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ABSTRACT

Publicly available datasets provide detailed and large-scale information on multiple types

of molecular interaction networks in a number of model organisms. The wiring diagrams

composed of these interaction networks capture a static view of cellular state. An important

challenge in systems biology is obtaining a dynamic perspective on these networks by

integrating them with gene expression measurements taken under multiple conditions.

We present a top-down computational approach to identify building blocks of molecular

interaction networks by: (i) integrating gene expression measurements for a particular

disease state (e.g., leukemia) or experimental condition (e.g., treatment with growth serum)

with molecular interactions to reveal an active network, which is the network of interactions

active in the cell in that disease state or condition; and (ii) systematically combining active

networks computed for different experimental conditions using set-theoretic formulae to

reveal network legos, which are modules of coherently interacting genes and gene products

in the wiring diagram. We propose efficient methods to compute active networks, system-

atically mine candidate legos, assess the statistical significance of these candidates, arrange

them in a directed acyclic graph (DAG), and exploit the structure of the DAG to identify true

network legos. We describe methods to assess the stability of our computations to changes

in the input and to recover active networks by composing network legos. We analyze two

human datasets using our method. A comparison of three leukemias demonstrates how

a biologist can use our system to identify specific differences between these diseases. A

larger-scale analysis of 13 distinct stresses illustrates our ability to compute the building

blocks of the interaction networks activated in response to these stresses. Source code

implementing our algorithms is available under version 2 of the GNU General Public

License at http://bioinformatics.cs.vt.edu/�murali/software/network-lego.
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1. INTRODUCTION

THE FUNCTIONING OF A LIVING CELL is governed by an intricate network of interactions among

different types of molecules. These interactions transduce external signals, control gene expression
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and protein localization, modify protein activities, and drive biochemical reactions. Recent experimental

advances and literature curation have provided us with large-scale publicly available datasets of molecular

interactions, especially for model organisms such as S. cerevisiae, C. elegans, and D. melanogaster; for

pathogens such as P. falciparum; and for H. sapiens itself. Taken together, the known molecular interactions

for an organism constitute its wiring diagram, a graph where each node is a molecule and each edge is

an interaction between two molecules. Existing wiring diagrams are tremendous resources for systems

biology, since they integrate information on multiple types of molecular interactions obtained from a

variety of different experimental sources. However, their potential impact is diluted since they typically

represent the universe of interactions that take place across diverse contexts in the cell. Consequently, a

fundamental challenge in molecular systems biology is automatically identifying building blocks of cellular

wiring diagrams, where each building block is a network of interactions that is associated with a set of

experimental conditions in which the building block is activated.

In this paper, we present a top-down computational approach that identifies building blocks of molecular

interaction networks by:

(i) Integrating gene expression measurements for a particular disease state (e.g., leukemia) or experimental

condition (e.g., treatment with growth serum) with molecular interactions to reveal an active network,

which is the network of interactions active in the cell in that disease state or condition and

(ii) Systematically combining active networks computed for different experimental conditions using set-

theoretic formulae to reveal network legos, which are functional modules of coherently interacting

genes and gene products in the wiring diagram. These network legos are potential building blocks of

the wiring diagram, since we can express each active network as a composition of network legos.

Given a wiring diagram and the transcriptional measurements for a particular condition, we use the gene

expression data to induce edge weights in the wiring diagram. We find dense subgraphs (Charikar, 2000)

in this weighted graph to compute the active network for that condition. Given the active networks for a

number of different conditions, we first represent the active networks in an appropriately defined binary

matrix and compute closed biclusters (Agrawal and Srikant, 1994; Zaki and Hsiao, 2002) in the matrix.

Each bicluster simultaneously represents a set-theoretic combination of particular active networks and a

subgraph of the wiring diagram; we call such a subgraph a “network block.” We exploit the subset structure

between blocks to arrange them in a directed acyclic graph (DAG). When the number of active networks

is large, we may compute a very large number of highly similar blocks. Not all these blocks are likely

to be network legos. We assess the statistical significance of each block by simulation and identify those

that are maximally significant (i.e., more significant than any descendant or an ancestor in the DAG). We

deem these blocks to be network legos.

We develop two measures to assess the quality of the network legos we compute. Stability measures

to what degree we can recompute the same legos when we remove each active network in turn from the

input. Recoverability measures to what extent we recoup the original active networks when we combine

network legos. These two notions test two different aspects of network lego computation. Considering active

networks to be the inputs and network legos to be the outputs, stability measures how much the outputs

change when we perturb the inputs by removing one of the inputs at a time. In contrast, recoverability

asks whether we can reclaim the inputs by combining the outputs; thus recoverability is a measure of how

well the network legos serve as building blocks. To assess the biological content of network legos, we

measure the functional enrichment of the genes and interactions that belong to a network lego. For each

function, we track its degree of enrichment in the DAG to highlight differences among the network legos.

