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Abstract

The self-organizing map (SOM) network was originally designed for solving problems that involve
tasks such as clustering, visualization, and abstraction. While Kohonen’s SOM networks have been
successfully applied as a classi6cation tool to various problem domains, their potential as a robust
substitute for clustering and visualization analysis remains relatively unresearched. We believe the in-
adequacy of attention in the research and application of using SOM networks as a clustering method
is due to its lack of procedures to generate groupings from the SOM output. In this paper, we extend
the original Kohonen SOM network to include a contiguity-constrained clustering method to perform
clustering based on the output map generated by the network. We compare the result with that of the
other clustering tools using a classic problem from the domain of group technology. The result shows
that the combination of SOM and the contiguity-constrained clustering method produce clustering re-
sults that are comparable with that of the other clustering methods. We further test the applicability of
the method with two widely referenced machine-learning cases and compare the results with that of
several popular statistical clustering methods. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The self-organizing map (SOM) network is a special type of neural network that
can learn from complex, multi-dimensional data and transform them into visually
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decipherable clusters. The theory of the SOM network is motivated by the obser-
vation of the operation of the brain. Various human sensory impressions are neu-
rologically mapped into the brain such that spatial or other relations among stimuli
correspond to spatial relations among the neurons organized into a two-dimensional
map (Kohonen, 1984, 1989, 1995). The main function of SOM networks is to map
the input data from an n-dimensional space to a lower dimensional (usually one or
two-dimensional) plot while maintaining the original topological relations. The phys-
ical location of points on the map shows the relative similarity between the points
in the multi-dimensional space.

Unlike other neural network approaches, the SOM network performs unsupervised
training; that is, during the learning process the processing units in the network
adjust their weights primarily based on the lateral feedback connections. The more
common approach to neural networks required supervised training of the network
(i.e., the network is fed with a set of training cases and the generated output is
compared with the known correct output). Deviations from the correct output result
in adjustment of the processing units’ weights. On the other hand, unsupervised
learning does not require the knowledge of target values. The nodes in the network
converge to form clusters to represent groups of entities with similar properties. The
number and composition of clusters can be visually determined based on the output
distribution generated by the training process.

While Kohonen’s SOM networks have been successfully applied as a classi6ca-
tion tool to various problem domains, including speech recognition (Leinonen et al.,
1993), image data compression (Manikopoulos, 1993), image or character recognition
(Bimbo et al., 1993; Sabourin and Mitiche, 1993), robot control (Walter and Schul-
ten, 1993; Ritter et al., 1989) and medical diagnosis (Vercauteren et al., 1990), its
potential as a robust substitute for clustering analysis remains relatively unresearched.

Cluster analysis is a technique for grouping subjects into clusters of similar ele-
ments. In cluster analysis, we try to identify similar elements by their attributes. We
form groups, or clusters, that are homogeneous and diGerent from other groups. SOM
networks combine competitive learning with dimensionality reduction by smoothing
the clusters with respect to an a priori grid and provide a powerful tool for data vi-
sualization. However, the output of an SOM network does not automatically provide
groupings of the points on the map. The current practice is to design the Kohonen
SOM map so that the number of nodes on the map matches the desired number
of clusters. For example, a 2 × 2 network has four nodes hence forms four groups.
However, often times it is diJcult to design a two-dimensional map for a problem
with small and=or odd number of clusters (e.g. 3 clusters). When the number of
SOM output units is diGerent from the number of clusters expected, additional clus-
tering steps are required to further analyze the output map to derive the appropriate
number of groupings. Clustering algorithm of any type can take two approaches: ag-
glomerative or partitive. As mentioned earlier, a common problem when using SOM
network is that the number of nodes on the output map is more than the number
of target groups. Therefore, in this research, we have chosen the agglomerative
approach to recursively merge groups from the Kohonen output until a desired
number of clusters is reached.
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As the 6rst step in this study, we implemented the original SOM algorithm in
C++. This language was selected for its object-oriented approach and its generality
to other object-oriented algorithms. The code was veri6ed by independently testing
speci6c components and comparing computer-generated results with hand calcula-
tions. Each processing unit in the network and each input pattern were implemented
using objects. All calculations are performed through message passing between ob-
jects in the program. Small networks were used to verify the overall program, again
by comparing computer-generated results with hand calculations. The network train-
ing for the experiments was performed on a cluster of IBM RS=6000 mini-computers.
Version 7 of the SAS statistical package was used to run the other related statistics.

