
Identifying Evolutionarily Conserved Protein

Interaction Modules Using GraphHopper

Corban G. Rivera� and T.M. Murali��

114 McBryde Hall, Department of Computer Science,
Virginia Polytechnic Institute and State University, Blacksburg VA 24061

cgrivera@vt.edu, murali@cs.vt.edu

Abstract. We study the question of detecting Conserved Protein Inter-
action Modules (CPIMs) in protein-protein interaction (PPI) networks.
We propose a novel algorithm called GraphHopper that analyzes two PPI
networks to find CPIMs. GraphHopper finds CPIMs by “hopping” from
one network to another using orthology relationships. By decoupling the
degree of evolutionary conservation in a CPIM from the reliability of
the PPIs in a CPIM, GraphHopper finds CPIMs with a wide variety of
topologies that previous algorithms cannot detect.

GraphHopper is competitive with NetworkBlast and Match-and-Split,
two state-of-the-art algorithms for computing CPIMs, on the task of re-
capitulating MIPS processes and complexes. Upon applying GraphHop-
per to human, fly, and yeast PPI networks, we find a number of CPIMs
involved in fundamental processes of the cell that are conserved in all
three species. We present the first global map of human-fly CPIMs. This
map sheds light on the conservation of protein interaction modules in
multi-cellular organisms. CPIMs related to development and the nervous
system emerge only in the human-fly comparison. For example, a set of
10 interconnected CPIMs suggest that fly proteins involved in eye devel-
opment may have human orthologs that have evolved functions related
to blood clotting, vascular development, and structural support.

1 Introduction

Protein-Protein Interaction (PPI) networks containing thousands of interactions
are now available for a number of species, including human, yeast, worm, and
fly. Pairwise comparison of these networks enables the computation of groups of
interacting proteins that are conserved in different organisms [1], thus laying the
basis for module-level modeling of cellular processes. Such conserved sets consist
of two connected protein interaction sub-networks (or modules), one in each PPI
network, such that proteins in each module have orthologs in the other module.
In this paper, we call these Conserved Protein Interaction Modules (CPIMs).

� Current address: Johns Hopkins University, School of Medicine, 720 Rutland Ave,
Traylor 613, Baltimore, MD 21205-2109.

�� Corresponding author.

S. Rajasekaran (Ed.): BICoB 2009, LNBI 5462, pp. 67–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

68 C.G. Rivera and T.M. Murali

Sharan and Ideker [1] survey many techniques developed to address this prob-
lem. A common feature of a number of these approaches [2,3,4] is the combi-
nation of the PPI networks of two species into a single “alignment graph”. A
node in the alignment graph represents two orthologous proteins, one from each
PPI network. An edge in the alignment graph represents an interaction that is
conserved in both PPI networks. These methods add an edge to the alignment
graph only if the proteins contributing to the nodes are connected through at
most one intermediate protein in the respective PPI networks. The weight of an
edge represents the likelihood that the corresponding interactions are conserved;
this weight depends on the degree of orthology between the proteins and on
assessed confidence estimates that the individual PPIs indeed take place in the
cell. These authors find CPIMs by using various approaches to compute paths,
complexes, and subgraphs of high weight in the alignment network and then
expanding each such subgraph into the constituent PPIs.

Our approach. In this paper, we present a novel algorithm called GraphHopper
for computing CPIMs in two PPI networks. GraphHopper computes two scores
of quality for each CPIM. (i) The conservation score measures the total amount
of sequence similarity among the proteins in the CPIM, averaged over the num-
ber of proteins in the CPIM. (ii) The unreliability score measures our total
confidence in all the PPIs in the CPIM; this measure is useful since it is well
documented that a number of high-throughput assays for detecting PPIs have
high error rates [5]. A “good” CPIM has high conservation score and low unreli-
ability score. Unlike the techniques mentioned earlier, GraphHopper treats the
two PPI networks separately and connects each node in one PPI network to its
potential orthologs in the other PPI network. GraphHopper starts by construct-
ing a number of basis CPIMs, each of which is a pair of orthologous protein-pairs
that directly interact. GraphHopper then expands each basis CPIM into a CPIM
by “hopping” from one PPI network to another. In each hop, GraphHopper adds
proteins and interactions to the current CPIM while ensuring that (i) the conser-
vation score does not decrease and (ii) the unreliability score increases as little
as possible. GraphHopper stops when it cannot add any more proteins without
decreasing the conservation score.

