regions. The program is available at http://bio.cs.washington.edu/software.html.
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1. INTRODUCTION AND MOTIVATION

Amajor challenge of current genomics is to understand how gene expression is regulated. An
important step towards this understanding is the capability to identify regulatory elements associated

with a given gene. Most of these regulatory elements are relatively short stretches of DNA (5 to 25
nucleotides long) located in the noncoding sequence surrounding a gene. Most known regulatory elements
are located 50 of the coding region, but some are also found in the 30 sequence, and even in introns. In all
these cases, regulatory elements are located in otherwise nonfunctional sequences.

Phylogenetic footprinting (Tagle et al., 1988) is a technique that uses this functional/nonfunctional
sequence dichotomy to identify regulatory elements. Functional sequences tend to evolve much more
slowly than nonfunctional sequences, as they are subject to selective pressure. It is this difference in
mutation rates that phylogenetic footprinting exploits. To identify regulatory elements associated with a
given gene, one considers a set of orthologous noncoding sequences from a group of related species (for
example, the noncoding sequence located 50 of the ¯-actin gene in ten different species of vertebrates). If
these sequences contain unusually well conserved regions, it is a reasonable conjecture that these regions
have some regulatory function. This approach was used with success to identify regulatory elements in
various genes: TNF-® (Leung et al., 2000), CFTR (Vuillaumier et al., 1997), ²-globin (Gumucio et al.,
1993; Tagle et al., 1988), ° -globin (Tagle et al., 1988), and rbcL (Manen et al., 1994), among others. See
the excellent review by Duret and Bucher (1997) for more details.
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This multispecies approach is to be contrasted with a much more common method for identifying
regulatory elements, consisting of � nding motifs in a set of noncoding sequences associated with several
related genes from a single species. Overrepresented patterns in these sequences are likely to correspond
to binding sites of a common regulatory factor. This approach has been used successfully by a number of
researchers, and several algorithms and statistical analyses have been developed (see, for example, Hertz
and Stormo, 1999; Hughes et al., 2000; Roth et al., 1998; Sinha and Tompa, 2000; Tavazoie et al., 1999;
van Helden et al., 1998). All these multigene approaches have an important inherent limitation: they will
only � nd regulatory elements that are common to a number of genes of a given organism. Furthermore,
the set of genes considered has to be obtained from experimental data (e.g., gene clusters obtained from
expression array data). On the other hand, phylogenetic footprinting is capable of identifying regulatory
elements that are speci� c to a single gene, as long as they are conserved across several species. The
obvious drawback is that orthologous noncoding sequences from a suf� ciently large number of species
are not always available. In that sense, when phylogenetic footprinting was � rst proposed by Tagle et al.
(1988), it was a little bit ahead of its time. However, the various genome projects are quickly producing
sequences from a wide variety of organisms, and the data needed to perform phylogenetic footprinting are
becoming more and more available.

Until recently, phylogenetic footprinting was performed by computing a global multiple alignment of
the orthologous sequences and by identifying highly conserved regions in the alignment. That approach
led to signi� cant discoveries, but is quite limited, in the following sense. First, multiple alignment is an
NP-hard problem (Wang and Jiang, 1994) (although very good heuristics exist), so even if the optimal
alignment could identify regulatory elements, we might not be able to compute it. More importantly, the
upstream sequences considered are usually highly diverged (except for their regulatory elements). Since
regulatory elements are very short compared to the sequences considered (say 10 nucleotides long in
a 1,000-nucleotide-long sequence), it is likely that the noise of diverged nonfunctional sequences will
overcome the short, conserved signal, in such a way that the alignment found might not align regulatory
elements together. In that case, the regulatory elements would not appear to belong to conserved regions
and would go undetected. Thus, when the sequences considered are moderately to highly diverged, multiple
alignment is not the tool of choice.

A different approach that is likely to yield better results consists in using standard motif-� nding algo-
rithms such as MEME (Bailey and Elkan, 1995), AlignAce (Hughes et al., 2000) or ANN-Spec (Workman
and Stormo, 2000), or segment-based multiple alignment programs such as DIALIGN (Morgenstern et al.,
1998). McCue et al. (2001) used a Gibbs sampler (Lawrence et al., 1993) to perform phylogenetic foot-
printing in bacterial sequences. Although we observe in this paper that these tools clearly outperform
global multiple alignment, they still have an important shortcoming. Whether they optimize a consensus,
sum-of-pairs, or information content criterion, none take into account the phylogenetic relationships of the
given sequences. This can be problematic, for example in data sets containing a large number of closely
related sequences and a few more distant ones. If we ignore the phylogeny underlying the data, the group
of closely related sequences will have an unduly high weight in the solution.

The method presented in this paper makes use of available information about the phylogenetic relation-
ships among the species considered. Throughout this paper, we will assume that we are given a trusted
phylogenetic tree. This poses few dif� culties for most data sets, as the species for which genomic infor-
mation is available are usually easily phylogenetically classi� able. However, the algorithms presented do
not require the phylogenetic tree to be bifurcating, and multifurcating trees can be used in situations where
the evolutionary relationships are unclear.