A contiguity-constrained clustering approach has also been implemented in C++
integrated with the earlier developed SOM program. The method groups the output
from SOM to any desired number of clusters based on the user requirement. First,
we validate the performance of the contiguity-constrained clustering approach with
that of other clustering tools in the context of group technology. Then, we apply the
method to two widely tested machine-learning problems, the prediction of the class
of Iris plants and the wine recognition data from the Machine Learning Database
Repository at the University of California, Irvine. Although the two databases were
not designed for clustering tasks and the results derived from any clustering tool
(unsupervised learning approach) are very likely to be worse than that of any clas-
si6cation tool (supervised learning approach). However, in order to evaluate and
compare the performance of our method with that of other clustering approaches,
data sets with known cluster solutions are needed to verify the outcome of each
method.

What sets this technique apart from other clustering tools is that SOM oGers the
Kexibility of choosing from multiple grouping alternatives and provides a visual
map that allows the decision maker to visually analyze and explain the relationship
among the points on the map. The balance of the paper is organized as follows:
Section 2 presents the basic concepts of SOM network and illustrates its use as a
data-reduction tool. Section 3 describes the contiguity-constrained clustering method
we implemented. In Section 4, we test and compare the performance of the combined
approach with that of statistical clustering methods using three classic cases from
diGerent problem domains. The paper concludes with a summary of our 6ndings.

2. Self-organizing map (SOM) networks

The SOM network typically has two layers of nodes, the input layer and the
Kohonen layer. The input layer is fully connected to a two-dimensional Kohonen
layer. During the training process, input data are fed to the network through the
processing elements (nodes) in the input layer. An input pattern xv (v= 1; : : : ; V ) is
denoted by a vector of order m as: xv = (xv1; xv2; : : : ; xvm), where xvi is the ith input
signal in the pattern and m is the number of input signals in each pattern. An input
pattern is simultaneously incident on the nodes of a two-dimensional Kohonen layer.
Associated with the N nodes in the n × n (N = n × n) Kohonen layer, is a weight
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Fig. 1. A 4 × 4 Kohonen layer and de6nition of neighboring nodes with the radial distance (r) = 1.

vector, also of order m; denoted by: wi = (wi1; wi2; : : : ; wim), where wij is the weight
value associated with node i corresponding to the jth signal of an input vector.

As the training process proceeds, the nodes adjust their weight values according
to the topological relations in the input data. The node with the minimum distance
is the winner and adjusts its weights to be closer to the value of the input pattern. In
this study, Euclidean distance, the most common way of measuring distance between
vectors, is used.

2.1. Weight adaptation function

A Gaussian type of neighborhood adaptation function, which decreases both in
the spatial domain and the time domain, has been proposed (Cottrell and Fort, 1986;
Ritter and Schulten, 1986; Lo and Bavarian, 1991). Lo and Bavarian (1991) have
shown that an algorithm that uses the Gaussian type function will enforce ordering
in the neighborhood set for every training iteration, yielding faster convergence.
They modi6ed Kohonen’s adaptation rule to include the amplitude of neighborhood
adaptation Ai(t) as follows:

wi(t + 1) =wi(t) + �(t)Ai(t)[wi(t) − xv] for i∈Ni(t); 0¡= r ¡=R;
wi(t + 1) =wi(t) otherwise:

Fig. 1 shows the architecture of a 4 × 4 Kohonen layer and the de6nition of neigh-
boring nodes with radial distance (r) = 1. In general, the farther a node is from the
winner, the lower is the amplitude Ai and hence the lower is the update rate of
the node’s weight vector. For �(t)Ai(t) above, we use a Gaussian type neighbor-
hood adaptation function h(t; r); similar to the one used by Mitra and Pal (1994).
This function decreases in both spatial and time domains. In the spatial domain, its
value is the largest when node i is the winner node and it gradually decreases with
increasing distance from i

h(t; r) =
�(1 − rf)

[1 + (t=cdenom)2]
;

where r is the radial distance from the winner node i. Nodes within a radius R
are considered for adaptation at time t. Hence, 0¡= r ¡=R if i∈Ni(t). R itself
decreases over time and thus fewer and fewer neighbors are updated with every
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iteration. Parameter � determines the initial value of |h|. The parameter f(0¡f¡
1=r) determines the rate of decrease of |h| in the spatial domain. In the time domain,
t controls the value of |h| whereas the parameter cdenom determines the rate of its
decay.

