570

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 4, JULY 1992

Quantifying the Neighborhood Preservation
of Self-Organizing Feature Maps

Hans-Ulrich Bauer and Klaus R. Pawelzik

Abstract— Neighborhood preservation from input space to
output space is an essential element of such self-organizing
feature maps as the Kohonen map. However, a measure for
the preservation or violation of neighborhood relations, which is
more systematic than just visual inspection of the map, has been
lacking. We show that a topographic product P, first introduced
in nonlinear dynamics, is an appropriate measure in this regard.
It is sensitive to large-scale violations of the neighborhood order-
ing, but does not account for neighborhood ordering distortions
caused by varying areal magnification factors. A vanishing value
of the topographic product indicates a perfect neighborhood
preservation; negative (positive) values indicate a too small (too
large) output space dimensionality. In a simple example of maps
from a 2-D input space onto 1-D, 2-D, and 3-D output spaces
we demonstrate how the topographic product picks the correct
output space dimensionality. In a second example we map 19-D
speech data onto various output spaces and find that a 3-D output
space (instead of 2-D) seems to be optimally suited to the data.
This is in agreement with a recent speech recognition experiment
on the same data set.

I. INTRODUCTION

APS constitute an important class of neural information

processing systems, both natural and artificial [1]-[3].
They project a pattern in an input space onto a position in an
output space, in this way coding the information as the location
of an activated node in the output space. A few examples
of maps in the nervous system are retinotopic maps in the
visual cortex [4], tonotopic maps in the auditory cortex [5],
and maps from the skin onto the somatosensoric cortex [6].
Of these, retinotopic maps have been modeled in a number of
contributions, including aspects such as orientation preference
and ocular dominance [7]-[10]. In the domain of artificial
neural networks, applications of maps include motor control
tasks for robot arms [11] and/or phoneme recognition (using
the “learning vector quantizer” refinement (LVQ) of the basic
feature map [12]).

An essential property common to all these maps is the
preservation of neighborhood relations. Nearby features in
the input space are mapped onto neighboring locations in
the output space. It is this aspect of maps which serves as
an organizing principle for map formation algorithms, one of
which, the Kohonen algorithm, we will discuss in the second
section.
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However, it is difficult to quantitatively characterize how
“good” this preservation actually is. In fact, large-scale neigh-
borhood violations in maps are usually detected by visually
inspecting the map; a method which is restricted to sufficiently
low-dimensional input spaces (not to mention its arbitrariness).
The main point of our contribution is to close this diagnostic
gap by introducing a topographic product as a measure of the
preservation of neighborhood relations. The topographic prod-
uct has already proved useful for the analysis of embeddings
for chaotic attractors in nonlinear dynamics [13]. A strange
attractor can only be embedded if there is a continuous map
with a continuous inverse from the original phase space to
the reconstructed space. In the third section we will give a
detailed discussion of the different terms entering the product
and we will show how this measure cannot be fooled by local
stretchings of the map owing to varying input pattern densities.

We then continue in the fourth section to a very simple ex-
ample for a self-organizing feature map (SFM)—the mapping
from a square with constant stimulus density onto an output
space consisting of a line, a square, or a cube of neurons.
This very simple example includes the essential effects of
a dimensionality mismatch between input space and output
space, and has been analyzed in detail by Ritter and Schulten
(14]. Using the topographic product as a measure, we show
how the matching output space dimensionality for this problem
can be found in an unambiguous way.

In the last two sections we then turn to the question
of why an optimal preservation of neighborhood relations
means an advantage in applications, and is not merely a
theoretical excursion. To this purpose we first mimic a speech
recognition experiment with SFM’s. The recognition is based
on the classification of trajectories in the output space of
the map. We show how the recognition performance can
severely degrade if there is a dimension mismatch between
input space and output space. Then we analyze real speech
data and identify the optimal output space dimension. This
turns out to be in agreement with a comparable speech
recognition experiment [15], where Kohonen maps of different
output space dimension have been used for preprocessing.
The recognition was performed by classifying the resulting
trajectories in the output space with a dynamic time warping
algorithm. .