Like GraphHopper, Narayanan and Karp’s Match-and-Split algorithm [6] does
not construct an alignment network. They use combinatorial criteria to de-
cide when the local neighborhoods of a pair of orthologs match. Under their
model, they prove that a given pair of proteins can belong to at most one
CPIM. This observation leads to a top-down partitioning algorithm that finds all
maximal CPIMs in polynomial time. The MULE algorithm developed by Koyu-
turk et al. [7] also keeps PPI networks separate; it uses ortholog contraction and
frequent subgraph detection to identify CPIMs.

Our contributions. We used GraphHopper to analyze all pairwise combina-
tions of human, fly, and yeast PPI networks. Other approaches have considered
the conservation of human PPIs and CPIMs in the networks of other eukary-
otes [3,7,8]. The primary contribution of our work is a significant expansion of

Identifying Evolutionarily Conserved Protein Interaction Modules 69

these results by (i) considering a dataset of human PPIs integrated from multiple
sources, (ii) detecting large functionally-enriched CPIMs with diverse topologies,
and (iii) computing an integrated high-level map of CPIMs conserved only in hu-
man and fly PPI networks. As far as we know, this paper is the first to construct
such a high-level map of human-fly CPIMs. Modules found by Gandhi et al. [8]
were restricted to fundamental processes of life such as DNA replication and
repair and transcription. In contrast, we find many CPIMs with that are en-
riched in functions unique to multi-cellular organisms. For instance, we find a
set of 10 interconnected CPIMs which suggest that fly proteins involved in eye
development may have human orthologs that have evolved functions related to
blood clotting, vascular development, and structural support.

We compared GraphHopper to NetworkBlast [9], a state-of-the-art algorithm
based on alignment networks, and to Match-and-Split [6]. We measured the
ability of these three algorithms to recover MIPS complexes and processes [10].
In general, GraphHopper is competitive with and sometimes outperforms Match-
and-Split in spite of computing a much larger number of CPIMs. GraphHopper
has better precision and recall than NetworkBlast for MIPS processes.

An important feature of GraphHopper is its ability to compute CPIMs of
far more diverse topologies than algorithms based on alignment networks. Algo-
rithms that operate on alignment networks compute (highly weighted) subgraphs
and map them into modules in each PPI network being compared. Since each
such module is likely to have a topology very similar to the subgraph in the
alignment network, the modules themselves have very similar topologies. In con-
trast, GraphHopper keeps the two PPI networks separate, thereby decoupling
the evolutionary conservation of the proteins in a CPIM from the reliability of
the PPIs that connect the proteins. As a result, GraphHopper is able to adapt
to differing patterns of interactions in the two PPI networks, e.g., matching a
module with one topology (say, a star) in one PPI network to a module with
a considerably different topology (say, a complex) in the other PPI network.
GraphHopper outperforms not just NetworkBlast but also Match-and-Split in
this comparison. Match-and-Split only outputs CPIMs with at most 50 proteins;
this restriction may hamper its ability to find CPIMs with diverse topologies.

2 Algorithms

2.1 A Model for CPIMs

We represent the set of PPIs in an organism as an undirected graph G(V, E),
where V is the set of proteins in the organism and each edge (a, b) ∈ E is an
interaction between proteins a and b. We associate a weight le with each edge
e ∈ E. Let G1(V1, E1) and G2(V2, E2) be the PPI networks of two different
organisms. We represent orthologous proteins as a bipartite graph H in which
each edge (a, b) ∈ V1 × V2 represents a pair of orthologous proteins a and b.
Each edge e ∈ H has a weight we equal to the BLASTP E -value between the
connected proteins. We define a Conserved Protein Interaction Module (CPIM)
as a triple (T1, T2, O) where T1 and T2 are connected subgraphs of G1 and G2,

70 C.G. Rivera and T.M. Murali

respectively, and O ⊆ H such that (a, b) ∈ O if and only if a is a node in T1 and
b is a node in T2. Thus, O is the subgraph of H induced by the nodes in T1 and
T2. We define two quantities to measure the quality of a CPIM.

Conservation score. The conservation score of a CPIM (T1, T2, O) measures the
amount of evolutionary similarity (at the amino acid level) between the protein
interaction networks T1 and T2. Let P1 (respectively, P2) be the set of nodes in
T1 (respectively, T2). We define the conservation score of a CPIM (T1, T2, O) as

φ(T1, T2, O) =
∑

e∈O − log(we)
|P1| + |P2| .