For each network lego, we also ask if any functions are enriched only in that network lego and correlate

such functions with the expression patterns of the genes in that network lego.

We demonstrate two ways in which a biologist can use our system. In the first, our system allows the

systematic comparison of responses to a small number of different conditions, diseases, or perturbations

tested in the same lab. The comparison of three leukemias (ALL, AML, and MLL) (Armstrong et al., 2002)

we discuss in Section 4.1 is such an application. Using our method, we show that the activation of the Kit

receptor pathway is a hallmark of AML but not of ALL and MLL; thus, the activation of this pathway

distinguishes AML from the other two leukemias. In the second, a biologist can analyze a specific condition

of interest in the context of a large compendium of other conditions, compute the building blocks of the

networks activated in these conditions, and ask how the building blocks compose the active network for
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the specific condition of interest to the biologist. In Section 4.2, we apply our approach to a collection of

178 arrays measuring the gene expression responses of HeLa cells and primary human lung fibroblasts to

13 distinct stresses, including cell cycle arrest, heat shock, endoplasmic reticulum stress, oxidative stress,

and crowding (Murray et al., 2004). Our method computes 143 network legos. We carefully examine

the compositions of these network legos to demonstrate that they are true building blocks of the active

networks for these 13 stresses. We use leave-one-out validation to prove that our algorithm to construct

network legos is stable: when we remove each active network and recompute network legos, we are able

to recompute most network legos with at least 95% fidelity. We also demonstrate that we can recover

active networks with almost perfect accuracy by composing network legos. Further analysis of the network

legos reveals that the active networks corresponding to cell cycle arrest contain interactions that are quite

distinct from the network of interactions activated by the other stresses. When we remove the two cell

cycle arrest datasets, we compute only 15 network legos. Of the 11 remaining active networks, we recover

five with complete accuracy and one with 99.9% accuracy. We recover the other five active networks with

accuracies of 71–92%. Functional enrichment analysis of these network legos shows that the only lego

enriched in genes controlling and participating in the cell cycle is one that distinguishes the reaction of

fibroblasts to endoplasmic reticulum stress from the other stresses. Taken together, these statistics indicate

that the network legos we detect are indeed building blocks of the networks activated in response to the

stresses studied by Murray et al. (2004) and that the network legos yield biologically-useful insights into

the similarities and differences between the two cell types.

The success of our approach stems from a number of factors. First, unlike other approaches discussed

in Section 2 that simultaneously integrate multiple gene expression datasets in the context of the network

scaffold, we compute individual active networks for each dataset and associate the active network with

the corresponding disease or perturbation. This approach allows us to explicitly compare and contrast

different conditions. Second, we treat interactions (rather than genes or proteins) as the elementary objects

of our analysis. Therefore, different network legos may share genes, allowing for the situation when a

gene participates in multiple biological processes and is activated differently in these processes. Finally,

we develop a simple but effective method to assess the statistical significance of a network lego and to

recursively weed out sub-networks that masquerade as building blocks but contain true network legos.

Taken together, network legos and the accompanying set-theoretic formulae provide a dynamic and multi-

dimensional view of cell circuitry obtained by integrating molecular interaction networks, gene expression

data, and descriptions of experimental conditions.

2. RELATED RESEARCH

A number of approaches, recently surveyed by Joyce and Palsson (2006) and by Sharan and Ideker

(2006) have been developed to integrate diverse types of biological data and “mine” these datasets to find

groups of molecules (usually genes and/or proteins) that act in concert to perform a specific biological

task. We briefly discuss these approaches and place our work in context.

2.1. Active networks

A number of techniques overlay gene expression data for a condition on the wiring diagram to compute

the active network for that condition (Haugen et al., 2004; Ideker et al., 2002; Reiss et al., 2005; Segal

et al., 2003). Ulitsky and Shamir (2007) use the wiring diagram as a constraint network and compute

dense subgraphs in the gene co-expression network as long as the genes in the dense subgraphs induce a

connected subgraph of the wiring diagram. These methods typically focus on a single condition of interest.

2.2. Biclustering

Biclustering has emerged as a powerful algorithmic tool, especially for analyzing gene expression data.

A bicluster in a gene expression dataset is a subset of genes and a subset of conditions with the property

that the selected genes are co-expressed in the selected conditions; these genes may not have any coherent

patterns of expression in the other conditions in the dataset. Since a bicluster includes only a subset of

genes and samples, it models condition-specific patterns of co-expression. Biclustering algorithms allow
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a gene or a sample to participate in multiple biclusters, each of which may correspond to a different

pathway. A number of different methods have emerged for computing biclusters in gene expression data;

two papers provide excellent surveys (Madeira and Oliveira, 2004; Tanay et al., 2006). Two methods have

used biclustering to integrate analysis of heterogeneous genome-wide data (Bonneau et al., 2006; Tanay

et al., 2004).