In this paper, we introduce a new type of motif-� nding problem, the Substring Parsimony Problem,
which is a formalization of the phylogenetic footprinting idea, and which makes use of the phylogenetic
tree underlying the data. In the Substring Parsimony Problem, we are given a set of orthologous sequences
S1; : : : ; Sn from n different species, together with the phylogenetic tree T relating these species, and an
integer k. The problem is to � nd a set of substrings s1; : : : ; sn of S1; : : : ; Sn, respectively, each substring
being of length k, such that the parsimony score of s1; : : : ; sn on T is minimized. The substrings s1; : : : ; sn

correspond to the region that has undergone the fewest mutations, and if the conservation is suf� ciently
high, it is a good conjecture that these substrings are regulatory elements. We present a practical algorithm
that solves the Substring Parsimony Problem exactly, in time linear in n ¢ l, where n is the total number
of sequences and l is their length, but in time exponential in d , the parsimony score of the motifs sought.
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The Substring Parsimony Problem being NP-hard (Akutsu, 1998; Blanchette, 2000), we cannot hope to
eliminate the exponential behavior of the algorithm while still guaranteeing an optimal solution. Still, since
we are generally interested in solutions with small parsimony scores, this yields a fast algorithm.

In Section 2, we give a formal description of the Substring Parsimony Problem and describe a dynamic
programming algorithm that gives an exact solution to the problem. We then describe algorithmic methods
that improve the running time and space requirement by several orders of magnitude over the naive
implementation of the dynamic programming algorithm.

The more species are available, the better we should be able to detect subtle signals. However, in some
cases, some regulatory elements might have been lost during the evolution of some species. A solution to
the Substring Parsimony Problem consists of one substring per given sequence, which means that if one or
more of the species have lost the use of a regulatory element, we would most likely not � nd it. In Section
3, we relax this constraint by allowing sequences not to participate in the solution. This allows us to � nd
regulatory elements conserved in only a subset of the input sequences.

With each algorithm, we report motifs found in various sets of orthologous sequences. We show that we
are able to identify a large number of binding sites that have been experimentally veri� ed. For example,
many of the known binding sites upstream of the ¯-actin gene are identi� ed by our algorithm using
sequences from various vertebrates. Using the method presented in Section 3, we are able to identify three
important regulatory elements for the rbcS gene, even though one is present only in a subset of the species
considered. The sequences downstream of several genes also contain many highly conserved regions, most
of which have not been characterized yet. The statistical signi� cance of the motifs found is estimated
through a procedure described in Section 4.

This paper is an extended version of two conference papers, Blanchette et al. (2000) and Blanchette
(2001).

2. THE SUBSTRING PARSIMONY PROBLEM

The Substring Parsimony Problem is a formalization of the phylogenetic footprinting idea:

Substring Parsimony Problem
Given: a set of orthologous sequences S1; : : : ; Sn from n different species, the phylogenetic tree T relating
these species, the length k of the motifs to look for, and an integer d .
Problem: � nd all sets of substrings s1; : : : ; sn of S1; : : : ; Sn respectively, each of length k, such that the
parsimony score of s1; : : : ; sn on T is at most d .

Recall that the parsimony score of a set of sequences is the minimum total number of substitutions
over the tree T needed to explain the observed sequences. It is de� ned as the minimum, over all possible
labelings of the ancestral nodes of T with sequences of length k, of the sum over all edges e of the
Hamming distance between the labels of the nodes connected by e. (The Hamming distance between
two length-k strings is the number of positions at which they differ.) Looking for sets of substrings that
achieve a low parsimony score corresponds to searching for highly conserved regions. The present notion
of parsimony scores allows only for substitutions, but more general mutations are considered in Section
2.6. Notice that the length k and score d of the motifs sought are given as input. In general, a few values
of k might be tried by the user. For any � xed k, d can be chosen so that the motifs reported are statistically
signi� cant, in the sense described in Section 4.

2.1. A dynamic programming algorithm

We start by showing that the Substring Parsimony Problem can be solved optimally by a dynamic
programming algorithm similar to that proposed by Sankoff and Rousseau (1975) for the computation of
the parsimony score of a � xed set of strings. The algorithm assumes a rooted tree, so we will root our tree
arbitrarily at an internal node r . (Since the parsimony score of a set of strings is independent of the position
of the root of the tree, the choice of r will not affect the solution.) The algorithm then proceeds from the
leaves up to the root. At each node u of the tree, we compute a table Wu containing 4k entries, one for
each possible sequence of length k. For a string s of length k, we de� ne Wu[s] as the best parsimony
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score that can be achieved for the subtree rooted at u, if u was to be labeled with s (i.e., if we force
the ancestral sequence at u to be s). Let us denote by C.u/ the set of children of u, let d.s; t/ be the
Hamming distance between sequences s and t , and let 6 D fA,C,G,Tg. The tables W can be computed
by a dynamic programming algorithm:

Wu[s] D

8
>>>><

>>>>:

0 if u is a leaf and s is a substring of Su

C1 if u is a leaf and s is not a substring of Su
X

v2C.u/

min
t26k

.Wv[t] C d.s; t// if u is not a leaf:
(1)

Then, the score of the optimal solution to the Substring Parsimony Problem is given by mins26k .Wr [s]/.
The straightforward implementation of this recurrence computes all W tables in time O.n ¢ k ¢ .42k C l//,
where l is the average length of the input sequences S1; : : : ; Sn. The main term in this expression comes
from the fact that, for each of the O.n/ edges .u; v/, for each of the 4k possible values of s, and for each
of the 4k values of t , the recurrence calls for the computation of d.s; t/.

