
Automatic Layout and Visualization of Biclusters

Gregory A. Grothaus
∗

Google Inc.
1600 Amphitheater Parkway

Mountain View CA 94043

ggrothau@gmail.com

Adeel Mufti
Dept. of Computer Science

660 McBryde Hall
Virginia Polytechnic Institute

and State University
Blacksburg VA 20460

amufti@vt.edu

T. M. Murali
Dept. of Computer Science

660 McBryde Hall
Virginia Polytechnic Institute

and State University
Blacksburg VA 20460

murali@cs.vt.edu

ABSTRACT
Biclustering has emerged as a powerful algorithmic tool for
analyzing measurements of gene expression. A number of
different methods have emerged for computing biclusters in
gene expression data. Many of these algorithms may output
a very large number of biclusters with varying degrees of
overlap. There are no systematic algorithms that create
a two-dimensional layout of the computed biclusters and
display overlaps between them.

We develop a novel algorithm for laying out biclusters in a
two-dimensional matrix whose rows (respectively, columns)
are rows (respectively, columns) of the original dataset. We
display each bicluster as a contiguous submatrix in the lay-
out. We allow the layout to have repeated rows and/or
columns from the original matrix as required, but we seek
a layout of the smallest size. We also develop a web-based
search interface for the user to query the layout for genes and
samples of interest. We demonstrate the usefulness of our
approach on gene expression data for two types of leukemia
and on protein-DNA binding data for two growth conditions.
The software implementing the layout algorithm is available
at http://bioinformatics.cs.vt.edu/˜murali/papers/bivoc.

1. INTRODUCTION
Measurement of gene expression using DNA microarrays [13;
31] have revolutionized biological and medical research. Since
gene expression plays an important role in cell differenti-
ation, development, and pathological behavior, computa-
tional analysis of DNA microarray data has the potential
to assign functions to newly-discovered genes, unravel the
structure of biological pathways, and assist in the develop-
ment of new medicines. Biclustering has emerged as a pow-
erful algorithmic tool for analyzing gene expression data.
A bicluster in a gene expression data set is a subset of
genes and a subset of conditions with the property that
the selected genes are co-expressed in the selected condi-
tions; these genes may not have any coherent patterns of
expression in the other conditions in the data set. Biclus-
ters have a number of advantages over clusters computed by
more traditional algorithms such as k-means and hierarchi-
cal clustering [11]. Since a bicluster includes only a subset of

∗This author performed the research at the Virginia Poly-
technic Institute and State University.

genes and samples, it models condition-specific patterns of
co-expression. Traditional clusters may miss such patterns
since they operate in the space spanned by all the condi-
tions. Further, many biclustering algorithms allow a gene
or a sample to participate in multiple biclusters, reflecting
the possibility that a gene product may be a member of
multiple pathways.

A number of different methods have emerged for comput-
ing biclusters in gene expression data [6; 5; 9; 14; 17; 20;
22; 28; 32; 33; 34; 35; 36]; two papers survey these tech-
niques [26; 37]. These algorithms use a number of different
strategies to compute biclusters such as exhaustive enumer-
ation [8; 24; 36], iterated improvement [5; 9], repeated ran-
dom sampling [28], and expectation maximization [32]. An
issue all these algorithms deal with is trying to avoid out-
putting two or more biclusters with nearly the same set of
samples and/or genes. A common approach is to remove a
bicluster from the output if it shares a large fraction of genes
and/or samples (based on a user-defined threshold) with an
already computed bicluster. In spite of these measures, bi-
clustering algorithms may compute tens, hundreds, or even
thousands of biclusters with varying degrees of overlap.
Organising, manipulating, and querying the potentially large
number of biclusters computed by these algorithms is a data
mining task in itself, which has not been adequately ad-
dressed. In this paper, we develop a novel algorithm for
laying out biclusters in a manner that visually reveals over-
laps between them. We lay out the biclusters in a two-
dimensional matrix whose rows (respectively, columns) are
rows (respectively, columns) of the original dataset. We dis-
play each bicluster as a contiguous submatrix in the layout.
We allow the layout to have repeated rows and/or columns
from the original matrix, but we seek a layout of the smallest
size. In addition, we develop a web-based search interface
that allows the user to query the results for genes and sam-
ples of interest and visualise the layout of the biclusters that
match the search criteria.
The layout algorithm is general enough to be applied to bi-
clusters computed in real-valued, binary, or categorical data.
For instance, the combination of biclustering algorithms and
our layout algorithm can be used to analyze measurements
of the concentrations of other types of molecules, including
proteins and metabolites. We demonstrate our approach on
two types of data. First, we compute layouts for biclus-
ters extracted from leukemia microarray data by the xMotif
biclustering algorithm [16; 28]. Second, we analyze protein-
DNA binding data in S. cerevisiae and demonstrate how

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 1

http:/bioinformatics.cs.vt.edu/~murali/papers/bivoc

biclustering in combination with the layout algorithm can
visually demonstrate differences in the transcriptional reg-
ulatory network that is activated in different growth condi-
tions.
Figure 1 displays a layout computed by our algorithm on a
toy binary matrix. Figure 1(a) displays a dataset in which
rows represent dates and columns represent weather con-
ditions in Blacksburg. A cell has a one (the cell is drawn
shaded) if the weather condition corresponding to the cell’s
column (e.g., “Rainy” or “> 75◦ F”) is true on the date
corresponding to the cell’s row. In this dataset, we define a
bicluster to be an itemset, i.e., a subset of rows and a subset
of columns with the property that the submatrix defined by
these rows and columns only contains ones. We computed
all the closed biclusters in this binary matrix, i.e., biclus-
ters with the property that every row (respectively, every
column) not in the bicluster contains a zero in at least one
column (respectively, one row) in the bicluster. Figure 1(b)
displays the layout computed by our algorithm of the seven
biclusters in this dataset. .