2.3. Itemset and graph mining

The algorithm we propose for computing network legos in Section 3.3 uses well-studied approaches in

data mining for computing itemsets (Agrawal and Srikant, 1994; Ganter and Wille, 1997; Zaki and Hsiao,

2002). Recent work of frequent graph mining (Hu et al., 2005; Koyuturk et al., 2006; Yan and Han, 2003)

takes a set G of labeled graphs as input and finds all connected and/or dense graphs that occur frequently

as subgraphs of graphs in G. Our computation of network legos bears some resemblance to these methods,

except that our goal is to find frequently-occurring subgraphs that we can use to reconstruct each graph

in G as well as possible.

2.4. Graph clustering and decomposition

Graph clustering, or automatic decomposition of a network into modules or communities, has a rich

history, with many problem formulations (Bansal et al., 2004; Chung, 1997; Ng et al., 2002; Radicchi et al.,

2004), techniques (Dhillon et al., 2007; Drineas et al., 2004; Kannan et al., 2004; Newman, 2006; White

and Smyth, 2005), and applications in diverse domains (Dunn et al., 2005; Koyuturk et al., 2006; Enright

et al., 2002; Sharan and Shamir, 2000; Shi and Malik, 2000). The top-down data-driven construction of

network legos complements the bottom-up assembly of network motifs (Grochow and Kellis, 2007; Milo

et al., 2002; Yeger-Lotem et al., 2004), motif super-families (Milo et al., 2004), and thematic maps (Zhang

et al., 2005). These approaches typically operate by computing the number of subgraphs in the wiring

diagram isomorphic to a query graph Q, and assembling frequently occurring subgraphs into modules.

2.5. Knowledge-based approaches

A few methods have used pre-defined gene sets (e.g., based on functional annotations or literature

curation) to discriminate among or classify diseases and tissues (Barry et al., 2005; Edelman et al., 2006;

Guo et al., 2005; Huang et al., 2006; Levine et al., 2006; Subramanian et al., 2005). Unlike these techniques,

our methods specifically take into account the structure of the interactions between the genes in the wiring

diagram.

2.6. Compendium-based approaches

Many methods have computed gene modules by integrating gene expression data across multiple cellular

conditions; they analyze large compendia of such data to reveal similarities and differences between

organisms (Bergmann et al., 2003; Stuart et al., 2003), predict functional links and annotations (Hu et al.,

2005; Huttenhower et al., 2006; Lee et al., 2004), reconstruct regulatory networks (Bar-Joseph et al.,

2003; Zhou et al., 2005) and networks activated in diseases (Basso et al., 2005), zero in on biomarkers

for diseases (Rhodes et al., 2004), compute pathway-specific networks that include query genes input

by a biologist (Myers et al., 2005), and identify the gene products and associated pathways that a drug

compound targets (di Bernardo et al., 2005). A feature common to most of these approaches is that they

find patterns woven by genes that share similar expression across the entire compendium.

2.7. Context-specific approaches

A few recently published methods integrate the wiring diagram with gene expression compendia to

detect similarities and differences between conditions, for example, to dissect under what conditions hubs

bind their partners (Han et al., 2004) and to obtain insights into changes in topological properties of the

wiring diagram across different conditions (Luscombe et al., 2004). Recently, two powerful methods have

emerged for comparing gene expression measurements for multiple conditions. Segal et al. (2004) analyze

expression profiles in different tumors to compute modules, sets of genes that act in concert to carry out a
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specific function. They characterize gene-expression profiles in specific (sets of) tumors as a combination

of activated and deactivated modules. Tanay et al. (2005) integrate a diverse collection of datasets into a

bipartite graph representing connections between genes and gene properties. Their modules are statistically-

significant biclusters (Tanay et al., 2002) in this graph. They represent a target gene expression dataset

as a bipartite graph and determine which already-computed modules respond in the target dataset. Our

approach differs from theirs in two respects. First, we represent differences and similarities between

multiple conditions explicitly as a set theoretic formula involving the interaction network activated in each

condition. Second, when we analyze a compendium of gene expression datasets, we exploit the subset

structure between these formulae to detect network legos, statistically significant building blocks of these

active networks.

3. ALGORITHMS

We describe the main computational ingredients of our approach in stages. We first define useful

terminology. Next, we present our method to integrate a cellular wiring diagram with the gene expression

data for a single condition to compute the active network for that condition. Third, we describe how we

combine active networks for different conditions to form blocks. Fourth, we discuss how we compute the

statistical significance of blocks, arrange them in a DAG, and exploit the DAG to identify network legos,

which are the most statistically-significant blocks in the DAG. Finally, we present our methods to measure

the stability of network legos and assess how well we can recover active networks from the network legos.

