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ABSTRACT
Analysis of molecular interaction networks is pervasive in sys-
tems biology. This research relies almost entirely on graphs
for modeling interactions. However, edges in graphs cannot
represent multi-way interactions among molecules, which oc-
cur very often within cells. Hypergraphs may be better rep-
resentations for such interactions, since hyperedges can natu-
rally represent relationships among multiple molecules.

Here we propose using hypergraphs to capture the uncer-
tainty that is inherent in reverse engineering gene-gene net-
works from systems biology datasets. Some subsets of nodes
may induce highly varying subgraphs across an ensemble of
high-scoring networks inferred by a reverse engineering al-
gorithm. We provide a novel formulation of hyperedges to
capture this uncertainty in network topology. We propose a
clustering-based approach to discover hyperedges.

We show that our approach can recover hyperedges planted
in synthetic datasets with high precision and recall. We ap-
ply our techniques to a published dataset of pathway struc-
tures inferred from quantitative genetic interaction data in S.
cerevisiae related to the unfolded protein response in the en-
doplasmic reticulum (ER). Our approach discovers several hy-
peredges that capture the uncertain connectivity of genes in
specific pathways and complexes related to the ER.

Our work demonstrates that molecular interaction hyper-
graphs are powerful representations for capturing uncertainty
in network structure. The hyperedges we discover directly
suggest groups of genes for which further experiments may
be required in order to precisely discover interaction patterns.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and Genetics; E.1
[Data Structures]: Graphs and Networks

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Interaction networks are increasingly used to represent cel-

lular processes and reason about them [11]. Methods have
been developed to reconstruct gene regulatory networks from
gene expression profiles [16]; to predict molecular interac-
tions [10]; to classify cellular states [7]; and to compute cel-
lular response networks [25]. An overwhelming majority of
these approaches use directed or undirected connections be-
tween pairs of molecules to model interaction networks. How-
ever pair-wise interactions cannot accurately represent coor-
dinated activity of assemblages of more than two molecules.
For instance, pair-wise interactions cannot represent a pro-
tein complex that acts as a unit, e.g., the Anaphase-Promoting
Complex (APC) that triggers exit from mitosis. Modifier pro-
teins and protein complexes often bind to and modulate the
activity of transcription factors. Metabolic reactions may in-
volve multiple substrates and products and be catalyzed by one
or more enzymes [17].

Hypergraphs are attractive alternatives to graphs to repre-
sent such facets of cellular processes [4, 9, 13, 27]. Infor-
mally, a hyperedge (an edge in a hypergraph) is simply a set
of one or more nodes; therefore, every edge in a graph is a hy-
peredge composed of exactly two nodes. Hypergraphs are in-
creasingly being recognized for their utility in accurately rep-
resenting cellular processes. Many databases and interaction
storage formats support hyperedges of different types, either
explicitly or implicitly [6, 20]. Such formats have proven use-
ful for converting existing interaction pathways and processes
into hypergraph representations.

The power of hypergraphs for representing uncertainty in
experimentally and computationally derived interactions is less
well recognized. For example, pair-wise interactions are inap-
propriate for representing protein complexes pulled down by
tandem affinity purification; it is widely recognized that the
spoke and matrix models [21] are both incorrect representa-
tions of purified complexes. While techniques have been de-
veloped to infer which pairs of proteins physically interact in
each complex [2, 21], representing each protein complex by a
hyperedge is natural [19].

More generally, methods that reconstruct gene networks [1,
18] may be able to infer only that there is some set of inter-
actions among a group of molecules but may not be able to
precisely discern pair-wise interactions within the group. Fur-
thermore, since experimental data are noisy and limited, there
may be multiple network topologies that fit the experimental
data equally well. Existing algorithms for inferring and repre-
senting molecular interaction networks make simplifying as-
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sumptions to account for the under-determined nature of the
system [16] or compute a single network that is the consensus
of multiple high-scoring networks [8]. The central thesis of
our work is that hypergraphs are natural candidates for rep-
resenting uncertainty in the topology of the inferred network.