The larger this score, the more evolutionary conserved T1 and T2 are since fewer
proteins without orthologs can belong to the CPIM.

Unreliability score. Since many experimental techniques used to detect PPIs are
error-prone, a number of methods have been developed to assess PPI reliabili-
ties [5]. We do not consider methods that use gene expression data, since our
goal is detect conservation purely at the level of PPIs. We also discard techniques
that use functional annotations, since we use this data to assess the biological
information in a CPIM. Therefore, we compute edge weights using the method
proposed by Goldberg and Roth [11]: if the two nodes incident on an edge have
more common neighbors than would be expected by chance, they assigned a high
confidence (low p-value) to that edge. For a PPI e, we compute this p-value pe

using Fischer’s exact test and set le = − log(1−pe). We use Bonferroni’s correc-
tion to adjust for multiple hypotheses testing. We define the unreliability score
q(T1, T2, O) of a CPIM as follows:

q(T1, T2, O) =
∑

e∈T1∪T2

le.

Since pe is a probability, we combine the weights of multiple PPIs by adding
their logarithms (the le values). A CPIM with high confidence edges has a small
unreliability score.

2.2 The GraphHopper Algorithm

The GraphHopper algorithm finds CPIMs with high conservation and low unre-
liability scores. Our inputs are two protein interaction networks G1 = (V1, E1)
and G2 = (V2, E2) and a set of orthologous protein pairs H . We define the light-
ness of a path π of PPIs in G1 or G2 to be |π| =

∑
e∈π le; thus, light paths

contain high-confidence edges.

Computing basis CPIMs. We start by constructing a basis set of CPIMs in
which each CPIM (T1, T2, O) has the following properties: (i) O contains two
edges (a, a′) ∈ H and (b, b′) ∈ H ; (ii) a and b are adjacent in G1 (i.e., T1 is the
edge (a, b)); and (iii) a′ and b′ are adjacent in G1.

Expanding a basis CPIM. GraphHopper processes each CPIM in the ba-
sis set using the following iterative algorithm. Figure 1 displays these steps.

Identifying Evolutionarily Conserved Protein Interaction Modules 71

(a) (b) (c)

Fig. 1. An illustration of how GraphHopper expands a CPIM in iteration k. (a) A
CPIM at the end of iteration k − 1. (b) In iteration k, GraphHopper keeps the blue
network in the CPIM fixed and expands the red network. Arrows mark the two nodes
in the set P computed in Step (i). The node v′ found in Step (iii) is the lower of
these two nodes. In Steps (iv) and (v), GraphHopper adds the thick magenta PPIs and
orthology edges to the CPIM. (c) The CPIM at the end of iteration k.

Let (T 1
1 , T 1

2 , O1) be a basis CPIM. In iteration k > 1 (Figure 1 (a)), we con-
struct a CPIM (T k

1 , T k
2 , Ok) such that (T k−1

1 , T k−1
2 , Ok−1) is a subgraph of

(T k
1 , T k

2 , Ok) and φ(T k
1 , T k

2 , Ok) > φ(T k−1
1 , T k−1

2 , Ok−1). We also attempt to keep
q(T k

1 , T k
2 , Ok) − q(T k−1

1 , T k−1
2 , Ok−1) as small as possible. We keep either T k−1

1

or T k−1
2 fixed and “expand” the other graph. Without loss of generality, we as-

sume that T k
1 = T k−1

1 and T k−1
2 is a subgraph of T k

2 in the following discussion.
We construct (T k

1 , T k
2 , Ok) using the following steps:

(i) We identify a set P ⊆ V2 of nodes such that each node v ∈ P is not a node
in T k−1

2 and is connected by an edge in H to at least one node in T k
1 .

(ii) For each node v ∈ P , we use Dijkstra’s algorithm to compute the lightest
path πv in G2 that connects v to T k−1

2 , i.e., for each node u ∈ T k−1
2 , we

compute the lightest path between u and v in G2, and set πv to be the
lightest of these paths.

(iii) We find the node v′ in P such that πv′ is the lightest among all paths
computed in the previous step.

(iv) We set T k
2 to be the union of T k−1

2 and πv′ (Figure 1 (b)).
(v) We set Ok to be the union of Ok−1 and the set of edges in H incident on

v′ and a node in T k
1 (Figure 1 (b)).