II. KOHONEN ALGORITHM FOR SELF-ORGANIZING
FEATURE MAPS

The Kohonen algorithm is a well established learning rule
for self-organizing feature maps and can easily be imple-

1045-9227/92$03.00 © 1992 IEEE



BAUER AND PAWELZIK: QUANTIFYING NEIGHBORHOOD PRESERVATION

mented. It has been described in numerous publications, in
particular in the book by Kohonen [2]. Here it should suffice to
give only a short account of the algorithm, which will provide
the notation used in the subsequent section. In order to simplify
comparisons between different papers, we adhere in this paper
to the notation of Ritter ef al. [3], [14].

The algorithm describes a map ® from an input space V
into an output space A. The output space consists of nodes j,
which are arranged in some topological order (e.g. as nodes
on a line or as vertices of a two-dimensional lattice). For each
position j in A there is a pointer, w;, into V', which can be
regarded as the center of the receptive field associated with
the neuron at j. If a stimulus v occurs in the input space, it is
mapped onto that neuron 7 in A, the “receptive field pointer”
w; of which lies closest to v, ie.,

i: d¥(ws,v) = gneig d¥ (w;,v). 6))

Here d¥ (w;,v) means the distance in the input space V
between w; and v.

During the learning phase, the map ® is formed by sucessive
adjustments of the vectors w;. During one learning step, a
stimulus v is (randomly) chosen and mapped onto an output
node i according to (1). Then both the pointer w; and all the
pointers w; of nodes in the vicinity of i are shifted a small
step toward v:

fw; = h(d*(j,i))(v—w;)  Vj€A )

The function A9 ; determines the size of the vicinity of ¢ which
takes part in the learning. It depends on the distance d4(j,1)
between output nodes j and 4, measured in the output space.
The function hQ,;(d*(j,1)) has a maximum at d*(i,i) = 0,
and decreases with increasing d“(3j,7). A typical choice for
hY; is

B (d) = e 412" 3)

The complete learning phase consists in a (random) initializa-
tion of the w;, followed by a number of the above-described
learning steps. For the learning to converge, it is helpful to
slowly decrease the step-size €(t) as well as the width o(t)
of h?ﬁi during the learning process. Even though not optimal,
an exponential decay,

e(t) = ege™ /" )
oft) = ope /=, ©)

most often turns out to be sufficient [16].

The final map is usually visualized in the input space. All
pointers w; are shown as dots, and pointers of neighboring
nodes are connected with lines. An undistorted graph without
foldings, as in Fig. 1, is the signature of a map which preserves
neighborhood relations.

So far, we have not elaborated on the spaces V' and A. As far
as V is concerned, we assume a DV dimensional, continuous
space. The distance measure d¥ (v,v’) in V has already been
used in (1). The output space A is usually assumed discrete,
not only as a consequence of the discrete nature of neurons,
but also because only a finite, and therefore discrete, map can
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input space V output space A

Fig. 1. The self-organizing feature map can be visualized by marking pointer
positions in the input space as dots, and by connecting such pointers, which
belong to nearest neighbor nodes in the output space. Compared with this
figure, in a usual visualization all auxiliary lines, including the whole output
space, are not shown, but only the bended ladder (or a corresponding figure)
in the input space.

be simulated on a computer. The nodes in A are assumed
to be ordered like a D4 dimensional lattice. The distance
d4(4, j) is assumed to be the Euclidean distance on this lattice.
Modeling nervous maps from some peripheral sensory input
space onto a cortical area, one chooses D4 = 2, since cortical
areas are quasi-two-dimensional. However, in nonbiological
applications, e.g. in speech recognition or robot control, D4
can be chosen freely. In particular, it can be optimized with
regard to the preservation of neighborhood relations. It is
important to note that Dz, # DV in general, since the
input stimuli need not fill the whole of V, but can lie in
subspace with lower dimension DV. Clearly an output space
dimensionality D4 < DV will be suboptimal, because the
output space has to fold itself into the input space. This rather
sloppy expression will become self-evident when we consider
the examples of Section IV. On the other hand one might be
tempted to chose a large D4, perhaps even D4 = DV > DV.
This choice can turn out suboptimal as well, considering that
folding of the input space into the output space can also occur.
This case is visualized in Fig. 2, which shows a map of a line
onto a square.