From that point, the ancestral sequences snC1; : : : ; sjV j and substrings s1; : : : ; sn can be recovered by
tracing back the recurrence, from the root down to the leaves, for each entry of Wr with score at most
d . Maintaining appropriate pointers to keep track of the computation of the W tables, the set of solutions
can be recovered in time linear in its size. Notice that the number of solutions may be exponential in
n, although in nonrepetitive biological sequences, the number of solutions is usually small (for d small),
and the time to enumerate them is negligible compared to that of computing the W tables. Thus, in the
remainder of this section, we focus our attention on reducing the complexity of the computation of the
W tables. Indeed, the 42k factor in the complexity of the present algorithm makes it impractical to use for
most interesting values of k.

2.2. Improved algorithm

We now show how to compute Equation (1) more ef� ciently, yielding an O.n¢k ¢.4k Cl// time algorithm,
which makes it more practical for interesting biological purposes. We will need an auxiliary table X.u;v/

for each edge .u; v/ in the tree, where u is the parent of v. Let T 0 be the subtree consisting of u together
with the subtree of T rooted at v. We de� ne X.u;v/[s] as the best parsimony score that can be achieved
on T 0, if u was to be labeled with s. That is, X.u;v/[s] = mint26k .Wv[t ] C d.s; t//. Notice that once we
have computed X.u;v/[s] for each string s and each child v of u, we obtain Wu[s] D

P
v2C.u/ X.u;v/[s].

We now show that the table X.u;v/ can be computed in O.k ¢ 4k/ instead of O.k ¢ 42k/ time. The idea is
similar to a breadth-� rst search of the space of sequences of length k. The search is divided into phases.
At phase p, we consider a set of sequences Bp , called the boundary, which contains exactly the sequences
s such that X.u;v/[s] D p. Let Ra D fs : Wv[s] D ag and let N.t/ D fs 2 6k : d.s; t / D 1g be the set of
neighbors of string t . We start at phase 0 and set B0 D R0. To go from phase p to phase p C 1, we have

BpC1 D RpC1 [ fs 2 6k : 9t 2 Bp s:t: s 2 N.t/g ¡
[

j·p

Bj

D RpC1 [
[

t2Bp

N.t/ ¡
[

j·p

Bj : (2)

Figure 1 illustrates this process. We continue this boundary expansion until all sequences have been visited
and thus all X.u;v/[s] have been computed. Since each sequence t has exactly 3k neighbors and is part of
the boundary only once, the computation of X.u;v/ is done in O.k ¢4k/ time, and the whole algorithm runs
in O.n ¢ k ¢ .4k C l// time. (We assume that a string of length k � ts in a single computer word.)

2.3. Sibling bounds

We now present techniques that greatly reduce the computation time by avoiding the computation of
useless entries in the W and X tables. First, note that if the only solutions of interest are those with
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FIG. 1. Illustration of the progression of the boundary B . Each dot corresponds to a substring. The number associated
with dot x is Wv [x]. Arcs connect neighboring substrings.

parsimony score at most d , there is no need to compute any Wu entries that will have scores above d ,
as Wu[s] > d implies that any global solution in which u is labeled with s will have score above d .
That means that computing entries of X.u;v/ with score above d is also useless, and so one can stop the
boundary expansion after phase d . This simple observation improves the complexity of the algorithm to
O.n ¢ min.l ¢ .3k/d ; k ¢ .4k C l///, as each W and X table contains O.l ¢ .3k/d/ entries. It is not dif� cult to
see that the number of entries in some X.u;v/ table, where v is a leaf, is O.l ¢ .3k/d/, since each string in
Bp has at most 3k neighbors in BpC1. To see why it is also true when v is not a leaf, let y be an arbitrary
leaf in the subtree rooted at v. Then X.u;v/[s] · d implies that s must have Hamming distance at most
d to some substring of Sy , which in turn implies that X.x;y/[s] · d . This means that X.u;v/ has no more
entries than X.x;y/ , which we showed is O.l ¢ .3k/d/ since y is a leaf.

The bounding technique above also reduces the space requirement, as the tables W and X will now
be very sparse, allowing us to use hash tables to store them ef� ciently. (We assume for the purposes of
running time analysis that each hash table operation can be done in constant time.) We will refer to this
bounding technique as d-bounding.

This idea can be pushed further to actually perform only d=2 unconstrained expansion phases for each
edge. Remember that the X.u;¤/[s] entries will eventually be added to form Wu[s]. Many entries X.u;¤/[s]
end up being rejected because they add up to more than d. To avoid that situation, we are going to compute
the entries of the X.u;¤/ tables in parallel: � rst do phase zero in all tables, then phase one, etc. Then, after
phase p, we know that if an entry X.u;v/[s] has not been computed yet, it must have a score of at least
p C 1. Thus, after phase p, we have the following bound:

Wu[s] ¸ bound.u; s/ D
X

v2C.u/

(
X.u;v/[s] if X.u;v/[s] has been computed

p C 1 otherwise:

That means that at phase p, an entry Wu[s] for which bound.u; s/ > d can’t participate in the solution.
Unfortunately, it is not true that entries failing this test can be omitted from the boundary expansion at the
next phase. Indeed, it is possible that an entry s for which this bound is larger than d could have a neighbor
t , visited in the next phase, for which the bound is less than or equal to d . For example, suppose u has
children v, w, and y , and X.u;v/[s] D d ¡1 and X.u;w/[s] D X.u;y/[s] D 1, giving bound.u; s/ D dC1. It is
possible that s has a neighbor t with X.u;v/[t] D d and X.u;w/[t ] D X.u;y/[t ] D 0, giving bound.u; t/ D d .
Note, however, that X.u;w/[t ] ¸ X.u;w/[s] ¡ 1, since otherwise s would have a smaller score X.u;w/[s] as
a neighbor of t . This motivates the following rule for determining when an entry s need not be expanded.
An entry s of X.u;v/[s] D p can only lead to entries with score at most d if

d ¸ p C max
w2C.u/

w 6Dv

(
X.u;w/[s] if X.u;w/[s] has been computed

p C 1 otherwise:

That means that any entry s for which this bound is not satis� ed can be left out of the boundary.
The reason is that, if t 2 N.s/ and X.u;v/[t] D p C 1, then X.u;w/[t] ¸ X.u;w/[s] ¡ 1, so Wu[t] ¸
X.u;v/[t]C X.u;w/[t ] ¸ X.u;v/[s] C X.u;w/[s] > d. For phases 0; : : : ; d=2¡ 1, this bound is useless because
it is always satis� ed. However, for phases d=2; : : : ; d , it greatly reduces the size of the boundary considered.
Indeed, at phase d ¡ i , only those entries that have score at most i in all the siblings will be considered in
the boundary. Thus, the size of the boundary at phase d¡i will be bounded by the size of the intersection of
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the boundaries of the siblings at phases 0; : : : ; i. Consequently, only d=2 unconstrained expansion phases
are performed, and the overall time complexity of the algorithm is reduced to O.n ¢ min.l ¢ k ¢ .3k/d=2;

k ¢ .4k C l///. We will refer to this technique as “sibling bounding.”

2.4. Parent bounds

The improvement above was obtained by computing the X.u;¤/ tables simultaneously for all children
of u and using those to constrain which entries s can lead to solutions with score at most d. We can
push this idea one step further by using not only the siblings, but also the parent, to reduce the number
of entries computed. To do so, we will need to compute in parallel all X.u;v/ tables of all edges .u; v/

in the entire tree, phase by phase. Furthermore, each nonterminal edge .v; u/, where v is the parent of
u, will have a new table associated with it: let Y.u;v/[s] be the best parsimony score achievable for the
subgraph ..T ¡ subtree rooted at u/ [ u/, if u was to be labeled with s. Recall that the solutions to the
Substring Parsimony Problem are independent of the node at which the tree is rooted. So, when computing
entries of X.u;¤/, we will temporarily re-root the tree at u, so that T ¡ .subtree rooted at u/ becomes one
more subtree of u. The table associated with this new subtree is Y.u;v/, and this extra table can be used to
constrain the computation of X.u;¤/ as in Section 2.3, and the X.u;¤/ tables can be used to constrain the
computation of Y.u;v/. This new constraint does not reduce the asymptotic complexity of the algorithm,
but in practice, it tends to reduce roughly by half the total number of entries computed. The drawback is
that this new method requires the retention of all X.u;v/ and Y.u;v/ tables, whereas previously the X.u;¤/

tables could be discarded as soon as Wu was computed. We will call this technique “parent bounding.”

2.5. Filtering substrings

The relatively tight bounds developed in Sections 2.3 and 2.4 make the overall complexity of the
algorithm O.n ¢ min.l ¢ k ¢ .3k/d=2; k ¢ .4k C l///, signi� cantly better than the original complexity of
O.n ¢ k ¢ .42k C l//. Notice that the length l of the input sequences, which was completely dominated by
the 42k term in the original algorithm, is now a determining factor in the running time. That is because
the number of substrings inserted in the W tables at the leaves (Equation 1) directly affects the size of
the boundaries explored. That suggests that reducing this number would proportionally reduce the whole
running time. Indeed, if we could know in advance that a certain substring s has no chance to be part of
a solution with score at most d , there would be no need to include it in W at the leaves.

There are several ways one can � nd out that a substring s can’t produce interesting solutions. First,
notice that in any solution s1; : : : ; sn with parsimony score at most d , any pair of the chosen substrings
must be at Hamming distance at most d . Thus, when considering whether to include substring s in Wu

at a leaf u, one can � nd the best match of s in each of the n ¡ 1 other sequences. If any of these best
matches has score worse than d , there is no need to consider s. This is a relatively weak bound, but for d

small, it very effectively reduces the number of substrings considered.
Stronger bounds could also be used for � ltering substrings. For example, if one builds an n-partite graph

G D .V ; E/, where V is the set of substrings of length k of the input sequences and E D f.s; t/ : s

and t come from different sequences and d.s; t/ · dg, then the only substrings that can participate in an
optimal solution are those that belong to an n-clique (see Pevzner and Sze [2000] for more on this idea).
Obviously, this kind of � ltering would be very computationally intensive and may take more time than it
would save. Still, fast heuristics using these kinds of ideas seem possible. In our implementation, only the
pairwise constraint was used.