2.2. The self-organization process

The network undergoes a self-organization process through a number of training
cycles, starting with randomly chosen wi’s. During each training cycle, every input
vector is considered in turn and the winner node is determined. The initial value
of R is determined by trial and error and is inKuenced by the size of the network.
Kohonen suggests that the initial size of the neighborhood should be the size of the
network itself in order to minimize the eGect of initial random weights assigned to
the nodes. We followed his recommendation and always set the initial value of R
large enough to cover the whole network. The training is conducted in many stages;
at each stage, we reduce R by one. Note that R aGects the number of nodes in the set
Ni. To determine the number of training cycles to be run at each stage, we use the
index of disorder D proposed by Mitra and Pal (1994). Essentially, D measures the
“improvement” in the “state” of the network at discrete time intervals. The state of
the network is denoted by the mean-squared-distance, msd, between the input vectors
and the weight vectors of the nodes in the set Ni

msd=
1

|trainset|
∑

x∈trainset

[
R∑
r=0

{(
1

|Nr|
∑
i∈Nr

||x − mi||2
)

(1 − rf)

}]
;

where trainset is the training set number and Nr is the number of the set of
nodes that are distance r away from the winner node. Note that the nodes closer
to the winner node contribute more to msd. Due to the converging property of
the weight adaptation mechanism, the value of msd decreases monotonically with
proper choices of �; f, and cdenom parameters. msd is measured at an interval
of every k cycles. The index of disorder D is simply the improvement in msd be-
tween two consecutive measurements. When this index falls below a certain threshold
(D¡ convergence coeJcient �), the next stage of training begins with a reduced R
value. Reader may refer to Mitra and Pal (1994) for the detailed algorithm.

2.3. Conscience mechanism

In a self-organized map, a few nodes may end up representing too much of the
input data due to the eGect of the initial random weight values assigned to them. To
avoid this, we use a “conscience” mechanism that prevents the nodes with higher
winning frequency from winning repeatedly and makes the nodes with lower winning
frequency more likely to win. The purpose of this mechanism is to give each node
in the Kohonen layer an opportunity to represent approximately equal information
about the input data.
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The conscience mechanism that we use is proposed by DeSieno (1988). It adjusts
the Euclidean distance between a node’s weight vector and the input vector ||xv −
wi|| by a bias Bi. Bi is proportional to the diGerence between the node’s winning
frequency and the average winning frequency:

Bi = �
(

1
N

− Fi

)
:

Fi is the winning frequency of node i and is updated at every iteration of the training
process. Initially, Fi is assigned the average value 1=N; thus Bi = 0. The � coeJcient
starts at a large value and decreases over time. The winning frequencies are updated
as

for the winning node : Fi; t+1 =Fi; t + !(1:0 − Fi; t);

for all other nodes : Fi; t+1 =Fi; t + !(0:0 − Fi; t);

where ! is a small positive fraction (see NeuralWare, 1990) NeuralWare Reference
Guide, 1990. In this study, we set the value of ! 6xed at 0.1, a number in the range
of appropriate values suggested in NeuralWare (1990).

3. The contiguity-constrained clustering method

When the number of clusters desired is diGerent from the number of nodes on the
SOM output map, additional steps are required to analyze and group the points
on the output map into the desired number of clusters. Currently, this process
is done manually. Sometimes it is hard to visually group the output from SOM
especially when the map is highly populated. Hence, a more scienti6c approach that
can help the user to group the output from SOM network based on certain objective
criterion is needed. To overcome this limitation, Merkl and Rauber (2000) proposed
the Growing-Hierarchical Self-Organizing Map (GH–SOM), a neural network model
based on Kohonen SOM network. GH–SOM can grow both in map size and into
a three-dimensional tree structure to reKect any hierarchical structure hidden in the
underlying data set. The input data are shown in increasingly 6ner levels of detail
along the hierarchy de6ned by the tree structure. The advantage of their approach
is the ability of the output to represent hierarchical structure, if exists, in the data
set. However, the added growing capability of the network also increased the com-
putational complexity of the algorithm hence is not as eJcient as the original SOM
network. In our research, we did not alter the original algorithm of self-organizing
process, but extended the model by adding a separate clustering process that takes
the output generated by the SOM network to arrive at the desired number of clusters.
Moreover, although the tree structure map allows user to visualize if any hierarchical
structure exists in the data set, it does not show the relationships among the border
nodes that reside in neighboring groups. Therefore, it will be diJcult to visually
regroup an input to a diGerent cluster or to suggest alternate grouping should it
become necessary.
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Vesanto and Alhoniemi (2000) also proposed a way to cluster output from SOM.
The process starts with a visual inspection of the output map. Then, both agglom-
erative and partitive clustering algorithms were applied. The neighborhood relations
were not used. In the agglomerative clustering, single, average, and complete link-
ages were used in the construction phase. The partitive clustering was carried out
using batch k-means algorithm. In our contiguity-constrained clustering algorithm, it
heavily relies on the neighborhood relations when perform clustering. The focus of
Vesanto and Alhoniemi’s research is on comparing the computational eJciencies of
diGerent approaches whereas ours is to introduce the extended SOM network as an
alternative clustering tool and compare the performance with those of other popular
statistical clustering techniques.