We should note here that other map formation algorithms
have been proposed which induce nontrivial output space
topologies [17], [18]. As long as the output spaces provide
distance measures, the following discussion of the topographic
product applies to these cases as well.

1II. TOPOGRAPHIC PRODUCT

The topographic product is a measure of the preservation
of neighborhood relations in maps between spaces of possibly
different dimensionality. It was introduced (under the name
“wavering product”) in the context of nonlinear dynamics
and time series analysis [13]. There it was used for purposes
similar to those in this paper: it served as a tool to select
optimal embedding parameters (dimension and delay time)
for the reconstruction of chaotic attractors from one-variable
time series via delay coordinates. We will now derive the
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Fig. 2. Map from a one-dimensional input space onto a square output space.
In this figure we show not the usual pointer positions in the input space,
but rather the ordering of pointers on the line, shown in the output space.
Connected nodes in the output space are nearest neighbors in the input space.
The input space “folds” itself into the output space in order to cope with the
dimension mismatch. This is exactly the inverse situation of the map of a
square onto a line, which gives the peano curve picture as in Fig. 4(a).

topographic product step by step and explain the reasoning
for each part of the formula in detail.

First we introduce a notation for nearest-neighbor indices.
Let nf!(j) denote the kth nearest neighbor of node j, with the
distances measured in the output space, i.e.,

Ar . Af: A/ _ . Af: ot
ni'(g) = d*(5,n1() = Qi d%(,5')
ny(j) +  d(i,n3(5) = ].,eA\l{n}?,A(j)}d’“f’i’)

(6)

In the same way let n} (5) denote the kth nearest neighbor of 7,
but with the distances measured in the input space between
w; and W,y ()

ny (4) : dv<wj,wn¥(j)) =jl€rgi\1{1j} d" (w;, wj)

Vi . vi. N : \ P

np(4): d ("’J""’"av <J>) j/eA\r{n;,rrlLYu)}d s wy)
: ¥

Using this nearest-neighbor indexation, we next define the
ratios

dV<H)j,wnf(j))
(wa':‘"nx(j))
_ ()
d4(j,ny (4))
From this definition we will have Q1(j,k) = Q2(j,k) =
1 only if the nearest neighbors of order k£ in the input
and the output space coincide. Any deviation of Q; and
Q2 from 1 points to a violation of the nearest-neighbor
ordering because of the map. However, this is too sensitive a

measure for the preservation of neighborhood relations, since
a locally stretched map can preserve neighborhood relations

Q:10,k) = ®

Q2(4, k) ©)
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Fig. 3. Part of a map from a two-dimensional input space onto a
one-dimensional output space. Two pieces of the folded output space line
are shown (nodes 1-5 and nodes 101-103) which are nearby in the input
space. The nearest neighbors of node 3, measured in the input space, are
4,5,2,102,- - -. Of these, node 102 lies far from node 3 in the output space,
causing a deviation of the topographic product from the value 1.

even though the nearest-neighbor ordering is violated. A local
stretch of the map can be induced by a gradient in the input
stimulus density. Such a situation is shown in Fig. 3. Consider
there the nearest neighbors of node 3 in input space and output
space. The nearest neighbors

ny(3) =4

nf(3) =4
coincide (not regarding degeneration), but not so the second
nearest neighbors:

ny(3)=5

n2(3) = 2.
Therefore
d¥ (w3, wy)
dV (w:3,‘lU5)
with Q2(3,2) < 1 analogously. On the other hand, the pointers
in the input space form a line in the same way as the nodes
in the output space; i.e., the neighborhood relations for nodes
2, 3, 4, and 5 are preserved.