3.1. Definitions

We denote the wiring diagram of molecular interactions for an organism by W ; each node of W is a

gene (or gene product) and each edge represents an interaction. Let G be the set of genes in W . The gene

expression dataset for a condition c consists of a set of samples Sc, each with an expression value for

each gene in G; we denote by gc the vector of values for gene g in the condition c. Our method takes as

input the wiring diagram W for an organism and a compendium of gene expression datasets, each for a

different condition.

Active networks. Given a gene expression dataset for a condition c, we say that a gene responds in c

if the expression values of the gene vary by more than an input threshold. Let g and h be two genes that

respond in c and let e D .g; h/ be an interaction in W . We say that e is active in c if gc and hc are

correlated to a statistically-significant extent. Let the weight of interaction e be this degree of correlation.

We define the active network Ac in c to be the subgraph of W with maximum density, where we define

the density of a graph as the total weight of its edges divided by the number of nodes in it. We describe

the details of how we detect responding genes, active interactions, and active networks in Section 3.2.

Network blocks. Let A denote a set of active networks, one for each of the conditions in the input

compendium. We define a block to be a triple .G;P;N /, where G is a subgraph of W , P and N are

disjoint subsets of A, and P 6D ; such that
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where “\,” “�,” and “[” respectively denote the intersection, difference, and union of the edge sets of

two graphs, and

1. P is maximal, i.e., there is no active network P 2 A� P such that G � P , and

2. N is maximal, i.e., there is no active network N 2 A�N such that G \N D ;.

In other words, we can form G by taking the intersection of all the active networks in P and removing

any edge that appears in any of the active networks in N . We require that P contain at least one active

network so that G is not formed solely by the intersection of the networks in N ; such a block is unlikely

to be biologically interesting. We also require that P and N be disjoint so that G is not the empty

graph. Requiring P and N to be maximal ensures that we include all the relevant active networks in the

construction of G. These criteria imply that it is enough to specify P and N to compute G uniquely;
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we include G in the notation for a block for convenience and drop P and N when they are understood

from the context. We refer to
�

T

P 2P P
�

T
�

T

N2N .W � N /
�

as the formula for the block. Figure 1a

displays three toy active networks and Figure 1b shows examples of three blocks formed from these active

networks.

Network legos. We now describe how we identify network legos in a set B of blocks. We note that

n active networks can compose at most 3n � 2n blocks. Given two distinct blocks .G1;P1;N1/ and

.G2;P2;N2/ in B, we say that G1 � G2 if

(i) P1 � P2 and N1 � N2 or

(ii) P1 � N2 and N1 � P2.

Further, we say that G1 < G2 if there is no block G3 2 B such that G1 � G3 � G2. The operators < and �

represent partial orders between blocks, with � being the transitive closure of <. Given a set B of blocks,

let DB denote the directed acyclic graph representing the partial order <: each node in DB is a block in

B and an edge connects two blocks related by <. For a block G, let �G 2 Œ0; 1� denote the statistical

significance of G. We describe a method to compute this value in Section 3.4. We define a network lego

to be a block .G;P;N / 2 B such that �G < �H , for every H 2 B where G � H or H � G. In other

words, .G;P;N / is a network lego if it is more statistically significant that blocks formed by combining

any subset of P and N or by combining any superset of P and N . In this sense, we claim that G is a

building block of the active networks in A.

3.2. Computing the active network for a single condition

Given a gene expression dataset for a condition c, we compute its active network Ac using the following

steps:

1. We use a variational filter to remove all genes whose expression profiles have a small dynamic range

from W . Specifically, we log-transform and zero-centre each gene’s expression values. We discard a

gene and all its interactions in the wiring diagram W if all the transformed expression values of the

gene lie between �1 and 1 (Segal et al., 2004). We deem the remaining genes to have responded in the

condition.

2. To each interaction e D .g; h/ remaining in W , we assign a weight equal to the absolute value of

the Pearson’s correlation coefficient of gc and hc , reasoning that this weight indicates how “active”

the interaction is in the experimental condition. We discard edges whose weights are not statistically

significant by using the following procedure: (i) We construct 50 random versions of the gene expression

dataset by permuting each gene’s expression values independently. (ii) For each random dataset, we

compute a histogram of the absolute value of the Pearson’s correlation coefficient of the expression

profiles of all pairs of genes. (iii) We average these 50 histograms and keep only those interactions in

W whose edge weights are significant at the 0.01 level. Let Wc be the resulting weighted interaction

network.

3. We compute Ac using a greedy algorithm (Charikar, 2000). We define the weight of a vertex v 2 Wc to

be the total weight of the edges incident on v. We repeatedly delete the node of smallest weight in Wc .