Contributions. Our primary contribution is formulating
the novel problem of reverse engineering hypergraphs from
systems biology datasets. Many network inference techniques,
for example those discovering Bayesian networks, search the
landscape of possible networks until they converge to local
optima, thereby generating ensembles of networks with scores
that are close to optimal [1, 18]. Although these networks have
very similar scores, they may have different dependency and
connectivity structures [8, 18]. We take as our starting point
a set G of graphs computed by such an algorithm. In our for-
mulation, a set S of nodes constitutes a hyperedge if S induces
very different subgraphs in each of the graphs in G. Intuitively,
across the ensemble G, there is no consensus on which specific
edges should connect pairs of nodes in S. We deem such a set
of nodes to be a hyperedge. We formalize this notion by incor-
porating parameters that are lower bounds on the number of
distinct graphs on S that appear in G and the number of times
each such graph occurs in G.

Our second contribution is an algorithm that discovers hy-
peredges by computing heavily-weighted clusters in an appro-
priately defined summary graph. As far as we know, ours is
the first paper to explicitly propose using hypergraphs to rep-
resent uncertainty in the structure of reverse-engineered gene
networks, to propose a formal definition of hyperedges in this
context, and to develop an efficient algorithm to compute hy-
peredges supported by a set of varying graphs.

Results. First, we demonstrate that our approach recov-
ers hyperedges planted in synthetic datasets with high preci-
sion and recall, even when there is noise in the data and the
planted hyperedges overlap. Second, we highlight an appli-
cation where we use hyperedges to capture the variations in an
ensemble of networks inferred from quantitative genetic inter-
action (GI) data in S. cerevisiae [1]. Upon analysing this data,
we observe that our method discovers hyperedges that capture
specific pathways and complexes in the ER for whom the GI
data do not support well-defined interactions.

2. RELATED RESEARCH
Here, we highlight how our question is conceptually distinct

from related areas of research.

Network inference. Our knowledge of molecular in-
teractions that take place within the cell is highly incomplete.
To surmount this difficulty, methods have been developed to
predict or “reverse engineer” interactions from datasets of in-
formation on gene and protein expression. The primary as-
sumption underlying these techniques is that an interaction
may be inferred between two genes if they show similar pat-
terns of activities in multiple experimental conditions. Based
on this hypothesis, many methods have been developed to infer
interactions between pairs of genes [16]. As far as we know,
these methods cannot be generalized to predict hyperedges.

Gene modules and network clustering. A func-
tional module may be defined as a set of molecules that inter-

act to execute a discrete biological function. A vast number
of approaches have been developed to find modules or com-
munities from one or more molecular networks [14, 23]. All
existing methods start from one or more graphs and find dense
clusters within these graphs. The clusters may exist within
a single graph, be composed of edges arising from different
graphs, or occur simultaneously in many graphs (the last ver-
sion of the problem is often termed frequent subgraph mining
in relational graphs). In contrast, in our work, we focus on a
completely different type of property: a set of nodes that do
not exhibit any consistent pattern of connectivity in any graph.

Molecular hyperedges. Some approaches do exist to
reverse-engineer specific types of hyperedges from systems bi-
ology data. For instance, the MINDY [26] algorithm predicts
post-translational modulators of transcription factors (TF). In
other words, it predicts directed hyperedges with the TF and
its modulator on one side and the target gene on the other.
Another example arises in the work by Battle et al. on iden-
tifying pathways from genetic interaction data [1]. They re-
construct Bayesian networks that represent pathway structures
from quantitative phenotypes of double knockout strains of
budding yeast. They identify sets of nodes that induce dif-
ferent paths across an ensemble of high-scoring Bayesian net-
works. In principle, such node sets are similar to the hyper-
edges we compute. However, the paths among their node sets
do not necessarily vary widely across the graphs in G, i.e.,
only a few of the possible paths among the nodes may be rep-
resented in G. Our methodology differs significantly, as we ex-
plicitly seek sets of nodes whose induced subnetworks exhibit
high variation across the collection of graphs. Moreover, our
important contributions include a formal definition of hyper-
edges and an algorithm to systematically compute hyperedges.
In Section 5.2, we demonstrate the value of our approach by
applying our hyperedge discovery technique to their ensemble
of networks.