This problem can be overcome by multiplying the @, (5, k)
for all orders k. With proper normalization this gives

@1(3,2) = > 1, (10)

b 1/k
Pi(j, k) = (H Ql(j,l>) €8))
- 1k
Py(j, k) = (H Q2(J; l)) : 12)
=1

For the new variables P; and P,, we have
Pl(ja k) Z 1

In P; and P, a different ordering of nearest neighbors is
canceled, as long as the first k nearest neighbors of j in V'
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and A coincide (not regarding their order). Picking up the
example from above, we find

_ (Y (w3, wy)d” (w3, wp)dV (w3, w5) "
Pi(3,3) = (dV(wg,,m)dV(w&ws)dv("'3""2)) _(173)

with P5(3,3) = 1 analogously. The P, P are sensitive only
to severe neighborhood violations, e.g. if two pointers are
found to be closeby in the input space but their corresponding
roots lie far apart in the output space. In Fig. 3, this is the
case for node 3 and its fourth-nearest neighbor n} (3) = 102,
which have nearby pointers owing to a distortion of the map.
What are the effects on P; and P,? We now find

P (3,4) =

( dY (ws, ws) dV (w3, wp) dY (ws, ws) dY (w3, wi) )
dV (w3, wy) dV (w3, ws5) d¥ (w3, w2) d¥ (w3, wi2)

_ dV(u;3,wl)

~(Fin)

>=1, (14)

o ( d43,4)d4(3,2)d4(3,5)d43,1) \"*
Pa(3,4) = (dA(z,4)dA(3,5)dA(3,2)dA(3, 102))

_ < d43,1) \"*
T\ dA(S, 102))
< 1. (15)

That is, we find a small deviation from 1 for P; and a very
strong deviation for Ps.

Constant magnification factors of the map do not change
next-neighbor orderings; therefore the products Py and P
have the important property of being insensitive to constant
gradients of the map. Spatially varying stimulus densities
induce spatially varying magnification factors of the Kohonen
map, which correspond to nonvanishing second derivatives. A
change of the local magnification factor may induce changes
in the next-neighbor orderings. As long as these second-
order contributions average out locally, the products P;(k)
and Pp(k) remain close to 1 individually if one multiplies
up to sufficient values of k (in the above example, we had
Py(3,3) = 1, even though P;(3,2) > 1). For the case where
second derivatives do not average out locally, we combine P;
and P, multiplicatively in order to find

k 1/2k
Ps(j,k)=(HQl(j,l)Qzu,l)) - (16)

=1

This last step has the effect that, as a consequence of the
inverse nature of P; and P,, the contributions of curvatures
are suppressed while violations of neighborhoods are detected
by P3 # 1 (in the above example, we had P1(3,4) ~ 1, while
P(3,4) < 1). A further important reason for this definition of
P, however, is that Py > 1/P; if the input space folds itself
into the output space, and Py < 1/P; if the output folds itself
into the input space (as in Fig. 2). In other words, the deviation
of P above or below 1 indicates whether the embedding
dimension D# is too large or too small, respectively.
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All that remains is to define a suitable averaging of Ps(j, k).
To this purpose there are several ways imaginable. First, one
could look pointwise for all nodes j in order to obtain a
spatially resolved estimate of topology violations. Second, one
could build histograms in order to obtain the probability for
strong neighborhood violations together with an estimation
for the global variance of Ps. In clear cases, such as those
depicted in Figs. 4-8, we find broad distributions with a
cutoff at P; = 1 and a tail below or above this value for
the cases with D4 < DV or D4 > DV, respectively. For
DA = DV the distribution becomes centered at P3 = 1 with a
small variance. The most simple way of averaging, however,
consists in summing over all nodes and all neighbor orders, a
method which suffices for most practical purposes. Being only
interested in deviations from 1, we average the logarithm of P3
and finally arrive at the full-blown formula for the topographic
product P:

1 N N-1 )
P N(N__l_);;log(&(%k))- an

IV. EXAMPLE I: MAPS OF A QUADRATIC 2-D INPUT SPACE

We now turn to an example to make the abstract ideas of the
last section more concrete, and to show the type of quantitative
results application of (17) yields. We chose to make this
example as simple as possible, for two reasons. First we do
not want to confuse the results of dimensionality mismatch
with other influence factors; second we want to check the
quantitative results of the topographic product method for
plausibility. The latter reason requires an example, for which
an intuitive expectation for the optimal output space dimension
DA exists. This certainly is the case for maps from a quadratic
input space with flat stimulus distribution onto 1-D, 2-D,
or 3-D output spaces. This map can easily be visualized
since the input space is only two-dimensional. We can expect
that an output space with exactly the same quadratic shape
would preserve the neighborhood relations best. Although the
example bears no surprises, it is representative for all cases
where the stimuli lie on a hypersurface in a high-dimensional
input space with a very small variance in the orthogonal
directions.