After each deletion, we update the weights of the neighbours (before deletion) of this node and record

the density of the remaining network. We set Ac to be most dense of all the networks so generated.

Remarks. It is possible to find the subgraph of largest density using linear programming or parametric

network flows (Charikar, 2000). The greedy algorithm described above finds a subgraph that is at least

half as dense as the most dense subgraph. In practice, we embed the greedy algorithm in the following

heuristic: we repeatedly apply this approximation algorithm, remove the edges of the subgraph it computes,

and re-invoke the algorithm on the remaining graph until the density of the remaining graph is less than

the density of Wc . We deem the union of the computed dense subgraphs to be the active network Ac .

3.3. Computing blocks in a set of active networks

Given a set A of active networks, we reduce the problem of computing blocks defined by the active

networks in A to the problem of computing closed biclusters in a binary matrix (Agrawal and Srikant,

1994; Zaki and Hsiao, 2002). Consider a binary matrix M where each column corresponds to an interaction
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FIG. 1. Examples of active networks and blocks. In the block .G1;P1;N1/, P1 D fA1; A2g, N1 D ;, and G1 D

A1 \ A2; in the block .G2;P2;N2/, P2 D fA3g, N2 D fA2g, and G2 D A3 � A1; and in the block .G3;P3;N3/,

P D fA1; A2g, N D fA3g, and G3 D A1 \ A2 � A3. Therefore, we have the following relations: G1 < G3 and

G2 < G3 . (See this paper online for Fig. 1 in color.)

in W . The matrix M contains two rows for each active network A 2 A: the positive row corresponds to

the interactions in A and the negative row to the interactions in W �A. In the positive row corresponding

to A, we set a cell to be one if and only if the corresponding interaction belongs to A; this cell is zero in

the negative row for A. Thus, M is a qualitative representation of which interactions are present in each

active network and which are present in its complement.

In a binary matrix such as M , a bicluster .R; C/ is a subset R of rows and a subset C of columns

such that the sub-matrix spanned by these rows and columns only contains ones. A closed bicluster is a

bicluster with the property that each row (respectively, column) not in the bicluster contains a zero in at

least one column (respectively, row) in the bicluster. Therefore, it is not possible to add a row or a column

to a closed bicluster without introducing a zero into the corresponding sub-matrix. We can partition R into

two subsets RP and RN where RP (respectively, RN ) consists of all the positive (respectively, negative)

rows in R. There is a natural one-to-one mapping from a closed bicluster .R; C/ to a block .G;P;N /:

1. G is the subgraph of W induced by the interactions corresponding to the columns in C ;

2. P is the set of active networks corresponding to the rows in RP ; and

3. N is the set of active networks corresponding to the rows in RN .

Requiring a bicluster to be closed is equivalent to ensuring that P and N are maximal and that C contains

all the interactions in G. Figure 2a displays the matrix corresponding to the three active networks in the

example in Figure 1a, while Figure 2b displays a layout of all the biclusters in this matrix and highlights

the three biclusters corresponding to the three blocks in Figure 1b.

Before describing our algorithm, we define one more concept. Given a set R of rows in M , we define

the closure of R to be the closed bicluster .R�; C �/, where C � is the set of columns that contain ones in

all the rows in R and R� � R is the set of rows that contain ones in all the columns in C . Given R, we

can compute its closure by two scans over M .

To construct closed biclusters and the resulting set B of blocks, we use a variation of the well-

known Apriori level-wise algorithm for computing itemsets (Agrawal and Srikant, 1994). In the algorithm

described below, we do not distinguish between a closed bicluster and the corresponding block.

1. Compute the closure of each positive row r in M . Let C be the set of biclusters so computed.

2. B C.
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FIG. 2. The binary matrix and biclusters corresponding to the example in Figure 1. Here, W is the complete graph

on the five nodes.

3. Repeat the following steps until C is empty:

(a) C0  ;.

(b) For each bicluster .R; C/ in C and for each row r 62 R, compute the closure of R [ frg. If the

closure contains at least one column, add it to C0.

(c) C  C0.

(d) B B [ C.

4. Construct the DAG DB connecting the blocks in B as per the partial order <.

Remarks. Since we consider only the positive rows in M in the first step, every closed bicluster we

compute contains at least one positive row. In practice, we hash the row sets of the biclusters to avoid

reporting a bicluster more than once. The worst-case running time of the algorithm is exponential in the

number of rows in M .

3.4. Assessing the statistical significance of a block

To measure the statistical significance of a block, we construct an empirical distribution of block sizes.