1/01/2004

1/02/2004

1/03/2004

1/04/2004

7/01/2004

7/02/2004

7/03/2004

7/04/2004

<3
5
F

<5
0
F

>6
0
F

>7
5
F

Ra
in
y

Cl
ou
dy

Wi
nd
 >
 5
MP
H

Da
yl
ig
ht
 >
 1
0h

(a) Weather conditions in
Blacksburg.

1/01/2004

1/02/2004

7/02/2004

7/03/2004

7/04/2004

7/01/2004

1/03/2004

1/04/2004

>7
5
F

>6
0
F

Da
yl
ig
ht
 >
 1
0h

Cl
ou
dy

Ra
in
y

<5
0
F

Wi
nd
 >
 5
MP
H

(b) Layout of the biclusters
in the weather data.

Figure 1: An example of a bicluster layout for weather data
in Blacksburg, VA.

The bicluster layout problem, which we formally define in
Section 3.1, is very similar to the hypergraph superstring
problem studied by Batzoglou and Istrail study in the con-
text of physical mapping of genomes. Batzoglou and Istrail
prove that the hypergraph superstring problem is MAX-
SNP Hard, i.e., it is computationally intractable to obtain
a bicluster layout whose size is smaller than a constant fac-
tor of the optimal size. In this work, we present a heuristic
that minimizes the size of the layout well in practice. In
the special case when there is a solution involving no re-
peated rows or columns, the algorithm computes the layout
of smallest size. Our algorithm runs in O(mn2 + n2 log n)
where n is the number of biclusters and m is the number
of rows and columns in all the biclusters; the running time
of the algorithm is independent of the size of the original
dataset. We lay out the rows and columns of the biclus-
ters independently. Our algorithm to lay out the rows is
similar to a bottom-up hierarchical clustering of the rows of
the biclusters. At each stage, we merge two biclusters if the
submatrix induced by them in the original matrix has the
“consecutive ones property” (see Section 3.2). Finally we
generate the two-dimensional layout by combining the row
and column layouts.

2. RELATED WORK
A binary matrix has the Consecutive Ones Property (COP)

for rows if its columns can be permuted such that all the
ones in each row are consecutive [7]. See Figure 2 for an
example of a matrix with the COP. Determining whether
a matrix has the COP and computing the permutation of
the columns that proves this property has applications in
a number of areas including testing for graph planarity [7]
and recognizing interval graphs [7; 18]. Booth and Leuker [7]
describe a data structure called the PQ tree which they use
to represent all legal permutations of column orderings in
a matrix with the COP property. They prove that the PQ
tree and the correct column permutation can be computed
in time linear in the number of ones in the matrix.

0

B

B

B

@

1 0 1 1 0
0 0 1 1 1
1 0 1 0 0
1 1 1 1 1
0 0 0 1 1

1

C

C

C

A

(a) A matrix that
has the COP with
the first two columns
highlighted.

0

B

B

B

@

0 1 1 1 0
0 0 1 1 1
0 1 1 0 0
1 1 1 1 1
0 0 0 1 1

1

C

C

C

A

(b) Swapping the first
two columns of the
matrix demonstrates
that the matrix has
the COP.

Figure 2: An illustration of the COP.

Researchers have studied a number of generalizations of the
COP problem; however, most of these generalizations are
NP-complete or NP-Hard. For example, seeking the column
ordering for a non-COP matrix that minimizes the number
of gaps between the ones in each row can be reduced to the
traveling salesman problem [12]. An important generaliza-
tion studied in bioinformatics is one where we are allowed
to repeat as well as rearrange columns in order to ensure
that the consecutive ones of every original row occur in at
least one contiguous set of columns in that row. As men-
tioned earlier, in their study of physical mapping of chro-
mosomes, Batzoglou and Istrail prove that this problem is
MAXSNP-Hard [3]. The most common application of this
generalization of the COP is physical mapping of chromo-
somes with probes. We can represent physical mapping data
as a binary matrix where the rows represent clones (short
overlapping sections of a chromosome), the columns repre-
sent DNA probes, and a cell in the matrix has a one if the
corresponding probe hybridizes to the corresponding clone.
Constructing a physical map of the chromosome is equiva-
lent to finding an ordering of the probes such that all the
probes matching a clone appear consecutively and the total
length of the ordering is as small as possible.

Algorithms for constructing physical maps from hybridiza-
tion data typically exploit the Lander-Waterman model [21],
which assumes that clones are distributed uniformly across
the chromosome and that probes are distributed according
to independent Poisson processes. Some algorithms make
additional domain-specific assumptions [3; 12; 19; 25; 27].
For instance, Batzoglou and Istrail compute an ordering
whose length is at most twice the length of the optimal or-
dering under the requirement that each clone must contain
a probe that does not hybridize to any other clone. None
of these algorithms are applicable to our problem since the
biclusters we want to lay out may not have the required
properties.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 2

3. ALGORITHM
We present our approach in four stages. First, we define
some useful notation. Second, we introduce the PQ-tree, a
data structure that is fundamental to our approach. Third,
we present our layout algorithm. Finally, we discuss its im-
plementation and the web interface.