To automate the segmentation process to complement the usage of the Kohonen
SOM networks, Murtagh (1995) proposed an agglomerative contiguity-constrained
clustering method. The method groups the output from SOM based on a minimal
distance criterion to merge the neighboring nodes together. The rationale is that the
SOM networks will maintain the original topological relations; therefore the nodes
that are closely located on the representational grid should have similar cluster cen-
ters. In this research, we proposed and implemented a contiguity-constrained grouping
algorithm based on a minimal variance criterion that is a better received approach
known in traditional statistical clustering methods. The criterion we implemented
is modi6ed from Murtagh’s (1985) and tries to minimize the overall within cluster
variance at each step of the process. We 6rst compare the performance of the system
based on the two diGerent grouping criteria. After a few preliminary runs, we found
that the minimal variance criterion consistently outperformed the minimal distance
approach using our sample cases. Hence, we decided to use the minimal variance
criterion for our contiguity-constrained clustering method. A comparison of the per-
formance of the two approaches is presented in the Iris plants case study in Section 4.

We start with each node in the map representing one group, and calculate the
centroid of each group. Then we try to merge two neighboring groups so the result
of the merge will maintain the global minimal variance for that number of clusters.
The merge process is repeated until a user speci6ed number of clusters has been
derived or when only one cluster remains. The detailed process is described in the
following:

Step 1. For each nodei, calculate the centroid (Ci) of nodei as

Ci =
1

|nodei|
∑

x∈nodei
x̃:

where |nodei| is the number of input vectors associated with the node.
Step 2. Assign a group number (Gk) to each nodei if |nodei|¿ 0, and update the
corresponding centroid value Gk .
Step 3. Calculate the overall variance of the map:
(a) Sum the square distance between input vector x and the group centroid Ck

for all x in Gk . Calculate for every group k

Vk =
∑

||x − Ck ||2; x∈Gk:
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(b) Total the variances from all groups. This will give us the global variance of
the map:

VTotal =
∑

Vk:

Step 4. For each pair of neighboring groups, calculate the total variance of the
map if the two groups were merged. Merge the two groups that result in the
minimum global variance.
(a) Calculate the new centroid for Gpq if Gp and Gq were merged:

Gpq = (|Gp|
*
Gp + |Gq|

*
Gq)=|Gp| + |Gq|:

(b) Calculate the new variance if Gp and Gq were merged (modi6ed from Murtagh
(1985)):

Vpq =
∑

||x − Cnew|| for all x; x∈Gp or x∈Gq:

(c) Calculate the new global variance for merging Gp and Gq:

VpqTotal =VTotal + Vpq − Vp − Vq:

(d) Calculate the VpqTotal for every pair of p and q on the map. For each iteration,
groups p and q must be within a 6xed radial distance on the grid. We start
with radial distance = 1, hence for each node there are eight neighboring nodes
within that distance (see Fig. 1). We increase the radial distance by one each
time if there is no neighboring group within current radial distance for all
groups k. Finally, we merge the two groups that result in global minimal
variance.

(e) Update VTotal and the group number and group centroid of the two newly
merged groups.

Step 5. Repeat step 4 until only one cluster or the pre-speci6ed number of clusters
has been reached.