We repeatedly select a subset of rows uniformly at random from the binary matrix M , compute the closure

of these rows, and convert the resulting bicluster into a block. We ensure that the random subset of rows

does not contain an active network and its complement, since such a subset will trivially result in an

bicluster with zero columns. Given a block .G;P;N / computed in the real dataset, let m be the number of

interactions in G. To estimate the statistical significance �G of .G;P;N /, we only consider the distribution

formed by random blocks .H;P 0;N 0/ where jPj D jP 0j and jN j D jN 0j. We set �G to be the fraction

of such blocks that have at least m interactions. Since the number of interactions in a block will decrease

with an increase in jPj or in jN j, these constraints ensure that we compare G with appropriate random

blocks in order to estimate �G . We only retain blocks that are significant at the 0:01 level. We compute

the DAG defined by these blocks. We perform two topological traversals of this DAG, one from the roots

to the leaves and the other from the leaves to the roots, to identify the maximally-significant blocks. The

resulting set of blocks are the network legos we desire to compute. Let L denote the set of network legos.

3.5. Stability and recoverability analysis

Stability. It is clear that the set L of network legos we compute depend on the active networks in A.

To assess this dependence, we modify a method for suggested by Segal et al. (2004). We remove each

network N 2 A in turn and recompute network legos from the set A� fN g. Let LN denote the resulting

set of network legos. For each network lego L in L, we compute the most similar network lego L0 in LN

using the set-similarity measure (jL \ L0j=jL [ L0j) and store this measure as sL;N . Given a similarity

threshold t , for each network lego L in L, we compute the fraction of networks in A such that sL;N � t .

The higher this fraction is, the more resilient L is to perturbations in the input.
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Recoverability. If the network legos in L are true building blocks of the active networks in A that they

spring from, it should be possible to recover each active network in A from the network legos in L. For

each active network A, we define

LA D
˚

.G;P;N / 2 LjA 2 P
	

;

to be the set of network legos in L where A does not appear negated in the network lego. We compute

the union of the network legos in LA and compute what fraction of A’s edge set appears in the union. The

larger this fraction is, the more “recoverable” A is from the computed network legos.

4. RESULTS

We applied the algorithm described in the previous section to human data sets. We obtained a network

of 31,108 molecular interactions between 9243 human gene products by integrating the interactions in the

IDSERVE database (Ramani et al., 2005), the results of large scale yeast two-hybrid experiments (Rual

et al., 2005; Stelzl et al., 2005), and 20 immune and cancer signalling pathways in the Netpath database

(www.netpath.org). The IDSERVE database includes human curated interactions from BIND (Bader et al.,

2003), HPRD (Peri et al., 2003), and Reactome (Joshi-Tope et al., 2005), interactions predicted based on

co-citations in article abstracts, and interactions that transferred from lower eukaryotes based on sequence

similarity (Lehner and Fraser, 2004). We derived functional annotations for the genes in our network from

the Gene Ontology (GO) (Ashburner et al., 2000) and from MSigDB (Subramanian et al., 2005). In addition,

we annotated each Netpath interaction in our network with the name of the pathway it belonged to. We

used these annotations to compute the functional enrichment of the nodes and edges in the network legos

using the hypergeometric distribution. We controlled the false discovery rate using the method proposed

by Benjamini and Hochberg (1995).

We present two analyses below. In the first, we compare and contrast three types of leukemias. In the

second, we compute the network legos for a set of environmental stresses imparted to two human cell

types.

4.1. ALL, AML, and MLL

Armstrong et al. (2002) demonstrated that lymphoblastic leukemias involving translocations in the MLL

gene constitute a disease different from conventional acute lymphoblastic (ALL) and acute myelogenous

leukemia (AML). The authors based their analysis on the comparison of gene expression profiles from

individuals diagnosed with ALL, AML, and MLL. We reasoned that the networks of molecular interactions

activated in these diseases may also show distinct differences. First, we computed active networks for each

leukemia, as described in Section 3.2. Next, we computed all 19 (33 � 23) blocks induced by these three

active networks, using the method presented in Section 3.3. Since the number of blocks is small, we did

not compute their statistical significance. Instead, we treated every block as a network lego. We connected

the network legos in the directed acyclic graph (DAG) displayed in Figure 3. In this DAG, each node

represents a single network lego, e.g., the leftmost node on the top row represents the MLL active network

while the leftmost node in the middle row represents the interactions activated in AML but not in MLL

(the formula AML�MLL). A solid blue edge directed from a child to a parent indicates that the formula

for the child (e.g., MLL) appears as a part of the formula for the parent (e.g., MLL � AML), while a

dashed green edge indicates that the child’s formula (e.g., MLL) appears negated in the parent’s formula

(e.g., AML �MLL).