2.6. General edit-distance metric

Until now, we have assumed that the only mutations allowed in the motifs sought were substitutions.
However, the algorithms apply equally well to any set of edit operations, as follows.

Let S D .fA; C; G; T gk; d/ be a metric space where d is a string edit-distance based on a set of
edit operations f¼1; : : : ; ¼r g, each with unit cost. Then, the algorithm described above runs in O.n ¢
min.l ¢ rd=2C1; r ¢ .4k C l///. For example, if we allow substitutions, insertions, and deletions, there are 3k

possible substitutions, 4.k C 1/ possible insertions, and k possible deletions, so we get a complexity of
O.n ¢ min.l ¢ .8k C 4/d=2C1; .8k C 4/ ¢ .4k C l///. However, it may not make sense to look for motifs of
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length exactly k if insertions and deletions are allowed. Instead, we look for motifs of length at least k

(and at most k C d).
One could also assign variable costs to each edit operation, for example to make insertions and deletions

more expensive than substitutions, or to make mutations along short branches of the tree more expensive
than those along longer branches, or to assign different weights to mutations at different motif positions.
(See Felsenstein [1981] for an interesting connection between minimum weighted parsimony and maximum
likelihood.) The boundary expansion in Section 2.2 would no longer be performed in phases, but rather
table entries would be � lled in one at a time, in increasing order of the entries of X.u;v/. The complexity
of the resulting algorithm would not be that mentioned above, but would be a rather complex expression,
as the number of motifs at distance at most d from some string s is not easily quanti� able. In practice,
however, allowing for non-unit mutation costs does not cause much increase in the running time. The
resulting algorithm would then be a full-� edged algorithm for local multiple alignment on a tree.

2.7. Reporting solutions

The complete solution to the Substring Parsimony Problem is a set of sets of substrings having low
parsimony score. This set could be quite large, in particular when the input sequences contain a conserved
region that is much longer than k, in which case all length-k substrings of the conserved region would be
reported. To improve the readability of the output, we assemble the individual solutions using the following
rule: if two sets of substrings overlap in exactly the same manner in each of the n input sequences, these
substrings will be merged and displayed as only one solution. Notice that the resulting set of longer
substrings may have a parsimony score larger than d , although each of their nucleotides belongs to at least
one length k substring with score at most d.

2.8. Implementation and performance comparison

The algorithms of Sections 2.2 to 2.7 were implemented in C++ in a program called FootPrinter, and
the code is freely available at http://bio.cs.washington.edu/software.html. Table 1 presents the empirical
running time and space, as well as the total number of table entries computed, when the methods described
so far are applied. The data set used is the c-myc proto-oncogene 30 UTR sequences, from 10 different
vertebrates, whose lengths vary between 450 and 900 nucleotides. The motifs sought were of length 12,
with a parsimony score of at most 3 mutations. This data set is quite typical of the data available at present.

The time and memory requirements of the original algorithm (Section 2.1) were too expensive to measure.
Notice that when all bounding and � ltering techniques are applied, we obtain a reduction in time and space
of a factor of about 100 over using d-bounds only. As expected from the asymptotic complexity of the
algorithm, the main factor that determines the running time is d , the score of the motifs sought, and, to
a lesser extent, k, the length of the motif sought. In practice, one can easily � nd motifs with k D 8 and
d D 8, or k D 12 and d D 5, or k D 20 and d D 2. Allowing insertions and deletions causes an increase in
running time, in accordance with the asymptotic complexity. Still, the program runs quickly on a desktop
machine.

Table 1. Performance Improvements Obtained from Bounding and Filtering Techniquesa

No indel With indels

Technique Time Space #Entries Time Space #Entries

No bounds — — »160 £ 106 — — »1 £ 109

d-bounds only »500s »1000M »20 £ 106 »10000s »5000M »150 £ 106

Sibling bounds only 32s 40M 810130 727s 340M 6999597
SiblingCparent bounds 24s 39M 414207 573s 315M 3642586
All boundsC� ltering 4s(C10s � ltering) 8M 60962 80s(C90s) 51M 559305

aPerformance obtained when the various bounding and � ltering techniques described in Sections 2.3, 2.4, 2.5 are used. Data set:
c-myc proto-oncogene 30 UTR sequences, k D 12, d D 3, n D 10. Sequence length varies between 450 and 900 nucleotides. The
solution consists of three distinct conserved substrings. The program ran on a Pentium III 550 MHz, with a 512M RAM.

http://bio.cs.washington.edu/software.html
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3. ALLOWING FOR MISSING REGULATORY ELEMENTS

Until now, we have assumed that the conserved regions we were looking for were functional in all
sequences S1; : : : ; Sn. That is, we have assumed that they had been subject to selective pressure over all
branches of the tree T . That means that we were unable to � nd regulatory elements that were absent
from some of the given species. There are many examples of data sets where some regulatory elements
are common to only part of the species considered, and it would be useful to be able to � nd those as
well, without knowing a priori which species contain those elements. In this section, we describe how an
algorithm similar to that of Section 2.2 can handle this situation.