4. The comparative study

4.1. The group technology case

We tested our new method using a classic problem in group technology 6rst in-
troduced by Burbidge (1971) in his pioneering work in production Kow analysis
involving a problem with 43 parts and 16 machines. This case has been studied by
many researchers (Chan and Milner, 1982; King, 1980; King and Nakornchai, 1982;
Wu et al., 1986; Kulkarni and Kiang, 1995) to compare the quality of clusters formed
by their grouping techniques. Burbidge used a hand-computed trial and error method
and arrived at a solution with 6ve machine-component clusters. King used his rank
order cluster (ROC) algorithm that resulted in a solution with 6ve clusters. An im-
proved version of this approach (ROC2) presented in King and Nakornchai (1982)
generated four clusters. Chan and Milner applied their direct clustering algorithm to
the same data set to obtain 6ve clusters. Wu et al.’s pattern recognition approach
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allowed a limited amount of control over the number of clusters into which the parts
can be grouped. Hence, their method generated four diGerent machine-component
groupings with four, 6ve, seven, and eight clusters. We use the same case for illus-
trating the application of the SOM network combined with the contiguity-constrained
clustering method to GT and then compare the performance of our technique with
that of all of the above methods using the grouping eJcacy measure introduced in
Kumar and Chandrasekharan (1990).

The data consists of a 16 × 43 machine-part matrix as shown in Table 1, where
each column is labeled with a part and each row is labeled with a machine. A cell
entry of ‘x’ indicates that the concerned part requires an operation performed by the
corresponding machine. This matrix is converted into a binary (0; 1) matrix and is
used directly as input to the SOM network such that each column represents the
input vector x= (x1; x2; : : : ; xm) associated with a part. Each value in the vector can
be thought of as a coordinate in a 16-dimensional space. The above data set has 43
input vectors corresponding to the 43 parts.

An initial set of experiments is conducted to determine an appropriate con6guration
for the SOM network. During this stage, various network con6gurations were tested.
The 6nal values of the network parameters set for the SOM network are: network
size 7 × 7; �= 0:25, and starting r= 10:0 and decreasing over time along with the
neighborhood size (R). The other network sizes (9 × 9; 11 × 11, and 13 × 13) we
tested gave results similar to the 7 × 7 network. Similar results were also derived
when varying the other parameter values such as � and r. Fig. 2 shows the scatter
plot representing the converged SOM for network size 7 × 7. Each point in the
6gures represents one or more parts. Fig. 3(a)–(f) show the same output map with
the six diGerent clustering designs derived from our contiguity-constrained clustering
method. A cluster represents parts grouped together due to their similarity.

We used the grouping eJcacy measure, ), derived in Kumar and Chandrasekharan
(1990), to compare the performance of our technique with the other methods. Group-
ing eJcacy is a measure designed to evaluate the quality of a clustering scheme.
From a block-diagonalized machine-part matrix representing a clustering of parts and
machines, grouping eJcacy, ), is computed as

)=
number of X ′s in the diagonal blocks

operational zone
;

where the operational zone is the area covered by the diagonal blocks plus the number
of X ’s in the oG-diagonal region. The higher the value of ) is, the better the quality
of the clustering. Unlike other methods of evaluating the quality of a clustering,
grouping eJcacy has certain desirable properties, such as (i) non-negativity, (ii) a
0–1 range with a meaningful interpretation of the extreme values, (iii) a built-in
relative weight for voids (in the diagonal blocks) and exceptional elements, and
(iv) a good discriminating power. For example, a block-diagonalized diagram shown
in Table 1 represents a case of 8 machines and 10 parts grouped into 2 families.
The number of X ’s in the diagonal blocks = 28 and the operational zone (= 45) is
calculated by adding the area covered by the diagonal blocks (= 40) and the number
of X ’s in the oG-diagonal region (= 5). Therefore, )= 28=45 = 62:22%. Table 2
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Table 1
The part-machine matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

A X X
B X X X X X X X X
C X X X X X
D X X X X X X X
E X X X X X X X X X X X X X
F X X X X X X X X X X X X X X X X X X X
G X X X
H X X X X X X X X X X X X X X X X X X X X
I X X X X X X X X X X
J X X X X X X X
K X X X X X X
L X X X X X
M X X
N X X X X
O X X X X X X X
P X X X X X X X X
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Fig. 2. Output map from SOM network size 7 × 7.

compares the grouping eJcacy, ) (expressed as a percentage), for the clusterings
obtained by the various methods.

Any metric developed to measure the goodness of a clustering design will, in
general, 6nd that a clustering design with a large number of clusters (i.e., eight
clusters) to be a better design than that with a fewer number of clusters (i.e.,
three clusters). This is because, for a given data set, a design with a larger
number of clusters has fewer parts in each cluster and therefore the parts within
a cluster are more likely to be closer to each other. The desired number of clus-
ters is problem dependent. It is therefore fair to compare the performance of
diGerent clustering techniques across clustering designs with only an equal
number of clusters. For one technique to be judged better than another, it should
perform consistently better than the other across diGerent clustering
designs.