A variant of this example has been investigated by Ritter
et al. with regard to the occurrence of instabilities in the map,
which are driven by dimension mismatch [14]. The mismatch
occurs if the input space dimension exceeds the output space
dimension and if the variance of the stimuli in the additional
input space dimensions exceeds a critical value.

In Fig. 4(a) an SFM of a square onto a line with N = 256
nodes is depicted. We see that the curve given by the connected
pointer positions in the input space is very distorted in order
to fill the square as densely as possible. It resembles a peano
curve. In Fig. 4(b) the components P;(k), P2(k), and Ps(k)
are shown for all values of k (averaged over all nodes j).
We find P, > 1 and P, < 1, as discussed in the previous
section. The combined product, P; lies well below 1 in nearly
the whole range of k values. According to (17), the topo-
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Fig. 4. (a) Map of a square input space onto a line with N = 256 nodes.
The output space line folds itself like a peano curve in order to fill the input
space as densely as possible. (b) Components Py (k), Pa(k), and P3(k) of
the topographic product, evaluated for the map of Fig. 4(a).

graphic product P follows from this curve by taking the
logarithm and averaging over k, resulting in a value of P =
—0.09026. This value indicates an output space dimension that
is too small.

The topographic product P and the shape of the P;(k),
P,(k), and P3(k) curves do not depend on the number of
nodes in the output space as can be seen in parts of (a) and
(b) of Fig. 5. Here everything coincides with (a) and (b)
in Fig. 4, the sole exception being that we have N = 32
output nodes only. Consequently the resulting “peano curve”
is much less distorted (Fig. 5(a)). Nevertheless, the shape of
the curves in Fig. 5(b) is about the same as in Fig. 4(b), with
the horizontal axis rescaled linearly with the number of nodes.
(The maximum neighborhood order has a value of N — 1))
As a consequence, the topographic product for the map of
Fig. 5(a) has about the same value (— 0.081) as the map of
Fig. 4(a) (— 0.090). As a more systematic result, we give in
Table I the topographic products for nets with N = 32, 64,
128, and 256 nodes, averaged over four nets in each case.
The values seem to converge even on a logarithmic scale, in
this way justifying the heuristic averaging in (17). A more
rigorous argument for finite size scaling effects of P would
require a detailed (analytic) understanding of the finite size
scaling behavior of the map itself.
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Fig. 5. (a) As in Fig. 4(a), but for N = 32 nodes. (b) As in Fig. 4(b) but

for the map of Fig. 5(a).

TABLE I
TOPOGRAPHIC PRODUCT P FOR THE MAP FROM A SQUARE
INPUT SPACE ONTO A LINE OF N NODES (VALUES
FOR P AVERAGED OVER FOUR NETWORKS EAcH)

N P
16 —0.074 £ 0.009
32 —0.084 £ 0.003
64 —0.092 £ 0.007
128 —0.097 £ 0.005
256 —0.105 £ 0.010

Parts (a) and (b) of Fig. 6 show the map for a very elongated
(64 x 4 node) output space. This long rectangle is rolled up
a bit in order to fit into the square input space (comparable
to a rather short line (N = 16)).The topographic product of
—0.067 is increased relative to the 1-D output space, but still
lies below 1, indicating either too small a dimension or an
aspect ratio of the output space that does not fit. Parts (a)
and (b) of Fig. 7 show the next case, a square (16 x 16)
node output space. The perfectly regular inverse map of
Fig. 7(a) indicates strongly that this output space preserves
the neighborhood relations in an optimal way. This heuristic
argument is in perfect agreement with the topographic product,
which yields a value of P = 0.000569. Going beyond 2-D, we
finally show the map onto a 6 x 6 X 6 cube with N = 216
nodes ((a) and (b) of Fig. 8). Again we have a dimension
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Fig. 6. (a) As in Fig. 4(a), but for N = 64 x 4 nodes. (b) As in Fig. 4(b),
but for the map of Fig. 6(a).

mismatch, this time with the input space folding itself into
the output space. As a consequence, Fig. 8(a) shows a rather
irregular inverse map. The P(k) curves in Fig. 8(b) show
again P; > 1, P, < 1, as we had, for example, in Fig. 4(b) for
the 1-D output space. The combined product Ps(k), however,
now has values P3 > 1, thereby indicating too large an output
space dimension.