3.1 Definitions
We denote the input matrix by D and use R and C to denote
the set of rows and columns of D, respectively. Given subsets
R′ ⊆ R and C′ ⊆ C, we define a bicluster B(R′, C′) to be
the sub-matrix of D spanned by the rows in R′ and the
columns in C′.1 A layout L(R, C) of the matrix D is a two-
dimensional matrix specified as follows:

1. R is the ordered list of rows of L with the property
that each element of R is an element of R; a row in R

can appear multiple times in R.

2. C is the ordered list of of columns of L with the prop-
erty that each element of C is an element of C; a col-
umn in C can appear multiple times in L.

3. Lij , the element in the ith row of R and the jth col-
umn of C is equal to Di′j′ , where i′ is the row of D

corresponding to the the ith row of L and j′ is the
column of D corresponding to the jth column of R.

The size of L is |R||C|. It is appropriate to consider L to
be a layout of D since L specifies an order for the rows and
columns of D. In the example in Figure 1(b), the layout
does not contain any repeated rows or columns. The layout
does not contain the column titled “< 35 F” that is in the
original matrix either.

A bicluster B(R′, C′) is contiguous in a layout L(R, C) if and
only if the elements of R′ (respectively, C′) appear consec-
utively at least once in R (respectively, C). We say that the
layout L(R, C) is valid with respect to a set of biclusters S

if every bicluster B ∈ S is contiguous in L(R, C). For ex-
ample, the layout in Figure 1(b) is valid with respect to the
bicluster ({7/04/2004, 7/03/2004, 7/02/2004 }, { > 60F,
Daylight > 10h, Cloudy, Rainy }) since the bicluster spans
rows four to six and columns two to five in the layout. We
now formally define the bicluster layout problem: Given a
matrix D and a set S of biclusters in D, find a layout L of D

such that L is valid with respect S and L has the smallest
size among all valid layouts of D.

3.2 PQ Trees
Booth and Leuker [7] developed a data structure called the
PQ tree, which they used to compute a column ordering
that proves that that a binary matrix M has the COP. To
define the PQ tree, it is convenient to reformulate the COP
problem as follows: Let U be the set of columns of M . Let r

be the number of rows in M . For each i, 1 ≤ i ≤ r, define
the set Si to be the set of columns in U that have a one
in row i. We seek a permutation of the elements of U that
satisfies r restrictions, where restriction i, 1 ≤ i ≤ r requires
that the elements of Si be consecutive in the permutation.

1This simple definition is sufficient for this paper. An al-
gorithm that computes biclusters in gene expression data
is likely to use a more complex definition relevant to the
patterns to be mined.

A PQ tree can represent all legal permutations of U that
satisfy the restrictions {Si, 1 ≤ i ≤ r}. Each leaf of the
PQ tree corresponds to a column in U . The PQ tree con-
tains two types of internal nodes: P-nodes and Q-nodes.
The children of a P-node can be permuted in any way while
still satisfying the restrictions. A valid permutation of the
children of a Q-node is either the order in which they ap-
pear in the PQ tree or the reversal of this order. A PQ tree
supports the Reduce operation. This operation inserts a
restriction S into a PQ tree T . The operation modifies T

such that T satisfies S in addition to all the previous re-
strictions inserted into T . The Reduce operation fails if
there are no legal permutations of U that can satisfy S and
the previously inserted restrictions. The Reduce operation
takes time linear in |S|. Figure 3 displays a PQ tree on
four elements {a, b, c, d} after two Reduce operations: Re-

duce(T ,{a, c}) and Reduce(T ,{b, c}). Inserting the restric-
tion {c, d} into the tree next will result in a failed Reduce

operation.

To solve the COP problem, start with an empty PQ tree T .
For each i, 1 ≤ i ≤ r, invoke the operation Reduce(T,Si).
To obtain an ordering that satisfies the restrictions, perform
a breadth-first traversal of T starting at the root. At each
internal node of T , visit the children of the node in an order
specified by the type of the node. At a leaf node of T ,
append the column corresponding to the leaf to the required
ordering.

3.3 The Bicluster Layout Algorithm
We are now ready to describe our algorithm for the bicluster
layout problem. To minimize the size of L, we can minimize
the length of R and the length of C independently. There-
fore, we construct the layout L by determining R and C
independently. In the rest of this section, we describe the
algorithm to construct C, the ordered list of the columns in
the layout L. We can compute R, the ordered list of rows
in the layout, analogously.

We describe the algorithm in two stages. We first trans-
form the problem of constructing C to a generalization of
the COP problem. We then present an algorithm to solve
this transformed problem. This transformation allows us to
describe our algorithm in terms of operations on PQ trees.
The PQ tree cannot solve this generalization directly since
the matrix we construct may not have the COP.
We start by constructing a new binary matrix M that repre-
sents the columns of the biclusters in S. Each column on M

corresponds to a column of the input matrix D. M contains
one row for each bicluster in S; thus, M has n rows. The
entry Mij is 1 if the ith bicluster in S contains the column j

in D; otherwise, Mij is 0. We can now reformulate the
problem of constructing C as follows: find the shortest lin-
ear ordering C of the columns of M such that C can contain
repeated columns of M and for every row of M , the columns
containing the ones in that row appear consecutively at least
once in C.
Before describing the algorithm, we define some more no-
tation. The leaves of each PQ tree constructed by the al-
gorithm correspond to a subset of the columns of M . We
use CT to denote the set of columns in a PQ tree T . Given
two PQ trees T and T ′, let σ(T,T ′) denote the set sim-

ilarity
|CT ∩C

T ′ |

|CT ∪C
T ′ |

between the columns in T and T ′. Our

algorithm executes the following steps:

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 3

(a) Initial PQ tree T formed
from set {a, b, c, d}.