For this problem to make sense, we need a way to compare two solutions containing substrings from
different subsets of species. For example, a motif containing m mutations in a group of ten highly diverged
vertebrates is more interesting than one with the same number of mutations in a group of ten primates.
What needs to be considered is the total amount of evolution (measured, for example, in millions of years,
in number of generations, or in overall mutation rate) that the motif has survived. Thus, in what follows,
we will assume that we are given not only the phylogenetic tree T that relates the given species, but
also the lengths of all its branches. If the branch lengths are unknown, they can be estimated as will be
described in Section 4. (Estimating branch lengths is a notably dif� cult problem. However, our experience
suggests that the quality of the results obtained by the method presented in this section does not critically
depend on the accuracy of these estimates.) We will be looking for motifs that have a small parsimony
score, but that span a large part of the tree. We assume that a regulatory element is either present at the
root of the tree or that it is acquired on exactly one branch of the tree (that is, a regulatory element is not
acquired independently by two different phyla). Let the length of a tree be the sum of the lengths of its
branches. The problem we want to solve here is the following:

Substring Parsimony Problem with Losses
Given: a set of orthologous sequences S1; : : : ; Sn from n different species, the phylogenetic tree T relating
these species and the length ¸.e/ of each branch e of T , the length k of the motifs to look for, an integer
d , and a set of thresholds f±0; ±1; : : : ; ±dg.
Problem: � nd all sets of substrings fsi1 ; : : : ; si³ g, 1 < ³ · n, where sij is a k-length substring of Sij , such
that the parsimony score P of fsi1 ; : : : ; si³ g on the tree induced by the leaves i1; : : : ; i³ is at most d , and
such that the tree induced by the leaves i1; : : : ; i³ is of length at least ±P .

For example, one might be interested in motifs with a parsimony score of 2 that span at least 500 million
years of evolution (i.e., ±2 D 500 Myrs), and in regions with a parsimony score of 3 that span at least
1,000 million years of evolution (i.e., ±3 D 1,000 Myrs).

The algorithm that solves this generalized problem is very similar in spirit to that of Section 2.2. De� ne
a leaf-induced subgraph of a tree T as a connected subgraph of T in which all vertices of degree one are
leaves in T . At each node u of T , we now have a set of tables Wu;a , for a D 0; : : : ; d , where Wu;a[s] is
de� ned as the maximal length of a connected leaf-induced subgraph of the subtree rooted at u, containing
u, on which there exists a solution with parsimony score a, if u was to be labeled with s. For each
edge .u; v/ of the tree, we de� ne X.u;v/;a similarly. Let Zv;a;s D fWv;b[t] : b C d.s; t/ D a; t 2 6kg.
Then

X.u;v/;a[s] D

(
maxfz 2 Zv;a;sg C ¸..u; v// if Zv;a;s 6D ;

¡1 otherwise
and

Wu;a[s] D

8
>>>>>>><

>>>>>>>:

0 if u is a leaf and s is a substring of Su

¡1 if u is a leaf and s is not a substring of Su

max
q · jC.u/j;

fc1; c2; : : : ; cq g µ C.u/;
fb1; b2; : : : ; bq g partition of a

qX

iD1

X.u;ci /;bi
[s] if u is not a leaf
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The X tables can be computed by an algorithm very similar to that of Section 2.2. The set of substrings
satisfying the given conditions are recovered by tracing back the recursion from any node u, any entry s,
and any score a such that Wu;a[s] ¸ ±a . The bounds developed in Sections 2.3 and 2.4 also apply with
little modi� cation, and � ltering the input substrings could also be used, although the modi� cations required
would be nontrivial. (In particular, a substring of sequence S1 that has no good match with sequence S2

can’t be rejected, because S2 might not participate in the solution.) Our current implementation uses only
the sibling bounds.

4. STATISTICAL SIGNIFICANCE OF MOTIFS

There exists a “best conserved region” in any set of sequences, whether or not these regions have actually
been protected from mutations by selective pressure. To assess the signi� cance of a best conserved region
R from sequences S1; : : : ; Sn on tree T , one would like to do the following hypothesis testing:

H0: the probability of any nucleotide mutating in R is the same as that in the rest of the sequence, vs.
H1: the probability of any nucleotide mutating in R is less than that in the rest of the sequence.

If one knew the distribution of best parsimony scores found in sequences having evolved under H0,
one could readily obtain a signi� cance score for a potential motif. The problem is that this distribution
depends on a large number of factors, such as the sequence length l, the motif length k, the topology and
branch lengths of T , the types and rates of mutations along each branch, etc. For this reason, it seems very
dif� cult to calculate this distribution analytically, and we will thus approximate it empirically.

Let us assume that we had access to sequences R1; : : : ; Rn that were produced by a similar evolution-
ary process as S1; : : : ; Sn, but where no region of the sequence was subject to any selective pressure.
Then, one could compare the parsimony score of the best motif found in S1; : : : ; Sn to the one found
in R1; : : : ; Rn . If the former score were signi� cantly lower than the latter, this might suggest that some
regions of S1; : : : ; Sn were subject to selection. But where could we � nd such sequences R1; : : : ; Rn?
They might be orthologous sequences taken from the same organisms as S1; : : : ; Sn, but in a region
known to contain absolutely no functional sequence. Since it is unclear that such sequences even exist,
and because it seems dif� cult to guarantee that the mutation rate of such sequences is the same as that of
S1; : : : ; Sn, this approach seems infeasible, and thus we will need to rely on simulated rather than biological
sequences.