To assess the biological content of the results and to illustrate one type of analysis our approach

facilitates, we computed Netpath pathways enriched in the interactions in the networks corresponding to

the 19 formulae. Figure 3 demonstrates that the interactions in the KIT pathway are differentially enriched

in the 19 networks. The darker the colour of a node, the more statistically significant is the enrichment of

this pathway in the corresponding network. We first note that the only formulae enriched in this pathway

are the ones that involve AML (and not the complement of AML). The statistical significance is the highest

(FDR-corrected p-value 3:5 � 10�7) for the formula AML�ALL �MLL. We interpret these statistics to

imply that this pathway is activated only in AML and not in ALL or in MLL. Evidence in the literature

supports this conclusion. The c-KIT receptor is activated in almost all subtypes of AML (Reuss-Borst et al.,
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FIG. 3. The DAG connecting combinations of ALL, AML, and MLL active networks. Each node contains an index,

the number of “c”onditions, the number of “i”nteractions and the active networks participating in the formula. We

use “!” to indicate set difference. Colors indicate differential enrichment of the interactions in the KIT pathway in the

computed combinations. Darker colors denote more significant enrichment values. (See this paper online for Fig. 3 in

color.)

1994; Schwartz et al., 1999). Similarly, Schnittger et al. (2006) report that “mutations in codon D816 of

the KIT gene represent a recurrent genetic alteration in AML.” By studying 1937 patients diagnosed with

acute leukemia, Bene et al. (1998) found that c-kit was expressed in 67% of AML cases but only in 4%

of ALL cases, and that most of these ALL cases exhibited myeloid markers. We note that gain-of-function

mutations in c-Kit have been observed in many human cancers (Cozma and Thomas-Tikhonenko, 2006).

Our analysis only suggests that in the context of ALL, AML, and MLL, the KIT pathway may be activated

only in AML.

4.2. Human stresses

We computed network legos by applying our methods to the human interaction network and the gene

expression responses of HeLa cells and primary human lung fibroblasts to heat shock, endoplasmic

reticulum stress, oxidative stress, and crowding (Murray et al., 2004). The dataset we analyzed includes

transcriptional measurements obtained by Whitfield et al. (2002) for studying cell cycle arrest by using

a double thymidine block or with a thymidine-nocodazole block. Overall, the dataset contains 13 distinct

stresses over the two cell types. The authors note that each type of stress resulted in a distinct response and

that there was no general stress response unlike in the case of S. cerevisiae (Gasch et al., 2000). Therefore,

this dataset poses a challenge to our system. Can we find network legos that combine active networks for

multiple stresses?

Structural analysis of network legos. The number of genes in the 13 active networks we computed

ranged from 165 (for crowding of WI38 cells) to 1148 (for the thymidine-nocodazole block) with an

average of 684 genes per active network. The number of interactions ranged from 257 to 3667 with an

average of 1874 interactions per active network. Theoretically, we can compute 1,586,131 (313�213) blocks

involving 13 distinct active networks. Our method computed 444,201 blocks, indicating that the remaining

combinations of active networks are not closed or yield blocks without any interactions. We computed

a null distribution of block sizes using a million random samples. Of the 444,201 blocks, 12,386 blocks

were statistically significant at the 0.01 level. We identified 143 network legos in the DAG induced by

the relation < on these blocks. We observed that all but one of the 143 network legos involved at least

six distinct active networks, indicating that these network legos are not the result of combining a small

number of active networks. The following table displays the distribution of the number of legos involving

k conditions, where 5 � k � 12. Interestingly, no network lego involved all 13 active networks.

#conditions 5 6 7 8 9 10 11 12

#legos 1 6 10 36 34 20 28 8

In light of the statement by Murray et al. (2004) that each type of stress resulted in a distinct response,

it is important to ask whether most of our network legos primarily involve complemented active networks.

Over all network legos .G;P;N /, we counted the total size of the “P sets” and the “N sets.” The
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ratio of these numbers was 2:3, indicating that a large fraction of the network legos represented features

common to multiple stresses. The active networks that appeared most often in the positive form were

the two treatments that resulted in cell cycle arrest. Each participated in as many as 119 network legos.

In most of these network legos, almost all the other active networks appeared in complemented form.

The complements of the cell cycle arrest active networks did not participate in any network legos. This

observation indicates that the interactions activated by cell cycle arrest are quite distinct from the network

of interactions activated by the other stresses.

We obtained very good stability and recovery results. Upon the removal of each active network, we were

able to recompute each network lego with at least 95% fidelity. We were also able to recover 11 active

networks with 100% accuracy by composing network legos. The two active networks we could not recover

completely were the double thymidine network (97% recovery) and the thymidine-nocodazole network

(86% recovery). When we tested the recoverability of active networks using the blocks at the roots of

the DAG connecting statistically-significant blocks, the recovery for these two active networks dropped to

85% and 75% respectively. This result underscores the fact that identifying network legos as those that are

maximally statistically-significant in the DAG of blocks is a useful concept.