3. DEFINITIONS
Let G be a set of n graphs computed by multiple runs of

a network inference algorithm. In this paper, we assume that
each graph in G is undirected, unweighted, and has the same
set V of vertices. There are a number of ways to define how
one set of nodes induces different subgraphs in G. We propose
one such formulation in this work.

Given a set S ⊆ V of k nodes and a graph G ∈ G, let G(S)
denote the subgraph of G induced by S, let G(S) denote the
multiset of these subgraphs as we vary the graphs in G, and

let P(S) denote the set of 2(
k
2) possible graphs on the nodes

in S. Note that the number of distinct subgraphs in G(S) is at

most min
(
n, 2(

k
2)
)

. Consider a graph H ∈ P(S). Let ψ(H)

denote the number of occurrences of H in G(S). Ideally, as
we vary H ∈ P(S), we desire the counts ψ(H) to be as uni-
form as possible. We capture this notion using the following
definition. Given parameters 0 < β, σ ≤ 1, we say that S is

a (β, σ)-hyperedge if ψ(H) ≥ βn for at least σ2(
k
2) graphs

in P(S). The parameters β and σ ensure that the counts ψ(H)
are balanced for at least some number of graphs in P(S).

Figure 1(a) illustrates these ideas using a set G of 12 graphs
on the set of nodes {a, b, c, d, e, f, g}. Consider the set of
nodes {a, c, d}. Each of the eight possible graphs among these
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(a) A set G of graphs to illustrate the definition of a hyperedge. The blue (re-
spectively, green) subgraphs contribute to make the set {a, c, d} (respectively,
{e, f, g}) a hyperedge.
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(b) The hypergraph containing two (1/12, 1)-
hyperedges.
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(c) The summary graph for the graphs in G
(see section 4.2).

Figure 1: An illustration of a set G of graphs, two hyperedges defined by G, and the summary graph of G. In Figure 1(c), to
aid clarity, we show the number of occurrences of each edge in a graph in G, rather than the fraction of graphs in which the
edge occurs.

nodes occurs as a subgraph of at least one graph in G in the fig-
ure, with some graphs occurring exactly once. By our defini-
tion, {a, c, d} is a (1/12, 1)-hyperedge. Figure 1(b) displays
all (1/12, 1)-hyperedges supported by the set of graphs in Fig-
ure 1(a). Observe that four out of the eight possible graphs
among {a, c, d} appears twice in G. Therefore, {a, c, d} is
also a (2/12, 4/8)-hyperedge. As another example, consider
the set of nodes {e, f, g}. All eight graphs among these nodes
appear in G, with two graphs appearing twice each and one
graph appearing thrice. Thus, {e, f, g} is a (1/12, 1)- and a
(2/12, 3/8)-hyperedge. While this set is also (3/12, 1/8)-
hyperedge, in practise, we do not consider the pair of param-
eters (3/12, 1/8) as suggesting a hyperedge, since they mean
that only one out of eight possible subgraphs is present in
graphs in G. In contrast to these examples, consider the set
of nodes {a, b, e}. Only two of the eight possible graphs oc-
cur in G, five and seven times, respectively, making {a, b, e}

a (5/12, 2/8)-hyperedge. Here, the β parameter is quite large
(5/12) but the σ parameter is quite small (2/8). This set of
nodes is uninteresting for our purpose. For this set of graphs,
note that every four-node set is a hyperedge only for values

of σ less than 12/64 (64 = 2(
4
2)), since G contains only 12

graphs; thus, no four-node set is likely to constitute an interest-
ing hyperedge. More generally, the largest (β, σ)-hyperedge

has O
(
min(

√−2 log βσ,
√

2 log n/σ)
)

nodes.