It can be seen that the grouping eJcacy of our method was equal or better than
all other methods across three clustering designs (four, 6ve, and eight clusters)
(Table 3). For the clustering design with seven clusters, the pattern recognition
method performed slightly better than our method, but the diGerence is insignif-
icant (0.4%). For the four cluster design, our method performed better than the
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Fig. 3. Six clustering designs for SOM network size 7 × 7 output Ma.

pattern recognition and ROC2 methods by 3.2% and 2.6%, respectively. Overall, the
performance of our method does as well as or better than that of the known best
results in most cases. Moreover, the Kexibility in the clustering design allows the
decision maker to examine the performance of all designs and determine the optimal
number of groupings based on both the performance metric and SOM output map
distribution.
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Fig. 3. (Continued.)

In the following two cases, we compare the extended SOM network with three
statistical clustering methods, both parametric and non-parametric approaches. They
are k-means analysis, a popular clustering method based on the least squares cri-
terion, the Ward’s minimum variance cluster analysis, and a non-parametric (or
distribution-free) method supported by SAS MODECLUS procedure.



174 M.Y. Kiang / Computational Statistics & Data Analysis 38 (2001) 161–180

Fig. 3. (Continued.)

4.2. The Iris plants database

The database was created by Fisher (1936) and has been since widely used in
subsequent research in pattern classi6cation (Duda and Hart, 1973; Dasarathy, 1980).
The data set contains three classes of 50 instances each, where each class refers to
a type of Iris plant. The three classes are: Iris setosa, Iris versicolour, and Iris
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Table 2
An example part-machine matrix

1 2 3 4 5 6 7 8 9 10

A X X
B X X X
C X X
D X X X X
E X X X X X
F X X X X X X
G X X X X X X X
H X X X X

Table 3
Grouping eJcacy (%)

Method

PFAa ROCb ROC2 DCAc Pattern SOM and the
recognition contiguity-

constrained
method

Source

Number of Burbidge King King and Chan and Wu et al., Kiang
clusters Nakornchai Milner

3 — — — — — 39.9
4 — — 50.0 — 49.4 52.6
5 59.5 60.6 — 60.9 60.9 60.9
6 — — — — — 63.0
7 — — — — 66.5 66.1
8 — — — — 67.6 67.6
aProduction Kow analysis.
bRank order cluster.
cDirect clustering algorithm.

virginica. The 6rst class is linearly separable from the other two; the latter are not
linearly separable from each other. There are four numeric attributes and no missing
value. The four attributes are: (1) sepal length in cm, (2) sepal width in cm, (3)
petal length in cm, and (4) petal width in cm. Table 4 is a brief statistical analysis
of the sample attributes.

Based on our previous experiments on the group technology case, the varying
of the network parameter values does not have signi6cant eGect on the
performance of the network. For the rest of the experiments, we decided to 6x
the network parameter values to: �= 0:25 and r= 10:0 and which decrease over
time. The network sizes of 5 × 5; 7 × 7; 9 × 9, and 11 × 11 were used and the
average of the results is compared with that of the other three statistical
approaches.
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Table 4
Statistical analysis of the Iris plants sample attributes

Attribute Min. Max. Mean Standard deviation

Sepal length 4.3 7.9 5.84 0.83
Sepal width 2.0 4.4 3.05 0.43
Petal length 1.0 6.9 3.76 1.76
Petal width 0.1 2.5 1.20 0.76

Table 5
Performance comparison of the extended SOM and the three statistical clus-
tering methods using the Iris database

Method Rate of correctness (%)

Extended SOM (minimum variance) 90.34
Extended SOM (minimum distance) 89.17
k-means analysis 88.67
Ward’s 88.67
MODECLUS 88.67

Table 5 summarizes the experiment results.
We implemented two versions of the extended SOM networks, one uses mini-

mum variance and the other uses minimum distance criterion for clustering. Both
versions of the extended SOM networks outperformed the three statistical methods.
The minimum variance approach outperformed the minimum distance approach that
also concurs with the 6ndings from our preliminary test runs.