The results for this example are summarized in Table II,
supplemented by a few intermediate topologies, for which we
did not show extra figures. The results demonstrate that the
topographic product picks the same output space topology as
visual inspection of the inverse maps suggests. Even though for
this example the intuitive approach seems adequate, we note
that the topographic product method is an interpretation-free,
quantitative approach that will prove its value for more com-
plicated mapping problems whenever the “intuitive approach”
fails. One possible reason is an input space of dimensionality
DV > 3, because then the map cannot be visualized, even if
the stimuli lie in a lower dimensional subspace.

V. RECOGNITION OF SEQUENCES

This section is meant as a demonstration that a perfect
preservation of neighborhood relations can have a value in
applications, which goes way beyond certain aesthetic consid-
erations of theorists. To this purpose we need not introduce a
new example, but we can use the results from the last section,
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Fig. 7. (a) Map of a square input space onto a square output space with
N = 16 x 16 nodes. (b) As in Fig. 4(b), for the map of Fig. 7(a). The
curves Py (k), P2(k), and Ps(k) are very close to 1 in nearly the whole
range of k, thus indicating a perfect preservation of neighborhood relations.

which dealt with the mapping from a square input space onto
output spaces of different dimension.

One important area of application for SFM’s is speech
recognition. If the recognition problem is just a feature vector
classification, as in phoneme recognition, neighborhood rela-
tions between the output nodes are of no importance for the
performance of the net. This is because only one output node
is activated during a classification process, and the application
does not involve any measure of distance between the output
nodes. In applications of this kind, an LVQ fine-tuning of
the map should turn out to be advantageous, as has been
pointed out by Kohonen several times {12]. Even though
the LVQ refinements do not involve neighborhood relations
between nodes, one might consider whether or not a map
with a better preservation of neighborhood relations provides
a better starting point for LVQ fine-tuning. However, this is
not the point we are interested in here. We want to consider an
application where the postprocessing makes explicit use of the
distances between nodes in the output space. This is the case
for a word recognition scheme, where the sequence of feature
vectors in the high-dimensional input space is replaced after
mapping by a sequence of active nodes in the low-dimensional
output space. Different versions of the same words are mapped
onto nearby trajectories or, in some cases, the same trajectory
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Fig. 8. (a) As in Fig. 4(a), but for the map from a square input space onto
a cubic 6 X 6 X 6 node output space. (b) As in Fig. 4(b), but for the map
of Fig. 8(a).

TABLE II
TOPOGRAPHIC PRODUCT P FOR THE MAP FROM A SQUARE INPUT
SPACE ONTO A LINE, RECTANGLES, AND CUBES OF N NODES
(VALUES FOR P AVERAGED OVER FOUR NETWORKS EACH)

N P
256 —0.105 £ 0.010
64 x 4 —0.066 £ 0.002
32x8 —0.0301 £ 0.0001
16 x 16 0.0005 £ 0.00002
10 x 10 x 2 0.0076 £ 0.0003
6x6x6 0.0382 % 0.00006

in the output space. For the classification of the output space
trajectories, for example, a dynamic time warping (DTW)
algorithm can be used. Compared with a DTW classification
in the input space, a performance increase can be observed.
However, for this increase to take place it is important to
preserve as much as possible the neighborhood relations from
the input space into the output space. In order to substantiate
the latter claim, we mimic the speech recognition experiments
in a simple way. Instead of the different words, we consider
four reference trajectories {v?} through a square input space
(Fig. 9), which are mapped onto the output space trajectories

{57}
B(vy,v5, - v=1,-,4.