(b) The PQ tree T after
the Reduce(T ,{a, c}) oper-
ation, requiring that a and c
be consecutive.

(c) The PQ tree T after the
Reduce(T ,{b, c}) operation,
requiring that b and c be
consecutive.

Figure 3: An example of a PQ tree. Circles represent P nodes and rectangles represent Q nodes. Valid permutations
represented by the tree in Figure 3(c) are the sequences acbd, bcad, dacb, and dbca.

1. For each row i of M , 1 ≤ i ≤ n, construct a PQ tree Ti

consisting of a single P-node, whose children are the
columns in M that contain ones in row i of M . Let T
be the set of these n PQ trees.

2. For every pair 1 ≤ i < j ≤ n, compute the set similar-
ity σ(Ti, Tj).

3. Compute Σ, the list of values in {σ(Ti, TJ), 1 ≤ i <

j ≤ n} sorted in descending order.

4. Repeat the following steps until Σ is empty:

(a) Remove the largest element from Σ. Let T and
T ′ be the PQ trees in T with this similarity value.

(b) Set T ′′ = T .

(c) For each restriction r inserted into T ′, invoke the
operation Reduce(T ′′, r). If any reduce opera-
tion fails, go to Step 4a.

(d) Delete T and T ′ from T .

(e) For each tree U ∈ T , insert σ(U, T ′′) into Σ.

(f) Insert T ′′ into T .

5. For each PQ tree T in T , traverse T to compute a valid
permutation of the columns in CT .

6. Output the column layout formed by concatenating (in
any order) the permutations computed in Step 5.

The algorithm starts by storing each row of M (recall that
each row of M corresponds to a bicluster) in a separate PQ
tree in the set T (Step 1). Next, the algorithm performs
a series of Reduce operations to hierarchically cluster the
rows of M . Inductively, each PQ tree in T corresponds to
a set of rows of M with the property that the submatrix
of M defined by these rows has the COP. To decide which
two sets of rows to merge next, in Step 4a, the algorithm
picks the two PQ trees T and T ′ in T that are the most
similar and attempts to merge them. To effect the merger,
the algorithm adds the restrictions added to one of these PQ
trees to the other PQ tree (Step 4c). If this step succeeds,
the algorithm deletes T and T ′ from T , inserts the similari-
ties between the new PQ tree T ′′ and each of the remaining
PQ trees in T into Σ, and inserts T ′′ into T (Steps 4d–4f).

In Step 4c, the failure of a Reduce operation means that
the restrictions in T are not compatible with the restrictions
imposed by T ′. Hence, the submatrix of M induced by the
union of rows in T and in T ′ does not have the COP. An
example of such a situation is when T corresponds to the
tree in Figure 3(c) and T ′ contains the restriction {c, d}. In
this case, the algorithm aborts the merger of T and T ′ and
moves on to the next most similar pair of PQ trees. Due to
such conflicts, T may contain more than one PQ tree when
the algorithm completes. Finally, generating the required
layout is a simple matter of traversing each PQ tree in T
(Step 5) as described in Section 3.2 and concatenating the
resulting permutations into a single order (Step 6). A col-
umn of M appears as many times in this order as there are
PQ trees in T that includes this column.

We now analyze the running time of the algorithm. Let m

be the number of ones in the matrix M . In Step 1, comput-
ing the PQ trees takes O(m) time. Computing the similarity
between a pair of PQ trees takes O(c) time, where c is the
number of columns of M . In Step 2 and 3, computing and
sorting the O(n2) similarity values takes O(cn2 + n2 log n)
time. We execute Step 4 O(n2) times. The running time of
each iteration is proportional to the size of the new PQ tree
constructed. A naive upper bound on this size is m, the
total number of columns in all the biclusters. Hence, the
total running time of Step 4 is O(mn2). Finally, traversing
all the PQ trees in T and concatenating the permutations
takes O(m) time. Keeping in mind that c ≤ m, the total
running time of the algorithm is O(mn2 + n2 log n). The
space occupied by the algorithm is O(m + n2), with O(m)
space taken to store all the biclusters and the PQ trees
and O(n2) required for Σ, the sorted list of similarities.

3.4 Implementation and Web Interface
We implemented the layout algorithm in C++ and tested it
on a 2.8GHz Pentium computer running the Fedora Core 3
operating system. Our software contains two executable
programs. The first executable, layout, implements the lay-
out algorithm. It takes a text file describing the biclusters
as input and outputs the layout as a text file list of rows
and columns. The second executable, drawlayout, uses this
text file and the original data set as input and produces an
image corresponding to the layout.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 4

If the input data contains a large number of biclusters, the
layout may contain too many rows and/or columns for the
user to navigate with ease. To alleviate this problem, we
have also developed a simple web-based interface that allows
the user to upload a file containing computed biclusters and
a file containing the original data, and search the biclusters
with the names of rows and columns. The interface invokes
layout and drawlayout on the biclusters that contain the
query rows/columns and highlights the matching biclusters,
rows, and columns in the resulting layout. The interface
allows the user to specify whether the data is real-valued or
binary, whether the layout should contain only the matching
biclusters, and whether the query should be a conjunction
or disjunction of the search terms.