(vi) We compute φ(T k
1 , T k

2 , Ok). If φ(T k
1 , T k

2 , Ok) > φ(T k−1
1 , T k−1

2 , Ok−1), we go
to Step (i) and expand (T k

1 , T k
2 , Ok) while keeping T k

2 fixed (Figure 1 (c)).
Otherwise, we proceed to the next basis CPIM.

We provide the rationale for these steps. To expand the CPIM (T k−1
1 , T k−1

2 , Ok−1)
after setting T k

1 = T k−1
1 , we first identify the set P of nodes in G2 that do not

belong to T k−1
2 but are orthologs of nodes in T k

1 (Step (i)). Each node in P is
a candidate that we can add to T k−1

2 in order to construct T k
2 . However, such

a node v ∈ P may not be adjacent to any node in T k−1
2 , as displayed in Figure

1 (b). Since our goal is to keep q(T k
1 , T k

2 , Ok)− q(T k−1
1 , T k−1

2 , Ok−1) as small as
possible, we would like to connect v to T k−1

2 using the edges with the highest

72 C.G. Rivera and T.M. Murali

possible confidence in G2. A natural candidate for this set of edges is the light-
est path πv connecting v to T k−1

2 , where this minimum is taken over the set
of lightest paths connecting v to each node in T k−1

2 . Therefore, for each node
v in P , we compute the lightest path πv by which we can connect v to T k−1

2

using only edges in G2 (Step (ii)). In Steps (iii) and (iv), we add that path π′
v

to T k−1
2 that is lightest among all the paths computed i.e., v′ = argminv∈P |πv|.

After computing T k
2 , we set Ok to be the subgraph of H induced by the nodes

in T k
1 and T k

2 by adding the edges in H that are incident on v′ and any node in
T k

1 (Step (v)); by construction, no node in π′
v other than v′ is connected by an

edge in H to a node in T k
1 . This step completes the construction of (T k

1 , T k
2 , Ok).

Finally, in Step (vi), we continue expanding (T k
1 , T k

2 , Ok) if its conservation score
is greater than φ(T k−1

1 , T k−1
2 , Ok−1). Otherwise, we stop the iteration and move

on to the next basis CPIM. By induction, the graphs T k
1 , T k

2 and T k
1 ∪ T k

2 ∪ Ok

are connected. Note that q(T k
1 , T k

2 , Ok) implicitly plays a role in the expansion:
since both the unreliability score of a CPIM and the lightness of a path are
defined as the sum of the le values of the edges that appear in the CPIM or
the path, by choosing to add the lightest path πv′ to T k

2 , we are attempting to
minimize q(T k

1 , T k
2 , Ok) − q(T k−1

1 , T k−1
2 , Ok−1).

Merging CPIMs. Following Sharan et al. [9], we compute the statistical sig-
nificance of a CPIM by comparing its conservation score to the distribution of
conservation scores of CPIMs found by GraphHopper in random PPI and orthol-
ogy networks with the same degree distributions as G1, G2, and H . We retain
CPIMs with p-value at most 0.05. The remaining CPIMs may have considerable
overlap. We merge CPIMs by modifying the procedure used by Sharan et al. [9].
For each CPIM C, we compute all the biological functions it is enriched in using
Fischer’s exact test and note the function fC that is most enriched (has smallest
p-value) in C. Let F be the set of all such most-enriched functions. For each
function l ∈ F , we compute a CPIM Cl as the union of all CPIMs C for which
l = fC , i.e., Cl =

⋃
l=fC

C. We report results for these CPIMs. Note that this
method (i) does not require us to provide a cutoff on the overlap of two CPIMs
that should be merged, (ii) allows merged CPIMs to share both proteins and
interactions, and (iii) may yield disconnected CPIMs.

Remarks. There is considerable scope for variation in our algorithm. For in-
stance, we can define the conservation and unreliability scores differently, com-
bine the two scores, use simulated annealing-like techniques to optimize these
scores, or focus on optimizing the unreliability score instead of the conservation
score. We have experimented with a number of such choices (data not shown)
and found that the algorithm presented consistently achieves good results.