The results show that the average performance of the extended SOMS method us-
ing minimum variance criterion is signi6cantly better (test of signi6cance, p¡ 0:01)
than that of the three statistical methods. Results of the four diGerent networks diGer
slightly (standard deviation (SD) = 1:15%) which further demonstrates the stability
of the performance of our method. Fig. 4 shows the output map of network 9 × 9.

4.3. The wine recognition data

The data set contains three classes and there are 59; 71; and 48 instances in
each class, respectively. These data are the results of a chemical analysis of wines
produced in the same region in Italy but derived from three diGerent cultivators.
The analysis determined the quantities of 13 constituents (attributes) found in each
of the three types of wines. The 13 attributes are: (1) Alcohol, (2) Malic acid, (3)
Ash, (4) Alcalinity of ash, (5) Magnesium, (6) Total phenols, (7) Flavanoids, (8)
Non-Kavanoid phenols, (9) Proanthocyanins, (10) Color intensity, (11) Hue, (12)
OD280=OD315 of diluted wines, and (13) Proline. All attributes are continuous and
have no missing value. It is also suggested that the attributes be standardized for
classi6ers that are not scale invariant.
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Fig. 4. The output map for the Iris plants data.

Table 6
Performance comparison of the extended SOM with the three statistical clus-
tering methods using the Wine database

Method Rate of correctness (%)

Extended SOM 93.26
k-means analysis 85.96
Ward’s 97.75
MODECLUS 88.67

We followed the suggestion and standardized all the variables to values between
0 and 1 for both methods. To simplify our experiment design, we again 6xed the
network parameter values to: �= 0:25 and r= 10:0 and which decrease over time.
The same network sizes of 5× 5; 7× 7; 9× 9, and 11× 11 were used and the aver-
age result is compared with that of the three statistical clustering methods. Table 6
summarizes the experiment results.

The results show that the extended SOM method outperformed k-means analysis
and the MODECLUS procedure by 7.3% and 4.59%, respectively. However, the
Ward’s minimum variance cluster analysis did better than our method by 4.49%.
Again, results of the four diGerent networks diGer slightly (standard deviation (SD)
= 2%). Fig. 5 is the output map of network 5 × 5.
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Fig. 5. The output map for the wine recognition data.

5. Conclusion

The advantages of the combined method over other clustering tools are that in
addition to the Kexibility in determining the number of clusters needed, it also pro-
vides a visual map that can be used as a decision-support tool. The map allows
the decision makers to visualize the relationship among the subjects being grouped
that not only can help in explaining the outputs but also provide the possibility of
including expert knowledge in 6ne-tuning the groupings.

For example, when performing the part family grouping, the output of SOM is
a two-dimensional map depicting the relationships between parts such that the parts
with similar processing needs are close to each other. This oGers an easy way to
visualize a picture of the parts to be grouped together into families. In this way,
our method cannot only allow control over the number of cells but it also suggests
alternative groupings of parts. One of the bene6ts of the Kexibility in grouping is
the availability of control over balancing load among cells. Many of the classical
clustering techniques do not oGer this Kexibility. Some of the AI-based techniques do
oGer Kexibility in terms of number of cells and output alternative groupings of some
parts, but the parts for which alternative groupings are suggested are not necessarily
those that need to be regrouped. Moreover, unlike our method, the output of other
techniques is a complete part grouping and does not give the decision maker any
insight into the relationships between parts. As a result, it is diJcult for the decision
maker to make any adjustments to the groupings.

Another advantage of our method is that it can accept both numeric and binary
input data. We tested the binary input data using the group technology case and the
numeric data using the two machine-learning problems.
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In this study, we tested the performance of the combined approach using three
cases, a classic case in group technology and two cases from machine learning
databases. The preliminary results are encouraging and we believe that by extending
the current SOM network with the contiguity-constrained clustering method to group
the output from SOM map would make the combined method an appealing and
powerful decision-support system tool for clustering tasks.

References

Bimbo, A.D., Landi, L., Santini, S., 1993. Three-dimensional planar-faced object classi6cation with
Kohonen maps. Opt. Eng. 32 (6), 1222–1234.

Burbidge, J.L., 1971. Production Kow analysis. Prod. Eng. 138–152.
Chan, H.M., Milner, D.A., 1982. Direct clustering algorithm for group formation in cellular

manufacturing. J. Manuf. Systems 1=1, 65–75.
Cottrell, M., Fort, J.C., 1986. A stochastic model of retinotopy: a self-organizing process. Biol. Cybern.