We now state the problem we solve in this work:

Given a set of graphs G, an integer k > 0, and
parameters 0 < β, σ ≤ 1, enumerate all (β, σ)-
hyperedges containing k nodes.

We consider other formulations of the problem in the conclu-
sions (Section 6).
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4. ALGORITHM
In this section, we describe an algorithm that formulates

the problem of discovering hyperedges in terms of computing
clusters in an appropriate summary graph. To motivate the al-
gorithm, consider a (β, σ)-hyperedge S that contains k nodes

such that σ = 1, i.e., each of the 2(
k
2) possible graphs on S oc-

curs as a subgraph of some graph in G. For such a hyperedge,

the largest possible value of β is 1/2(
k
2). In this situation, each

pair of nodes in S will appear as an edge in precisely half the
graphs in G. Therefore, we can compute such a hyperedge by
constructing the average of all graphs in G and searching for
cliques in which each edge has weight equal to 0.5.

We now generalize these observations to arbitrary (β, σ)
hyperedges. We first prove lower and upper bounds on the
“density” of a hyperedge. We use these bounds to transform
the edge weights in the average of all graphs in G. Finally, we
use a clustering algorithm to enumerate all dense subgraphs in
this transformed graph.

4.1 Bounds on Hyperedge Densities
We start by defining some notation. Given a set G of undi-

rected, unweighted graphs, let μ(G) denote the average of G,
i.e., μ(G) is an undirected, weighted graph such the edge set
of μ(G) is the union of the edge sets of all the graphs in G and
the weight of each edge in μ(G) is the fraction of graphs in G
that contain the edge. Given a (β, σ)-hyperedge S, let μS(G)
denote the subgraph of μ(G) induced by the nodes in S. If S
contains k nodes, then μS(G) contains at most

(
k
2

)
edges, by

definition. In general, any particular edge in μS(G) may have
a weight in the interval [0, 1]. However, we can establish lower
and upper bounds on the density of μS(G), where we define
the density of a graph to be the total weight of the edges in the
graph divided by the number of possible edges in the graph.
The following two lemmas state the lower bound and the up-
per bound, respectively. For the sake of convenience, we as-

sume that σ2(
k
2) is an integer. We provide proofs for both lem-

mas at: http://bioinformatics.cs.vt.edu/~mura
li/supplements/2012-acm-bcb-hypergraphs.

Lemma 1 If S is a (β, σ)-hyperedge with k nodes, then the
density of μS(G) is at least

β

(
l−1∑
i=0

i

((
k
2

)
i

)
+ l

(
σ2(

k
2) −

l−1∑
i=0

((
k
2

)
i

))
[l > 0]

)
(
k
2

) ,

where l is the smallest integer such that

l∑

i=0

((
k
2

)
i

)
≥ σ2(

k
2).

In the lemma, [ ] denotes an indicator function, which is true
if and only if l is positive.

Lemma 2 If S is a (β, σ)-hyperedge, then the density of μS(G)
is at most

βu

⎛
⎜⎝σ2(

k
2) −

(k2)∑
i=u+1

((
k
2

)
i

)⎞
⎟⎠ [u <

(
k
2

)
]

(
k
2

)

+

β

⎛
⎜⎝(k2)−1∑

i=u+1

i

((
k
2

)
i

)⎞
⎟⎠

(
k
2

) +
(
1 + β − βσ2(

k
2)
)
,

where u is the largest integer such that

(k2)∑

i=u

((
k
2

)
i

)
≥ σ2(

k
2).