Since the cell-cycle treatments resulted in active networks that were quite distinct from those for the other

stresses, we repeated the analysis after removing the double thymidine and thymidine-nocodazole active

networks. The 11 remaining active networks yielded only 77,117 blocks (out of the 175,099 possible).

Of these, 1629 blocks were statistically significant. These blocks yielded 15 network legos. This much

smaller set of network legos suggests that a number of the 143 network legos in the complete analysis

were needed to capture unique aspects of the cell cycle active networks. Each network lego involved at

least seven active networks. No network lego involved all 11 stresses. The ratio of total size of the “P

sets” and the “N sets.” over the 15 network legos was 1:2. Of the 11 active networks, we recovered five

with complete accuracy and one with 99.9% accuracy. We recovered the remaining with accuracies ranging

from 71% to 92%. Taken together, these statistics indicate that the network legos we detect are indeed

building blocks of the networks activated in response to the stresses studied by Murray et al. (2004).

Biological analysis of network legos. We focus on one of the 15 network legos we computed in our

analysis without the cell cycle arrest treatments. This ER stress network lego corresponds to the formula

.Fibroblast DTT \ Fibroblast Menadione/�

.HeLa Crowding[ HeLa Heat [ HeLa Menadione[ Fibroblast Crowding[ Fibroblast Heat/

The only two stresses that appear in positive form in this formula are the treatment of fibroblasts with

DTT and menadione. These chemicals induce endoplasmic reticulum (ER) stress. This network lego is

the only one significantly enriched in functions related to the cell cycle (e.g., p-value 3 � 10�30 for

the KEGG (Kanehisa et al., 2006) “Cell cycle” pathway and 2:3 � 10�24 for the REACTOME (Joshi-

Tope et al., 2005) pathway describing the transition from G1 to S) and in targets of the E2F1 transcription

factor (Subramanian et al., 2005) (p-value 8�10�13), which is a known regulator of cell cycle progression.

E2F1 arrests cells in the G1 phase by forming a transcriptional repressor complex with the Retinoblastoma

protein (Zhang et al., 1999). Figure 4 displays a layout of the ER stress network lego, specifically

highlighting the genes annotated with the KEGG “Cell cycle” pathway and as targets of E2F1. Figure 5

shows a heat map of the expression profiles of the genes annotated with these two functions in the seven

conditions in the network lego. Examination of the gene expression patterns in Figure 5 reveals that, at

about 4–6 hours after treatment with DTT or menadione, fibroblasts shut down the cell cycle far more

aggressively than fibroblasts or HeLa cells do in response to other treatments. Thus, this network lego

lego automatically identifies a unique characteristic of fibroblast response to ER stress in the context of

the other stresses in the compendium.

5. DISCUSSION

We have presented a novel approach for combining gene expression datasets with a multi-modal wiring

diagram to compute network legos, which are context-sensitive building blocks of the wiring diagram.

This combination provides a dynamic view of the interactions that are activated in the wiring diagram
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FIG. 4. A layout of the interactions in the ER stress network lego. Red nodes are annotated with “Cell cycle” and

green nodes are targets of the E2F1 transcription factor. (See this paper online for Fig. 4 in color.)

under different conditions. We represent similarities and differences between the network of interactions

activated in response to different cell states both as a set theoretic formula involving cell states and as

a network lego, a functional module of co-expressed molecular interactions. A novel contribution of our

work is the DAG that relates all cell states (and the active networks corresponding to the cell states). This

DAG provides a high-level abstract view of the similarities and differences between cell states.

The literature on network motifs (Milo et al., 2002, 2004; Shen-Orr et al., 2002; Yeger-Lotem et al., 2004)

provides an alternative perspective on finding the building blocks of cellular circuits. Zhang et al. (2005)

constructed an integrated S. cerevisiae interaction network, identified three- and four-node network motifs,

and organized these motifs into network themes and further into thematic maps. It would be interesting to

study whether the top-down approach presented here to construct network legos yields network modules

that are similar in structure and organization to those computed by the bottom-up approach used by

Zhang et al. (2005).

Since we explicitly compute all closed biclusters in B, the worst-case running time of our algorithm may

be exponential in the number of active networks. An interesting avenue of future research is to develop a

method that avoids this exorbitant running time, perhaps by computing network legos that directly optimize

for stability and/or recoverability. Another important open question is that of developing an incremental

algorithm that can efficiently recompute the network legos upon the addition or deletion of an active

network.
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FIG. 5. A heat map of the gene expression measurements in the seven conditions participating in the ER stress

network lego. Columns correspond to genes annotated with at least one of the functions mentioned in the text. Rows

correspond to samples. Each vertical pink line delineates a set of samples belonging to one of the stresses in the

network lego. The two lowermost pink lines correspond to fibroblast response to treatment with menadione and with

DTT, which are the two stresses that appear in positive form in the ER stress network lego. (See this paper online for

Fig. 5 in color.)
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