3 Results

3.1 Comparison to NetworkBlast and Match-and-Split

We compared GraphHopper to NetworkBlast [9], a state-of-the-art method for
computing CPIMs from alignment networks, and to Match-and-Split [6], which

Identifying Evolutionarily Conserved Protein Interaction Modules 73

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
/R

ec
al

l

Coverage threshold

Comparison of Fly-Yeast CPIMs for MIPS complexes

GraphHopper Recall
GraphHopper Precision
Match-and-Split Recall

Match-and-Split Precision
NetworkBLAST complexes Recall

NetworkBLAST complexes Precision

(a) MIPS complexes

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
/R

ec
al

l

Coverage threshold

Comparison of Fly-Yeast CPIMs for MIPS processes

GraphHopper Recall
GraphHopper Precision
Match-and-Split Recall

Match-and-Split Precision
NetworkBLAST complexes Recall

NetworkBLAST complexes Precision

(b) MIPS processes

Fig. 2. Comparisons of GraphHopper, Match-and-Split, and NetworkBLAST

that like GraphHopper finds CPIMS by keeping the two PPI networks sepa-
rate. Both papers used the same fly and yeast datasets. We downloaded these
datasets and the results obtained by these algorithms from the supplementary
websites accompanying the respective papers. We ran GraphHopper on exactly
the same fly and yeast datasets. We used the procedure suggested by Narayanan
and Karp [6] to compare the algorithms. We computed fly-yeast CPIMs and
considered only the yeast sub-network in each CPIM. We considered two sets
of gold standard modules defined by MIPS process annotations and by MIPS
complex annotations for yeast genes [10]. We defined one set S of proteins as
being covered by another set S′ if |S ∩ S′|/|S| ≥ t, for a threshold 0 ≤ t ≤ 1.1

For a given value of t, we measured the precision of an algorithm as the fraction
of computed CPIMs covered by at least one gold standard module and the recall
of the algorithm as the fraction of gold standard modules covered by at least one
computed CPIM. For each algorithm, we plotted precision and recall at different
values of t. Precision and recall are both equal to 1 for t = 0. Both measures
decrease monotonically with increasing t.

Figure 2 displays these results. For MIPS complexes, all three algorithms
have comparable precision across almost the entire range of the coverage thresh-
old. However, GraphHopper and NetworkBLAST have better recall than Match-
and-Split. Match-and-Split achieves the best precision for MIPS processes. For
this gold standard, GraphHopper has better precision and recall than Network-
BLAST. We obtain results similar to Figure 2(b) for KEGG processes (data
not shown). These results are based on 766 GraphHopper CPIMs, 835 Network-
BLAST modules, and 27 Match-and-Split modules. Thus, Match-and-Split com-
putes many fewer modules than the other two algorithms. On average, Match-
and-Split modules are much smaller than those computed by GraphHopper and
NetworkBLAST. Thus, GraphHopper is competitive with and sometimes out-
performs Match-and-Split in spite of computing a much larger number of CPIMs.

Comparison of topological diversity. To underscore the diversity of the topolo-
gies of the CPIMs computed by GraphHopper, we performed another comparison
1 Narayanan and Karp only considered t = 0.5.

74 C.G. Rivera and T.M. Murali

of the three algorithms. We partitioned each computed CPIM into its two species-
specific components and computed the ratio of the number of proteins in the
larger component and the numbers of proteins in the smaller component. We
observed that both Match-and-Split and NetworkBLAST computed CPIMs for
which these ratios were between one and two. In contrast, GraphHopper com-
puted a number of CPIMs with ratio at least 2.5. An example is a CPIM con-
taining 4 yeast and 11 fly proteins that is enriched in the cellular component
“myosin” (7.8× 10−7)2. Myosin is a protein complex that functions as a molec-
ular motor, using the energy of ATP hydrolysis to move actin filaments or cargo
on actin filaments. This CPIM may suggest how interactions between myosin
proteins have evolved from single-celled to multi-cellular organisms.

3.2 Datasets

In the rest of this section, we present results obtained by GraphHopper on
human, fly, and baker’s yeast protein interaction networks. We obtained 31610
interactions between 7393 human proteins from the IDSERVE database [12].
We removed interactions in the IDSERVE data that were obtained by transfer
from lower eukaryotes based on sequence similarity. We also included 3270 hu-
man interactions derived using large scale yeast two-hybrid experiments from
Stelzl et al. [13], and 6726 human PPIs from Rual et al. [14]. Overall, this hu-
man PPI network contained 7787 proteins and 30703 interactions and represents
interactions from a diverse variety of sources. From the Database of Interact-
ing Proteins [15], we collected 22004 interactions between 7350 fly proteins and
15317 interactions between 5019 yeast proteins. To find orthologous pairs of
proteins, we ran BLASTP on a database containing all human, fly, and yeast
protein sequences and retained only bidirectional hits with E -values less than
10−7. We gathered functional annotations from the Gene Ontology (GO).