(18)

’vVN) - (.7{7];7 te 7.7'1’(1)7
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Fig. 9. Square input space with the four reference trajectories (solid dots)
and one noisy trajectory (circles), which is a variation of reference trajectory
1. Each trajectory has N = 11 points. The noise is applied only to the
= coordinates in the case of reference trajectories 1 and 2 and only to
the y coordinates for trajectories 3 and 4. The noise for the additional test
trajectory shown in the figure was taken from a flat distribution in the interval
[-0.1,0.1].

Different version of the same “word” are mimicked by the
addition of noise {67} to the individual stimuli, and lead to
the test trajectories {k}}:

D(vy + 6,05 + 85, vy + %) — (1L Rg, - k),
v=1,-,4. (19)

For the mapping ® we use the maps into 1-D, 2-D, and
3-D output spaces, which were discussed in the last section. A
noisy trajectory is identified with a reference trajectory p by
minimizing it mean square deviations, d"/, from all reference
trajectories in the output space:

N

¢ =3t (i k) (20)
=1

d* = mind”’. 1)

Classification is judged according to

p=v: correct recognition

pFEV:
As can be seen in Fig. 10, the violation of neighborhood
relations in the 1-D map induces the inclusion of output nodes

incorrect recognition.

“into the output space trajectory, which are very far from their

corresponding reference trajectory node, and thus leads to
misclassification. Fig. 11, which shows the test trajectory in
the DA= 2-dimensional output space, has no such excursions.

In Fig. 12, the classification performance for 1-D, 2-D, and
3-D maps is shown as a function of the noise level. Both
the 1-D map and the 3-D map show a substantial decrease of
performance with increasing noise level, whereas the 2-D map
performs very well even up to rather high noise levels. This
performance difference between the nets is due to the global
neighborhood violations, to which we made the topographic
product particularly sensitive. Concluding this section, we
note that preservation of neighborhood relations is more than
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Fig. 10. Trajectories from Fig. 9 after mapping onto a 1-D output space
with N = 256 nodes. For better visualization, the time coordinate runs in
the negative y direction. The line connecting the solid dots gives reference
trajectory 1; the line connecting the open circles shows the test trajectory from
Fig. 9. At times steps 6 and 7, the slight deviations in the input space lead to
large deviations in the output space, which might lead to a misclassification
of the test trajectory.

16 -

12

1 4 8 12 16
Fig. 11. As in Fig. 10, but for the two-dimensional output space. The two
coordinates shown now coincide with the two coordinates of the output space.

a theoretical concept and can have a significant effect on
the performance of SFM’s in-applications. Consequently the
choice of an appropriate topology of the output space can also
have a substantial effect on performance figures.

VI. EXAMPLE II: TOPOGRAPHIC MAPS OF ACOUSTICAL DATA

Finally, we discuss the application of our method to a speech
data set. The data set stems from the DPI data base, which has
been accumulated at the IIL. Physikalisches Institut, University
of Géttingen, Germany. From the data base of 40 German
words, each spoken ten times by ten different speakers, we
chose the ten German digits “Null” through “Neun,” spoken
by one male speaker (A.M.). For each digit we used the ten
available versions. Recording and preprocessing of the data are
described elsewhere [19]. Here we merely note that each word
consists of 40—50 feature vectors, each feature vector giving
the amplitudes of 19 (Bark-) frequency channels. Altogether
the input data for our simulations consisted of 4500 vectors
in a 19-dimensional input space. These data were mapped
onto 256 output nodes, arranged as a line, a 16 x 16 square,
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Fig. 12. Recognition rate, c, for the four test trajectories as a function of
noise level &. The noise is applied as described in the figure caption of Fig. 9;
the values are randomly chosen from the interval [—4, 8].
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Fig. 13. Ps(k) curves for maps of speech data onto an ouiput space with
N = 256 nodes (1-D), N = 16 x 16 nodes (2-D), N =7 x 6 x 6 nodes
(3-D) and N = 4 x 4 X 4 x 4 nodes (4-D). The 3-D curve yields the smallest
absolute values and, consequently, corresponds to the best preservation of
neighborhood relations.