4. EXPERIMENTAL RESULTS

4.1 Synthetic Data
We created synthetic datasets with different numbers of rows
and columns. For each dataset, we generated biclusters by
sampling subsets of rows and columns. For this experiment,
we randomly generate the number of rows and columns and
identifiers for the rows and columns; we did not need to
generate values for the cells of the matrices. For each set
of biclusters, we recorded the time required to run our lay-
out algorithm and the number of rows and columns in the
computed layout. For each layout, we estimated the lay-
out efficiency of the layout as the ratio of the size of the
layout to the size of the dataset. Lower values of efficiency
are better than higher values, since they indicate that the
algorithm is able to exploit overlaps between biclusters. For
each choice of number of rows in the dataset, number of
columns in the dataset, and number of biclusters, we aver-
aged the results for 100 runs. Tables 1 and 2 display our
results. Efficiency values may be less than one, e.g., when
some rows or columns in the dataset do not belong to any
bicluster.

Table 1: Execution times (in seconds) for the layout algo-
rithm on synthetic matrices.
#biclusters #rows + #columns in the dataset

10 30 50 70 90

20 0.168 0.328 0.462 0.52 0.532
40 1.23 2.514 3.046 3.574 4.008
60 4.074 7.992 11.238 11.71 12.81
80 9.484 19.586 25.546 29.652 29.446
100 17.982 37.966 48.418 50.916 56.112

Table 2: Efficiency values of the layout algorithm on syn-
thetic matrices.

biclusters #rows + #columns in the dataset
10 30 50 70 90

20 0.184 0.842 1.316 1.254 1.428
40 0.304 1.16 1.632 2.04 2.074
60 0.398 1.496 2.262 2.26 2.508
80 0.512 1.65 2.358 2.726 2.698
100 0.48 1.808 2.582 2.686 2.996

4.2 Transcriptional Regulation in S. cerevisiae

To demonstrate the ability of our visualization algorithm to
highlight differences between biclusters in similar datasets,
we analyzed datasets of transcriptional regulation in two ex-
perimental conditions in S. cerevisiae [2; 23]. Each dataset
is a binary matrix whose columns represent transcription
factors and whose rows represent genes in S. cerevisiae. A
matrix entry contains a one if a ChIP-on-chip experiment in-
dicates that the transcription factor binds to the promoter
of the gene. An important problem that arises in the analy-
sis of this data is determining if a set of genes are collectively
regulated by a set of transcription factors and whether this
combinatorial regulation changes when the cell is exposed to
stress. Although ChIP-on-chip data is noisy and significant
effort may be needed to clean it up, the analysis we present
next demonstrates that a combination of biclustering and
our layout algorithm has the potential to yield biologically
useful results.

The two protein-DNA datasets we study correspond to growth
of S. cerevisiae cells in rich medium [23] and to growth under
exposure to rapamycin [2], a condition that mimics nutrient
starvation. We restricted our attention to transcription fac-
tors studied in both papers. We ran our implementation of
the Apriori algorithm [1] that computes closed itemsets on
both these datasets, applied our layout algorithm on biclus-
ters with at least two genes and at least two transcription
factors, and obtained the layout in Figure 4(a). Biclusters
obtained from the data under growth in rich medium are
shown as blue boxes and rapamycin-induced biclusters are
shown as red boxes. A cell in the figure is dark grey (re-
spectively, light grey) if the transcription factor binds to the
gene’s promotor in both (respectively, one) condition. The
image strikingly demonstrates that under exposure to ra-
pamycin, the transcriptional network activated in the cell is
very different from the normal activation network. The rich
medium data contains only four biclusters involving these
transcription factors while the rapamycin data contains 38
biclusters. We conclude that very few genes are co-regulated
by the same set of transcription factors in both conditions.

Figure 5: Genes combinatorially controlled by GLN3 and
RTG3.

To illustrate the use of our web interface, we used it to search
for biclusters that included the transcription factors RTG3
and GLN3. RTG3 is a transcription factor that forms a com-