We generate sequences R1; : : : ; Rn so as to mimic the evolution of S1; : : : ; Sn , but without selective
pressure on any locus. The exact evolutionary history of S1; : : : ; Sn is unknown, so we � rst need to estimate
it. We assume that throughout history, sequences have mutated according to a � xed model (in our case,
an HKY substitution model [Hasekawa et al., 1985] together with insertions and deletions). The only
unknown is then the length of the branches of the tree. To approximate these branch lengths, we � rst
approximate a distance matrix M , where M.i; j/ is the true evolutionary distance between Si and Sj .
M.i; j/ can be approximated from the alignment score of Si and Sj . Using the Fitch-Margoliash algorithm
(Fitch and Margoliash, 1967), one then � nds the branch lengths of T so as to � t M as closely as possible.
This results in a complete approximation of the evolutionary history of S1; : : : ; Sn. This history can then
be used to generate the random sequences R1; : : : ; Rn. This is done using the Rose program (Stoye et al.,
1998), which simulates sequence evolution over a given tree. We ensure that the nucleotide frequency of
R1; : : : ; Rn is similar to that of S1; : : : ; Sn by starting our simulation with a random ancestral sequence
with the average nucleotide composition of S1; : : : ; Sn. The HKY model maintains the base frequency
through evolution.

The distribution of the best parsimony scores found in sequences having evolved under H0 can now be
approximated with the distribution of the scores found in these random sequences. For each data set in
Table 2 and Table 3, we generated 100 sets of random sequences from which the best parsimony score
distribution was approximated. For Table 2, we report the critical value Z0:01 for the hypothesis testing, at
level 0.01. Any motif with score less than Z0:01 has probability less than 0.01 of having been generated
under H0. In Table 3, we report the approximated p-value of each of the motifs found.
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Table 2. Highly Conserved Regions Found in Sets of Orthologous Sequencesa

Region Species Z0:01 Motif Score Ref. Other methods

¯-actin 50 1,2,5,9,11 2 ccaatcagcg (-934) 1 <1a> A,D,M
(1091 bp) (1200Myrs) ttgccttttatggc (-915) 0 <1b> M

ttgccttttatggtaat (-160) 0 <1c> D,M
cttcctttgtc (-131) 0 D,M

¯-actin 30 1,2,3,4,5,6, 5 ttggcatggctt (70) 1 D,M,W
(636 bp) 9,11,12,13 ttgactcaggat (127) 1 D,M,W

(1900Myrs) aaaaactggaac (141) 1 A,D,M,W
agtcattccaaat (242) 2 D,M,W
tgtaaattatgt (374) 2 A,D,M
cctgtacactgac (545) 0 <2> A,D,M,W

° -actin 30 1,5,6,7,8,10 2 tcatgctagcctc (78) 0 A,D,M,W
(427 bp) (1100Myrs) aaactggaataag (94) 0 A,D,M,W

tgtgcagggtat (353) 1 D,M

aHighly conserved sequences found by our algorithm in noncoding regions. The sequence and position of the motifs reported
correspond to those in human. Motif positions are from the start codon for 50 sequences and from the stop codon for 30 sequences.
All substrings of length 10 of the reported motifs contain at most the reported number of mutations. Poly-Ts are not reported. Z0:01 is
the critical value for the hypothesis testing of Section 4, at level 0.01. Motifs with score less than Z0:01 have p-value less than 0.01.
References: <1a> Bound by unknown factor (Frederickson et al., 1989), <1b> Bound by SRF (Frederickson et al., 1989), <1c>
subcellular localization signal (Kislauskis et al., 1994), <2> responsible for down-regulation during myogenesis (DePonti-Zilli et al.,
1988). Species: (1) human, (2) common carp, (3) hamster, (4) rabbit, (5) rat, (6) mouse, (7) cow, (8) frog, (9) chicken, (10) goose,
(11) grass carp, (12) medaka � sh, (13) gilthead sea bream. Other methods (see Section 5): A: Ann-spec, D: Dialign2, M: Meme3,
W: ClustalW.

Table 3. Highly Conserved Regions Found in Subsets of Sets of
Chloroplast Orthologous Sequencesa

Region Species Motif Score Ind. length P-value Ref. Oth. meth.

rbcS 50 10 embryophyta tatatatag (-105) 4 100% <0.01 <1a> D,M
agataaga (-327) 5 100% <0.01 <1b> A,M
cacgtggc (-303) 1 49% 0.38 <1c> A,D,M

rbcL 50 44 magnoliophyta ggatttacatata (-326) 0 64% <0.01 <2a> A,M
tatacaata (-199) 1 79% <0.01 <2b> W
tcgagtagacct (-59) 0 66% <0.01 <2c> M,W
gaattcttaattcatgag: : :