3.3 A Global Map of Human-Fly CPIMs

We find 265 human-fly CPIMs enriched in 969 functions, 149 human-yeast
CPIMs enriched in 784 functions, and 34 fly-yeast CPIMs enriched in 273 func-
tions. 161 functions enriched in all three comparisons span a diverse range
of cellular activities including biological process such as cytokinesis, protein
metabolism, and reproduction; molecular functions including microfilament mo-
tor activity, GTPase activity, and cyclin-dependent protein kinase activity; and
cellular components such as the microtubule and the endoplasmic reticulum.

We find 163 functions enriched exclusively in human-fly CPIMs. Many of these
functions are unique to multi-cellular organisms, for example, cell-matrix adhe-
sion (2×10−13), tissue development (3×10−6), cell differentiation (1.2×10−13),
and ectoderm development (1.6×10−10). Several CPIMs are enriched in functions
related to sexual reproduction, such as embryonic development (4.2 × 10−11),
germ-line stem cell division (6.7 × 10−9) and ovarian follicle cell development

2 Numbers in parentheses are Bonferroni-corrected p-values of functional enrichment.

Identifying Evolutionarily Conserved Protein Interaction Modules 75

branched duct epithelial
cell fate determination

(sensu Insecta)

primary tracheal branching
(sensu Insecta)

platelet derived
growth factor receptor

activity

transforming growth
factor beta receptor

activity
BMP signaling pathway

growth factor activity

positive regulation
of organ size

Toll signaling pathway

epidermal growth factor
receptor signaling

pathway

R7 cell fate commitment

torso signaling pathway

axis, embryo

inositol or phosphatidylinositol
phosphodiesterase

activity

ionotropic glutamate
receptor activity

fibroblast growth
factor receptor signaling

pathway

II transcription factor
activity

guanylate kinase activity

transforming growth
factor beta receptor
signaling pathway

hemocyte migration
(sensu Arthropoda)

border follicle cell
migration (sensu Insecta)

transcription cofactor
activity

learning and/or memory

SH3/SH2 adaptor activity

histone acetyltransferase
activity

guanylate cyclase
activity

voltage gated potassium
channel complex

calcium mediated
signalingmuscle contraction

Fig. 3. A network of functions enriched in human-fly CPIMs. To construct this image,
we associate each human-fly CPIM with the GO function most enriched in that CPIM,
restricting our attention to functions with p-value of 10−4 or better. We ignore a CPIM
c if there is another CPIM c′ such that the GO function associated with c is an ancestor
of the GO function associated with c′. We construct a network where each node is a
CPIM and an edge connects two nodes if their CPIMs overlap. The thickness of an edge
in Figure 3 represents the degree of overlap in terms of fraction of shared proteins (the
ratio of the size of the intersection to the size of the union). We discard CPIMs that had
at most 5% similarity to every other CPIM. We visualize the resulting network using
the Graphviz package [16]. Blue rectangles are GO biological processes, red octagons
are GO molecular functions, and green ellipses are GO cellular components.

(9.03 × 10−8). A number of CPIMs are related to the development of the ner-
vous system, for example, axon guidance (0.03), dopamine receptor activity
(5.6 × 10−17), and voltage-gated potassium channel complex (8.6 × 10−6).

Figures 3 and 4(a) display connected components of a global network of func-
tions enriched only in human-fly CPIMs and connections between these CPIMs.
The largest component of the network in Figure 3 spans a diverse set of processes
and functions, of which many are unique to multi-cellular organisms. The con-
nected component of the human-fly CPIM network in Figure 4(a) connects five
GO biological processes (negative regulation of fusion cell fate specification, Notch
signaling pathway, ommatidial rotation, R3/R4 cell differentiation, and regulation
of R8 spacing) to three GO molecular functions (calcium ion binding, extracellular
matrix structural constituent, and transmembrane receptor protein phosphatase
activity). Three of these CPIMs describe processes involved in eye development
in fly (ommatidial rotation, R3/R4 cell differentiation, and regulation of R8 spac-
ing). These CPIMs are connected by a module enriched in “transmembrane re-
ceptor protein phosphatase activity.” Tyrosine protein phosphatases such as Dlar
play a critical role in controlling motor neuron guidance and targeting R cells cor-
rectly to different layers of the fly compound eye [17]. Other CPIMs are enriched
in the molecular functions “calcium ion binding,” and “extracellular matrix struc-
tural constituent,” which reflect the roles played by the human proteins in these