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 5

YBR043C

YEL062W

YEL063C

YJL088W

YOL058W

YDL170W

YDL171C

YJR109C

YJR110W

YOL119C

YER175C

YER176W

YKL071W

YCR018C-A

YCR019W

YJR011C

YDR040C

YDR041W

YGL001C

YIR005W

YMR193W

YDR522C

YER002W

YIR029W

YJR109C

YJR110W

YJL088W

YLR304C

YPR038W

YPR039W

YPR040W

YDR042C

YER013W

YIR027C

YIR028W

YDL237W

YDL238C

YER013W

YDL170W

YDL171C

YIR029W

YIR032C

YIR033W

YKL103C

YPR145W

YOL119C

YDL215C

YDR090C

YFL021W

YFL022C

YJL172W

YJL173C

YJR148W

YJR152W

YKR093W

YNL142W

YNL143C

YPL265W

YPR035W

YPR194C

YJR109C

YJR110W

YDR084C

YJL088W

YDL066W

YDL067C

YDR127W

YER069W

YHR161C

YHR162W

YIR031C

YKL103C

YPR145W

YDL170W

YDL171C

YIR029W

YIR032C

YIR033W

YIR030C

YCR096C

YCR097W

YLR277C

YHR156C

YHR157W

YDR042C

YDR084C

YEL010W

YGR071C

YGR072W

YJR011C

YOL159C

YPR198W

YER013W

YMR019W

YDR210W-D

YNL004W

YNL005C

YDL170W

YDL171C

YPR145W

YDL182W

YDR508C

YDR510W

YJR011C

YJR109C

YJR110W

YEL062W

YEL063C

YDL237W

YDL238C

YIR029W

YDR245W

YBL059W

YBR166C

YDR067C

YDR068W

YER013W

YHR156C

YHR157W

YDR522C

YER002W

YEL008W

YEL009C

YDL170W

YDL171C

YIR029W

YFL021W

YFL022C

YIR032C

YIR033W

YOR375C

YOR376W

YJR054W

YLR277C

YNL001W

YNL002C

YBL059W

YBR167C

YBR168W

YCR096C

YCR097W

YDR098C-A

YDR098C-B

YDR102C

YDR103W

YHR156C

YHR157W

YBR166C

YEL010W

YGR071C

YGR072W

YGR218W

YJR011C

YMR178W

YMR227C

YMR228W

YOL159C

YDR042C

YDR084C

YDR068W

YER013W

YPR198W

YDR067C

YMR019W

GC
N4
HA
P2
DA
L8
2

GL
N3
DA
L8
1

DA
L8
1

HA
P2
GL
N3
GA
T1
RT
G3
DA
L8
2

MS
N4
MS
N2
RT
G1
RT
G3
DA
L8
1

DA
L8
2

GC
N4
GL
N3
DA
L8
1

GA
T1
DA
L8
1

DA
L8
2

MS
N4
RT
G3
MS
N2
RT
G3
GC
N4
DA
L8
1

GA
T1
GL
N3
FH
L1
HA
P2

(a) Combinatorial control of tran-
scription in S. cerevisiae.

D14664_at

L21954_at

L41559_at

M14636_at

M27891_at

M33195_at

M63959_at

M84526_at

M93056_at

M96326_rna1_at

U16306_at

U94319_at

X05908_at

X12447_at

X17042_at

X52056_at

Z93784_at

X55990_rna1_at

J03077_s_at

M21119_s_at

X64072_s_at

X16546_at

M15395_at

D63880_at

D88270_at

D88422_at

J05243_at

L09717_at

L47738_at

M11722_at

M19507_at

M23197_at

M29474_at

M63138_at

M89957_at

M92287_at

S50223_at

S76617_at

S82470_at

U05259_rna1_at

U46499_at

U57094_at

X07743_at

X59417_at

X61587_at

X62320_at

X62654_rna1_at

X67951_at

X78669_at

X80230_at

X95735_at

X99920_at

Z49194_at

Z15115_at

L09209_s_at

M84371_rna1_s_at

X97267_rna1_s_at

J03801_f_at

X14008_rna1_f_at

M31523_at

U29175_at

K01911_at

U28833_at

X82240_rna1_at

L08895_at

U22376_cds2_s_at

AF009426_at

D86479_at

M29696_at

M33680_at

M91432_at

M95678_at

M96803_at

U77948_at

U79265_at

X99585_at

Y08612_at

HG4020-HT4290_s_at

M32304_s_at

M12959_s_at

X74301_s_at

U72936_s_at

U90546_at

M19045_f_at

M28170_at

U94319_at

M84371_rna1_s_at

D31764_at

K01911_at

L06175_at

L29376_at

M29971_at

M31627_at

M81379_at

U09877_at

U28833_at

U36922_at

U82275_at

U89336_cds7_at

X84373_at

X97160_rna1_at

Z46973_at

M21535_at

U31216_s_at

U05681_s_at

S83390_s_at

U41767_s_at

X83535_s_at

HG1980-HT2023_at

M11722_at

M27891_at

M29474_at

M89957_at

M92287_at

U05259_rna1_at

X67951_at

X80230_at

Z49194_at

Z15115_at

M31523_at

D86970_at

M38690_at

S46622_at

X58529_at

X62535_at

X82240_rna1_at

X93512_at

L08895_at

U18259_at

L33930_s_at

U46006_s_at

J05243_at

M63138_at

X97267_rna1_s_at

D32050_at

D87292_at

M74719_at

U59878_at

U60115_at

V00563_at

X66401_cds1_at

X90858_at

D11327_s_at

U22376_cds2_s_at

Z68228_s_at

M63838_s_at

U49020_cds2_s_at

ALL

AML

35
-A
ML

38
-A
ML

28
-A
ML

61
-A
ML

34
-A
ML

36
-A
ML

37
-A
ML

29
-A
ML

30
-A
ML

31
-A
ML

33
-A
ML

52
-A
ML

53
-A
ML

51
-A
ML

50
-A
ML

54
-A
ML

57
-A
ML

58
-A
ML

60
-A
ML

65
-A
ML

63
-A
ML

62
-A
ML

72
-A
LL

1-
AL
L

5-
AL
L

13
-A
LL

15
-A
LL

16
-A
LL

19
-A
LL

20
-A
LL

24
-A
LL

26
-A
LL

39
-A
LL

48
-A
LL

41
-A
LL

43
-A
LL

44
-A
LL

45
-A
LL

46
-A
LL

69
-A
LL

56
-A
LL

59
-A
LL

4-
AL
L

8-
AL
L

49
-A
LL

68
-A
LL

(b) Biclusters in gene expression data for ALL and AML.