: : : ttgtagggaggga (-39) 0 75% <0.01 <2d> A,M,W

aHighly conserved regions found in a subset of the input sequences. All substrings of length 8 (for rbcS) and 9 (for rbcL) of
the reported motifs contain at most the reported number of mutations on the induced subtree. The motifs and positions reported are
those in tobacco. Species (embryophyta): tobacco, spinach, tomato, ice plant, rape, cotton, pea, wheat, duckweed, corn. Species
(magnollophyta): 1 fern, 1 conifer, 5 lilliopsidae, 6 magnoliales, 11 asteridae, 1 buxaceae, 19 rosidae. Induced length: Relative
length of the tree induced by the species containing the motif. References: From (Arguello-Astorga and Herrera-Estrella, 1998):
<1a> TATA-box, <1b> I-box , <1c> G-box, absent from corn, wheat, duckweed, and rape. From (Manen et al., 1994): <2a>
atpB promoter (atpB is located upstream of rbcL, on the opposite strand), absent from spruce, corn, rice, fern, and Spermacoceas
surgens, and mutated in two other species; <2b> rbcL promoter, similar to -10 promoter, absent from cotton, fern, and cuscuta,
and mutated in three other species; <2c> 50 part of leader region, absent from corn and cuscuta, and mutated in two other species;
<2d> 30 part of leader region, absent from cuscuta, and mutated in four other species. Other methods: see Table 2.

5. RESULTS

Although the amount of sequences in the public domain is growing extremely fast, there are still relatively
few genes for which the 50 or 30 noncoding regions have been sequenced in several species. Many of those
sequences can be found in the ACUTS database (Duret et al., 1993). Table 2 reports highly conserved
regions found by our algorithm in some of those sequences. We searched for motifs of length 10. Motifs
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longer than 10 were obtained by merging solutions that overlapped in all given sequences, as discussed
in Section 2.7. The assessment of the statistical signi� cance of the motifs found is discussed in Section 4.
All motifs reported have a p-value less than 0.01.

Some of the regions identi� ed by our algorithm are known regulatory elements, but the rest are novel
conserved regions that may be worth further exploration. There is usually little known about regulatory
elements in the 30 untranslated regions, but, as Duret et al. (1993) report, these regions contain many highly
conserved regions. Interestingly, in two cases, we identi� ed very long conserved regions in the downstream
region of the given gene (data not shown). These turned out to be unannotated genes. In that sense, the
algorithm could be used as an aid in gene � nding.

In Table 3, we illustrate the usefulness of allowing for regulatory element losses (see Section 3) using
two chloroplast genes, rbcS and rbcL. These two genes contain regulatory elements that are known to
be present in most, but not all, of the species considered here. All seven regions identi� ed by our method
correspond to actual functional elements. In rbcS, all three regulatory elements known to be present in
at least 5 of the 10 input sequences were found, despite the fact that one of these regulatory elements is
present only in a subset of species spanning less than 50% of the total tree length. In rbcL, four of the
six regulatory elements known in tobacco are found, even though none of them are present in all species.

The rightmost column of Tables 2 and 3 indicates whether other motif � nding techniques could have
identi� ed the motif. We tested four existing programs:

² CLUSTALW (Higgins et al., 1996) and DIALIGN 2 (Morgenstern, 1999): these are multiple alignment
programs, which were followed by visual inspection of the alignment. A motif is said to be found if at
least 75% of its instances are correctly aligned.

² MEME (Bailey and Elkan, 1995) and ANN-Spec (Workman and Stormo, 2000): these are motif-� nding
programs that make no use of the phylogeny underlying the data. A motif is said to be found by one
of these two programs if it or one of its close variants (strings overlapping over at least 75% of their
length) was correctly identi� ed in at least 75% of the species considered. The top ten motifs reported
by MEME and ANN-Spec were considered.

The � rst thing to notice is that CLUSTALW performs poorly for highly diverged sequences, as expected,
for the reasons mentioned in Section 1. Because it is based on alignment of local features, DIALIGN
performed extremely well and identi� ed almost all regions FootPrinter reported, except in the case of the
largest data set (rbcL, where the program did not terminate after one hour). MEME also performed quite
well and correctly identi� ed most regions that FootPrinter reported. This was to be expected, as most of
these regions are extremely well conserved and thus fairly easy to � nd.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented an exact algorithm for phylogenetic footprinting. The algorithm is based
on a simple dynamic programming formulation, but careful optimizations are needed to make the method
ef� cient on interesting biological datasets. We described a principled way to handle data sets where regula-
tory elements are only present in a subset of the input sequences. All algorithms presented are guaranteed
to yield all optimal solutions to the variety of problems addressed. Algorithms are implemented and run
quickly on a desktop computer. Using them, we have been able to identify a number of experimentally
determined binding sites, as well as a set of highly conserved regions with no function known yet.

Future work should be directed in three main directions. First, it seems possible to improve the bounds
presented in Sections 2.3 and 2.4, as well as the � ltering accuracy and time complexity. Second, an accurate
assessment of the signi� cance seems a dif� cult problem and our estimation of the statistical signi� cance
of the motifs found is based on a number of approximations that may be re� ned. Third, it appears that
quite often, regulatory elements work in pairs (or even triples), at a relatively � xed distance from each
other. This new kind of prior knowledge could easily be included in our algorithm and may allow us to
� nd pairs of regulatory elements that were too weakly conserved to be detected by themselves. Other ways
of injecting prior knowledge about the solutions of interest should also be considered.



222 BLANCHETTE ET AL.

From an application point of view, the next years should provide us with a bulk of new data to analyze.
Interesting tasks include not only regulatory element prediction, but also gene and splice site detection, as
well as protein and RNA structural motif � nding.
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