Given the parameters 0 < β, σ ≤ 1 and an integer k >
0, let λ(k, β, σ) and γ(k, β, σ) denote the lower and upper
bounds defined by Lemma 1 and Lemma 2, respectively, on
the density of a (β, σ)-hyperedge with k nodes. For purposes
of brevity, we denote the bounds by λ and γ when the param-
eters are clear from the context. We can prove that λ+ γ = 1
(proof omitted).

4.2 Clustering Algorithm
Our algorithm consists of the following steps:
1. Compute μ(G) =

⋃
G∈G G, the union of the graphs in

G.
2. Assign each edge (u, v) in μ(G) a weight w(u, v) equal

to the fraction of graphs in G that contain (u, v) as an
edge.

3. For each edge (u, v) in μ(G), transform its weight using
the function

1

1 + eτ max(λ−w(u,v),w(u,v)−γ)
,

where τ is a large positive number.
4. Compute all highly dense subgraphs of k nodes in μ(G).

The first two steps simply compute the average μ(G) of the
graphs in G. The third step transforms the edge weights in μ(G)
so that all edge weights in the interval [λ, γ] are close to 1 and
all edge weights outside this interval are small. Note that the
value of the maximum in the transformation function is neg-
ative iff w(u, v) lies in the interval [λ, γ]. Hence, by choos-
ing τ = 100, we ensure that the transformed weights are close
to 1 for edges whose weights lie in the interval [λ, γ] and are
close to 0 otherwise.

Finally, in this transformed graph, we compute all subgraphs
with sufficiently high density, and report the node sets of these
subgraphs as hyperedges. For a hyperedge S, our intuition
is that this transformation will convert μS(G) into a dense
(heavily-weighted) subgraph of μ(G). To enumerate all suffi-
ciently dense subgraphs, we extend the ODES algorithm [15].
ODES hinges on the property that every subgraph with density
at least 0.5 contains one node whose removal does not discon-
nect the graph or decrease the density. While ODES works on
unweighted graphs, we were able to extend this property for
weighted graphs as well, as long as all edge weights are posi-
tive and at most 1 (proof omitted). We downloaded the ODES
software and modified it to work on weighted graphs. We also
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modified ODES to compute dense subgraphs with exactly k
nodes rather than enumerate all dense subgraphs.

Remarks. Our algorithm is a heuristic that is not guaran-
teed to compute all (β, σ)-hyperedges. Moreover, some sets
of nodes computed by our algorithm may not satisfy the prop-
erties of a (β, σ)-hyperedge. This discrepancy can arise be-
cause the lower and upper bounds apply to the density of a hy-
peredge but we transform each edge weight individually. Yet
our approach works well on both synthetic and real biological
data, as discussed below. The worst-case running time of our
algorithm can be exponential in k. However, in practice, our
algorithm runs very efficiently, as we report below.

5. RESULTS
We divide our results into two parts: (a) synthetic data (Sec-

tion 5.1) and (b) the pathway structures inferred from double
knockout budding yeast strains [1] (Section 5.2). We used a
Dell R515 server with 2 x 2.8GHz AMD Opteron 4184 CPUs
(12 cores) for all operations. In each execution of our algo-
rithm, we computed all subgraphs with density at least 0.9.

5.1 Synthetic Data
Generation. We created six synthetic datasets to test our

algorithm. Each dataset contained 100 sets of graphs, i.e., 100
instances of G. We first describe how we created instances of G
without any overlapping hyperedges or noise. To create such
an instance of G, we generated 2048 networks by systemati-
cally perturbing the BioGRID protein interaction network for
S. cerevisiae [24]. This network contains 168,599 interactions
among 6063 genes. We initialized each instance of G with
2048 copies of the BioGRID network. Then, we planted 10
hyperedges of varying sizes (3, 4, or 5 nodes) within each in-
stance of G as follows. We randomly selected k ∈ {3, 4, 5}
nodes and replaced the subgraph induced by these nodes in
each of the 2048 networks in G with a random subgraph gen-
erated by the Erdös-Rényi (k, 0.5) model. By adding each
possible edge with probability 0.5, we aimed to ensure that
the distribution of edges within a hyperedge was relatively uni-
form. Note that we selected 2048 networks so that we could
support (1, 1/2(

5
2))-hyperedges with five nodes.