Figure 4: Visualizations of the layouts computed by our algorithm.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 6

plex with RTG1 to activate the retrograde (RTG) and tar-
get of rapamycin (TOR) pathways [10; 30]. GLN3 encodes a
transcription factor that is phosphorylated and localised to
the cytoplasm when the cell is grown in nitrogen-rich media.
Rapamycin treatment can induce the dephosphorylation and
subsequent activation of GLN3 [4]. Figure 5 displays the lay-
out of all the biclusters containing these two transcription
factors. We note that each bicluster also includes either the
transcription factor GAT1 or the transcription factor GCN4.
GAT1 is a transcriptional activator of genes involved in ni-
trogen catabolite repression; the activity and localization of
these genes is regulated by nitrogen limitation. GCN4 is
another transcription activator that is a master regulator of
gene expression during amino acid starvation in S. cerevisiae
and is activated in multiple stress responses [29]. Thus, it is
not suprising that GAT1 and GCN4 co-regulate genes with
GLN3 and RTG3. The functional annotations of the set of
nine genes targeted by GCN4, GLN3, and RTG3 are en-
riched in the Gene Ontology biological process “glutamine
family amino acid biosynthesis” with a p-value of 2 × 10−8

(based on the hypergeometric distribution), indicating that
this pathway may be activated by the three transcription
factors upon rapamycin treatment.

4.3 Classification of Leukemias
Golub et al. [15] studied global expression patterns of 45 pa-
tients diagnosed with Acute Lymphoblastic Leukemia (ALL)
and 27 patients diagnosed with Acute Myeloid Leukemia
(AML). We ran the xMotif algorithm [16; 28] to compute
biclusters in this dataset. We ensured that computed biclus-
ters contain samples from at most one class. We selected
four representative biclusters from the results to visualize.
Figure 4(b) displays the layout. Each column corresponds
to a sample; the two columns at the top with purple cells
indicate the type of leukemia. We map the expression values
of each gene into a range from green to red, with green (re-
spectively, red) corresponding to the smallest (respectively,
largest) expression value of that gene. The biclusters out-
lined in black correspond to AML samples and those out-
lined in blue to ALL samples. This layout visually highlights
similarities and differences between the biclusters found in
samples for the same and for different types of leukemia.
We have used such biclusters as the basis for constructing
a classifier that distinguishes between different diseases and
tissues [16].

5. CONCLUSIONS
The biomedical community has access to large quantities
of publicly-available gene expression datasets. Biclustering
has emerged as a powerful methodology for analyzing these
datasets. In this paper, we have introduced a novel algo-
rithm for laying out biclusters in a two-dimensional matrix
so as to reveal the overlaps and relationships between the bi-
clusters. The algorithm performs efficiently in practice. We
have demonstrated the applicability of the algorithm to two
important problems in bioinformatics using both binary and
real-valued data. An easy-to-use web interface distributed
with the layout software allows the user to query and nav-
igate layouts that are too large to study manually. Biclus-
tering is useful not just for processing gene expression data
but for any dataset that measures the relationships between
two different types of data, for example, genes and func-
tions, transcription factors and promotors, microRNAs and

their target mRNAs, genes and diseases, etc. Thus, our al-
gorithm has the potential to be useful for a wide variety of
bioinformatic applications.

6. REFERENCES

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. In Proceedings of
the Twentieth International Conference on Very Large
Databases, pages 487–499, Santiago, Chile, 1994.

[2] Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi,
J. Y. Yoo, F. Robert, D. B. Gordon, E. Fraenkel, T. S.
Jaakkola, R. A. Young, and D. K. Gifford. Computa-
tional discovery of gene modules and regulatory net-
works. Nat Biotechnol, 21(11):1337–42, 2003.

[3] S. Batzoglou and S. Istrail. Physical mapping with re-
peated probes: The hypergraph superstring problem.
Journal of Discrete Algorithms, 1:51–76, 2000.

[4] T. Beck and M. N. Hall. The TOR signalling pathway
controls nuclear localization of nutrient-regulated tran-
scription factors. Nature, 402(6762):689–92, 1999.

[5] S. Bergmann, J. Ihmels, and N. Barkai. Iterative sig-
nature algorithm for the analysis of large-scale gene
expression data. Phys Rev E Stat Nonlin Soft Matter
Phys, 67(3 Pt 1):031902, 2003.

[6] S. Bergmann, J. Ihmels, and N. Barkai. Similarities and
differences in genome-wide expression data of six organ-
isms. PLoS Biol, 2(1):E9, 2003.

[7] K. S. Booth and G. S. Lueker. Testing for the consecu-
tive ones property, interval graphs, and planarity using
pq-tree algorithms. J. Comput. Sys. Sci., 13:335–379,
1976.

[8] A. Califano, G. Stolovitzky, and Y. Tu. Analysis of
gene expression microarrays for phenotype classifica-
tion. Proc Int Conf Intell Syst Mol Biol, 8:75–85, 2000.

[9] Y. Cheng and G. Church. Biclustering of expression
data. Proc Int Conf Intell Syst Mol Biol, 8:93–103,
2000.

[10] J. L. Crespo, T. Powers, B. Fowler, and M. N. Hall.
The TOR-controlled transcription activators GLN3,
RTG1, and RTG3 are regulated in response to intra-
cellular levels of glutamine. Proc Natl Acad Sci U S A,
99(10):6784–9, 2002.

[11] M. Eisen, P. Spellman, P. Brown, and D. Botstein.
Cluster analysis and display of genome-wide expression
patterns. Proc. Natl. Acad. Sci. USA, 95:14863–14868,
1998.