76 C.G. Rivera and T.M. Murali

regulation of R8 spacing

negative regulation
of fusion cell fate

specification

R3/R4 cell differentiation
(sensu Endopterygota)

extracellular matrix
structural constituent

Notch signaling pathway

transmembrane receptor
protein phosphatase

activity

calcium ion binding

ommatidial rotation

(a)

mys

if

ITGB3

ITGB4

ITGB1

ITGB8ITGB6

ITGB5

ITGB2

ITGB7

sli

LAMA3

phl

csw

mew

ITGA2
ITGAX

ITGA8

ITGA4

ITGA2B

ITGA5

ITGAM

ITGA11

ITGA6

ITGA3

ITGA1

ITGAL

ITGA9

ITGAV

IRAK1

IRAK4 PTPRC

TLN1 MMP1

TSPAN4

ICAM4

BSG

P2RY2

(b)

Fig. 4. (a) A connected component of the global map of functions enriched in human-fly
CPIMs. (b) A human-fly CPIM conserved in the cellular component integrin complex.
Fly proteins and PPIs are colored in light red, human proteins and PPIs in light green,
and orthologous pairs are connected by dashed edges.

CPIMs. Many of these proteins contain calcium-binding domains and are localized
to the extracellular matrix: fibrinogen beta chain (FGB) is cleaved by thrombin to
form fibrin, which is an important component of blood clots; fubulin 1 (FBLN1)
mediates platelet adhesion by binding fibrinogen; fibulin 5 (FBN5) is expressed in
developing arteries; fibronectin 1 (FN1) is involved in cell adhesion and migration;
aggrecan (ACAN) is an important part of cartilage; and fibrillin 1 (FBN) and fib-
rillin 2 (FBN2) are structural components of calcium-binding microfibrils, which
provide structural support in elastic and nonelastic connective tissue throughout
the body. These CPIMs suggest that fly proteins involved in eye development have
human orthologs that have evolved functions related to blood clotting, vascular
development, and structural support.

Figure 4(b) displays a CPIM enriched in the cellular component integrin com-
plex (6.3×10−62). The fly sub-network in this CPIM contains only six proteins of
which three proteins (mew, if and mys) are members of the fly integrin complex,
while the human sub-network contains 32 proteins of which 22 are members of
the integrin complex. As the integrin complex is involved in cell-matrix adhe-
sion, we would not expect the integrin complex to be present in yeast; indeed no
yeast genes are annotated with this component. The fly PPI network contains
very few interactions between integrins, which are membrane proteins. The fly
PPI network was generated using a large-scale yeast two-hybrid assay [18] and
it is well-known that this assay fails to detect interactions involving membrane
proteins. On the other hand, the interactions between the proteins in the integrin
complex in the human PPI network are manually curated from the literature and
included in the HPRD database [19], which in turn is included in the IDSERVE
dataset [12] used in this paper.

Identifying Evolutionarily Conserved Protein Interaction Modules 77

4 Discussion

Earlier methods [2,4,9] for computing CPIMs have succeeded in detecting com-
plexes and pathways conserved between two or more species. For instance, these
models assume a pathway-like [2] or a complex-like [4] interaction structure
between all the proteins in a module. Methods that integrate multiple PPI net-
works into a single alignment graph [2,3,4] are likely to compute CPIMs where
the constituent protein interaction modules have similar topologies. The Graem-
lin algorithm allows the user to specify the topology of the protein interaction
modules to be aligned; however, both modules in a CPIM must have similar
topologies. An advantage that some previous methods have over GraphHopper
is that they can simultaneously align more than two PPI networks [20,7,9].