a 7x6x6 cube (252 output nodes in this case), and a
4 x 4 x 4 x4 hypercube. The P3(k) values for the map are
shown in Fig. 13, the averaged values, P, being P = —0.166
for 1-D, P = —0.041 for 2-D, P = 0.019 for 3-D, and
P = 0.034 for 4-D. The smallest value of these is P = 0.019
for the 3-D case. However, this value contains contributions
with P3(k) < 1 as well as P3(k) > 1. For this reason, the
numerical value of P should be taken with a grain of salt. We
note, however, that we have P3(k) < 1 for the 2-D case in
nearly the whole range of k and that P3(k) > 1 for the 4-D
case. So the somewhat indecisive 3-D case is framed by a too
low-dimensional and a too high dimensional output space. This
observation, together with the numerical evaluation, indicates
that in a 3-D output space the data are represented in the most
topology-conserving way.

Considering the classification example of the previous sec-
tion, one can now suppose that a word recognizer based on a
Kohonen map with a subsequent trajectory recognizer would
perform better if the Kohonen map were arranged in 3-D. This
is also the result of a recent speech recognition experiment
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TABLE 111
RECOGNITION RESULTS FOR SPEAKER-INDEPENDENT
WORD RECOGNITION EXPERIMENT WITH THE TEN
GERMAN DIGITS (DATA COMPUTED BY BRANDT et al. [15])

N Recognition Performance
11 x 11 0.72
20 x 15 0.725
6x5x4 0.7725
IxTx6 0.795

carried out by Brandt et al. [15]. Using the same DPI data
base, they preprocessed the speech data with Kohonen maps
of different output space dimensionality, but about the same
number of nodes. The authors then classified the trajectories
in output space, which resulted from following the course
of isolated words in the input space. The classification was
performed with a dynamic time-warping algorithm, which
eliminated fluctuations of the speaker velocity. (Apart from
the time-warping aspect, we built the demonstration scheme
of the last section following their approach.) The authors found
their classification performance to increase from 0.725 to 0.795
if they increased their network dimension from 2-D to 3-D
(Table IIT). This is a coincidence of two independent investi-
gations into the effects of varying output space dimensionality
in SFM’s, which underscores the importance of topography in
such maps.

VII. SUMMARY AND DISCUSSION

In this contribution, we solved the problem of the quanti-
tative characterization of neighborhood preservation in self-
organizing feature maps. To this purpose we considered a
topographic product which had originally been introduced in
order to estimate the dimension of the embedding space for
strange attractors in nonlinear dynamics. We showed that this
topographic product can readily be applied to the analysis to
topographic feature maps of the Kohonen type. For the analysis
only the weight vectors of the output space nodes are required;
no knowledge of the stimulus distribution in the input space
is necessary.

We demonstrated, in the very intuitive example of the map
from a square input space onto output spaces of various
dimensionality, how the vanishing of the topographic product
points to the output space that best preserves the neighborhood
relations. In different tests (not included in this paper), the ap-
plicability of the topographic product also for nonflat stimulus
distributions, inducing varying areal magnification factors, was
demonstrated.

The virtue of the preservation of neighborhoods was demon-
strated in a sequence classification test which mimicked a
speech recognition strategy using SFM’s and DTW. The
map with the best matching dimensionality clearly scored the
highest recognition result. A detailed analysis of this effect
might lead to an objective function which would connect the
preservation of neighborhoods with some performance mea-
sure. Such an objective function would represent a valuable
contribution to the discussion of the merits of neighborhood
preservation, and would in this way provide a theoretical
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background for the method presented in this paper.

In a final example we were able to show that for speech
recognition purposes an output space dimensionality of DA =
3 instead of the usual D4 = 2 is better suited to the data. This
result is in accord with performance results for single-word
recognition on the same data set.

We expect the topographic product to prove a valuable
tool in designing the topology of SFM’s in applications.
The technique needs neither statistics on the input data nor
backprocessing such as DTW as a performance measure, since
it tests only on the weights constituting the map. In this
way, optimizing the network performance by optimizing the
network topology, a strategy which proved very successful for
MLP’s will be easier to implement for SFM’s as well.
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