[12] D. W. F. Alizadeh, R.M. Karp and G. Zweig. Physical
mapping of chromosomes using unique probes. Journal
of Computational Biology, 2:159–184, 1995.

[13] S. Fodor, R. Rava, X. Huang, A. Pease, C. Holmes, and
C. Adams. Multiplexed biochemical assays with biolog-
ical chips. Nature, 364(6437):555–6, 1993.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 7

[14] G. Getz, E. Levine, and E. Domany. Coupled two-way
clustering of dna microarray data. Proc. Natl Acad. Sci.
USA, 97:12079–12084, 2000.

[15] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasen-
beek, J. Mesirov, H. Coller, M. Loh, J. Downing,
M. Caligiuri, C. Bloomfield, and E. S. Lander. Molec-
ular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science,
286:531–537, 1999.

[16] G. Grothaus and T. M. Murali. Biologically-
interpretable disease and tissue classification based on
dna microarray data. In preparation, 2006.

[17] J. A. Hartigan. Direct clustering of a data matrix. J.
Amer. Statis., 67:123–129, 1972.

[18] W.-L. Hsu. A simple test for the consecutive ones prop-
erty. J. Algorithms, 43(1):1–16, 2002.

[19] T. Jiang and R. Karp. Mapping clones with a given or-
dering or interleaving. Algorithmica, 21:262–284, 1998.

[20] Y. Kluger, R. Basri, J. Chang, and M. Gerstein. Spec-
tral biclustering of microarray data: coclustering genes
and conditions. Genome Res, 13(4):703–16, 2003.

[21] E. Lander and M. Waterman. Genomic mapping by fin-
gerprinting random clones: A mathematical analysis.
Genomics, 2:231–239, 1988.

[22] L. Lazzeroni and A. Owen. Plaid models for gene ex-
pression data. Statistica Sinica, 12:61–86, 2002.

[23] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom,
Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T.
Harbison, C. M. Thompson, I. Simon, J. Zeitlinger,
E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren,
J. J. Wyrick, J.-B. Tagne, T. L. Volkert, E. Fraenkel,
D. K. Gifford, and R. A. Young. Transcriptional Reg-
ulatory Networks in Saccharomyces cerevisiae. Science,
298(5594):799–804, 2002.

[24] J. Lepre, J. Rice, Y. Tu, and G. Stolovitzky.
Genes@Work: an efficient algorithm for pattern discov-
ery and multivariate feature selection in gene expression
data. Bioinformatics, 20(7):1033–44, 2004.

[25] W.-F. Lu and W.-L. Hsu. A test for the consecutive ones
property on noisy data-application to physical mapping
and sequence assembly. Journal of Computational Bi-
ology, 10(5):709–735, 2003.

[26] S. C. Madeira and A. L. Oliveira. Biclustering al-
gorithms for biological data analysis: A survey.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2004. to appear.

[27] G. Mayraz and R. Shamir. Construction of physical
maps from oligonucleotide fingerprints data. RECOMB,
1999.

[28] T. M. Murali and S. Kasif. Extracting conserved gene
expression motifs from gene expression data. In Pro-
ceedings of the Pacific Symposium on Biocomputing,
2003. 77–88.

[29] K. Natarajan, M. R. Meyer, B. M. Jackson, D. Slade,
C. Roberts, A. G. Hinnebusch, and M. J. Marton. Tran-
scriptional profiling shows that Gcn4p is a master reg-
ulator of gene expression during amino acid starvation
in yeast. Mol Cell Biol, 21(13):4347–68, 2001.

[30] B. A. Rothermel, J. L. Thornton, and R. A. Butow.
Rtg3p, a basic helix-loop-helix/leucine zipper protein
that functions in mitochondrial-induced changes in gene
expression, contains independent activation domains. J
Biol Chem, 272(32):19801–7, 1997.

[31] M. Schena, D. Shalon, R. Davis, and P. Brown.
Quantitative monitoring of gene expression pat-
terns with a complementary dna microarray. Science,
270(5235):467–70, 1995.

[32] E. Segal, A. Battle, and D. Koller. Decomposing gene
expression into cellular processes. Pac Symp Biocomput,
pages 89–100, 2003.

[33] E. Segal, M. Shapira, A. Regev, D. Botstein, D. Koller,
and N. Friedman. Module networks: identifying regu-
latory modules and their condition-specific regulators
from gene expression data. Nat Genet, 34(2):166–76,
2003.

[34] Q. Sheng, Y. Moreau, and B. De Moor. Biclustering
microarray data by Gibbs sampling. Bioinformatics, 19
Suppl 2:II196–II205, 2003.

[35] A. Tanay, R. Sharan, M. Kupiec, and R. Shamir. Re-
vealing modularity and organization in the yeast molec-
ular network by integrated analysis of highly heteroge-
neous genomewide data. Proc Natl Acad Sci U S A,
101(9):2981–6, 2004.

[36] A. Tanay, R. Sharan, and R. Shamir. Discovering sta-
tistically significant biclusters in gene expression data.
In Proceedings of ISMB 2002, pages S136–S144.

[37] A. Tanay, R. Sharan, and R. Shamir. Handbook of
Bioinformatics, chapter Biclustering Algorithms: A
Survey. 2004.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 8

	Introduction
	Related Work
	Algorithm
	Definitions
	PQ Trees
	The Bicluster Layout Algorithm
	Implementation and Web Interface

	Experimental Results
	Synthetic Data
	Transcriptional Regulation in S. cerevisiae
	Classification of Leukemias

	Conclusions
	REFERENCES