CPIMs found by GraphHopper have a wider range of topologies than those
computed by other methods. For example, the CPIM in Figure 4(b) maps the
integrin complex in fly (6 proteins, 5 interactions) to a much larger and more
dense human integrin network (32 proteins, 85 interactions). Such CPIMs are
useful for capturing the increased diversity and complexity of a module of pro-
teins in a higher eukaryote. This CPIM also demonstrates GraphHopper’s ability
to align a clique-like module with a module like a star graph.

We conclude by noting that CPIMs have been used to transfer protein func-
tional annotations from one organism to another [6,9]. Most predicted functions
correspond to fundamental processes of life. Our results, e.g., the suggested evo-
lution of eye development proteins in fly to human proteins involved in blood
clotting and vascular development, indicate the transfer of function for processes
unique to multi-cellular organisms requires new techniques.

Acknowledgments. Grants from the ASPIRES program and the Institute for
Critical Technology and Applied Science at Virginia Tech supported this re-
search. We thank Vandana Sreedharan for many useful discussions.

References

1. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

2. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,
Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proc. Natl. Acad. Sci. U S A 100(20), 11394–11399
(2003)

3. Koyuturk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama,
A.: Pairwise alignment of protein interaction networks. J. Comput. Biol. 13(2),
182–199 (2006)

4. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of pro-
tein complexes by comparative analysis of yeast and bacterial protein interaction
data. In: RECOMB 2004: Proceedings of the eighth annual international confer-
ence on Computational molecular biology, pp. 282–289. ACM Press, New York
(2004)

78 C.G. Rivera and T.M. Murali

5. Suthram, S., Shlomi, T., Ruppin, E., Sharan, R., Ideker, T.: A direct comparison
of protein interaction confidence assignment schemes. BMC Bioinformatics 7, 360
(2006)

6. Narayanan, M., Karp, R.M.: Comparing Protein Interaction Networks via a Graph
Match-and-Split Algorithm. J. Comput. Biol. 14(7), 892–907 (2007)

7. Koyuturk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.: Detecting
conserved interaction patterns in biological networks. J. Comput. Biol. 13(7), 1299–
1322 (2006)

8. Gandhi, T.K., et al.: Analysis of the human protein interactome and comparison
with yeast, worm and fly interaction datasets. Nat. Genet. 38(3), 285–293 (2006)

9. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., Mccuine, S., Uetz, P., Sittler, T.,
Karp, R.M., Ideker, T.: From the cover: Conserved patterns of protein interaction
in multiple species. Proc. Natl. Acad. Sci. U S A 102(6), 1974–1979 (2005)

10. Guldener, U., Munsterkotter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes,
H.W., Stumpflen, V.: MPact: the MIPS protein interaction resource on yeast. Nu-
cleic Acids Res. 34, D436–D441 (2006)

11. Goldberg, D.S., Roth, F.P.: Assessing experimentally derived interactions in a small
world. Proc. Natl. Acad Sci. U S A 100(8), 4372–4376 (2003)

12. Ramani, A.K., Bunescu, R.C., Mooney, R.J., Marcotte, E.M.: Consolidating the set
of known human protein-protein interactions in preparation for large-scale mapping
of the human interactome. Genome Biol. 6(5), R40 (2005)

13. Stelzl, U., et al.: A human protein-protein interaction network: a resource for an-
notating the proteome. Cell 122(6), 957–968 (2005)

14. Rual, J., et al.: Towards a proteome-scale map of the human protein-protein inter-
action network. Nature 437(7062), 1173–1178 (2005)

15. Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg,
D.: DIP: the database of interacting proteins. Nucleic Acids Res. 28(1), 289–291
(2000)

16. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software – Practice and Experience 30(11), 1203–
1233 (2000)

17. Araujo, S.J., Tear, G.: Axon guidance mechanisms and molecules: lessons from
invertebrates. Nat. Rev. Neurosci. 4(11), 910–922 (2003)

18. Giot, L., et al.: A protein interaction map of drosophila melanogaster. Sci-
ence 302(5651), 1727–1736 (2003)

19. Peri, S., et al.: Development of human protein reference database as an initial
platform for approaching systems biology in humans. Genome Res. 13(10), 2363–
2371 (2003)

20. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graem-
lin: general and robust alignment of multiple large interaction networks. Genome
Res. 16(9), 1169–1181 (2006)

	Introduction
	Algorithms
	A Model for CPIMs
	The GraphHopper Algorithm

	Results
	Comparison to NetworkBlast and Match-and-Split
	Datasets
	A Global Map of Human-Fly CPIMs

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