53, 405–411.
Dasarathy, B.V., 1980. Nosing around the neighborhood: a new system structure and classi6cation rule

for recognition in partially exposed environments. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2
(1), 67–71.

DeSieno, D., 1988. Adding a conscience to competitive learning. Proceedings of the International
Conference on Neural Networks, Vol. I, IEEE Press, New York, 117–124.

Duda, R.O., Hart, P.E., 1973. Pattern Classi6cation and Scene Analysis. Wiley, New York, p. 218.
Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7 (Part

II) 179–188.
King, J.R., 1980. Machine-component grouping in production Kow analysis: an approach using a rank

order clustering algorithm. Int. J. Prod. Res. 18=2, 213–232.
King, J.R., Nakornchai, V., 1982. Maching-component group formation in group technology: review

and extension. Int. J. Prod. Res. 20=2, 117–133.
Kulkarni, U.R., Kiang, M.Y., 1995. Dynamic grouping of parts in Kexible manufacturing systems—a

self-organizing neural networks approach. European J. Oper. Res. (EJOR) 84, 192–212.
Kumar, C.S., Chandrasekharan, M.P., 1990. Grouping eJcacy: a quantitative criterion for goodness of

block diagonal forms of binary matrices in group technology. Int. J. Prod. Res. 28=2, 233–243.
Kohonen, T., 1984. Cybernetic Systems: Recognition, Learning, Self-Organization. In: Caianiello, E.R.,

Musso, G. (Eds.), Research Studies Press, Ltd., Letchworth, Herfordshire, UK, p. 3.
Kohonen, T., 1989. Self-Organization and Associative Memory. 2nd Edition. Springer, Berlin.
Kohonen, T., 1995. Self-Organizing Maps. Springer, Berlin.
Leinonen, L., Hiltunen, T., Torkkola, K., Kangas, J., 1993. Self-organized acoustic feature map in

detection of fricative-vowel coarticulation. J. Acoust. Soc. Am. 93 (6), 3468–3474.
Lo, Z.-P., Bavarian, B., 1991. On the rate of convergence in topology preserving neural networks. Biol.

Cybern. 65, 55–63.
Manikopoulos, C.N., 1993. Finite state vector quantisation with neural network classi6cation of states.

IEEE Proc.-F 140 (3), 153–161.
Merkl, D., Rauber, A., 2000. Uncovering the hierarchical structure of text archives by using an

unsupervised neural network with adaptive architecture. PADKK, LNAI 1805, pp. 384–395.
Mitra, S., Pal, S.K., 1994. Self-organizing neural network as a fuzzy classi6er. IEEE Trans. Systems,

Man, Cybernetics 24 (3), 385–399.
Murtagh, F., 1985. Multidimensional Clustering Algorithms. Pysica-Verlag, Wurzburg.
Murtagh, F., 1995. Interpreting the Kohonen self-organizing feature map using contiguity-constrained

clustering. Pattern Recognition Lett. 16, 399–408.
NeuralWare Reference Guide, 1990. NeuralWare, Inc., Pittsburgh, PA.



180 M.Y. Kiang / Computational Statistics & Data Analysis 38 (2001) 161–180

Ritter, H., Schulten, K., 1986. On the stationary state of Kohonen’s self-organizing sensory mapping.
Biol. Cybern. 54, 99–106.

Ritter, H., Martinetz, T., Schulten, K., 1989. Topology-conserving maps for learning visuo-motor-
coordination. Neural Networks 2, 159–168.

Sabourin, M., Mitiche, A., 1993. Modeling and classi6cation of shape using a Kohonen associative
memory with selective multiresolution. Neural Networks 6, 275–283.

Vercauteren, L., Sieben, G., Praet, M., Otte, G., Vingerhoeds, R., Boullart, L., Calliauw, L., Roels,
H., 1990. The classi6cation of brain tumours by a topological map, Proceedings of the International
Neural Networks Conference, Paris, pp. 387–391.

Vesanto, J., Alhoniemi, E., 2000. Clustering of the self-organizing map. IEEE Trans. Neural Networks
11 (3), 586–600.

Walter, J.A., Schulten, K.J., 1993. Implementation of self-organizing neural networks for visuo-motor
control of an industrial robot. IEEE Trans. Neural Networks 4 (1), 86–95.

Wu, H.L., Venugopal, R., Barash, M.M., 1986. Design of a cellular manufacturing system: a syntactic
pattern recognition approach. J. Manuf. Systems 5=2, 81–88.