In our first dataset, we did not allow hyperedges to over-
lap (i.e., share nodes) and did not add any noise. We created
five additional datasets that introduced noise and/or overlap-
ping hyperedges. We used two parameters, namely ω and η,
to control the amount of overlap and noise, respectively. The
parameter ω specified the maximum fraction of nodes within
a hyperedge allowed to belong to other hyperedges. We en-
sured that no hyperedge was fully contained in another hyper-
edge (thereby forming a Sperner hypergraph). The parame-
ter η specified the number of false positive and false negative
interactions that we added to each graph in each instance of G
as a fraction of the total number of node pairs within the im-
planted hyperedges. For example, if we planted ten five-node
disjoint hyperedges, then we added 10 × (

5
2

)
η = 100η false

positives and false negatives to each graph. To create a false
negative (respectively, false positive) interaction in a graph,
we randomly selected a pair of nodes in the graph that were
connected (respectively, disconnected) and removed that edge
(respectively, connect them by an edge). We selected ω from
the set {0, 0.4} and η from the set {0, 0.1, 0.2}, thereby ob-
taining a total of six synthetic datasets.

Evaluation. We applied our algorithm on each of these
datasets with k = 3, 4, 5, seven values of σ, {i/8, 1 ≤ i ≤ 7},

and β = 1/σ2(
k
2) (its largest feasible value). To compare the

computed hyperedges with the planted hyperedges, we defined
precision and recall in the following manner. Let Ri denote the
ith planted hyperedge and Cj denote the jth computed hyper-
edge, where i ranges over the planted hyperedges and j over
the computed hyperedges. We defined

precision =

∑
j maxi |Ri ∩ Cj |∑

j |Cj |

recall =

∑
i maxj |Ri ∩ Cj |∑

i |Ri|
Note that the numerators of both quantities measured the over-
lap between the planted hyperedges and the results yielded by
our algorithm. For precision, we compared the overlap to the
total sizes of computed hyperedges, whereas for recall, we
compared the overlap to the total sizes of the planted hyper-
edges. For each dataset, we measured precision and recall by
taking the union of all computed hyperedges (irrespective of
their sizes) and by combining the results for all 100 instances
of G within the dataset.

Results. The average time for computing hyperedges in
an instance of G ranged from 1.57 seconds to 2.98 seconds
with a standard deviation of 0.12. Within this small range,
we observed that the running time generally increased as we
increased σ, η, or ω. Across the six datasets, as we varied σ
from 1/8 to 7/8, precision always had a value of 1, whereas
recall varied from 0.71 to 1. Recall was smallest (respectively,
largest) for σ = 1/8 (respectively, σ = 7/8). Both precision
and recall did not vary with ω or η. These results suggest that
our method can recover hyperedges planted in synthetic data
accurately. In future work, we plan to make the synthetic data
generation more sophisticated by incorporating noise in the
proximity of the implanted hyperedges, rather than strewing it
across the entire network.

5.2 Analysis of Battle et al. [1] Data
Given quantitative phenotype measurements for a set of sin-

gle and double knockout organisms, Battle et al. computed
activity pathway networks (APNs) that represented functional
dependencies between genes and their combined effects on the
phenotype. Each APN terminated in a node called “Reporter”
that represented the quantitative phenotype. They sampled the
space of APNs using a Markov chain Monte Carlo method,
thereby creating an ensemble of networks . Analogous to our
definition of hyperedges, they were interested in a set G of
genes that occurred in a single linear chain (in any order).
They computed the probability that the genes in G occurred
in a linear chain across the ensemble of APNs. When this
probability was at least 0.6 and exceeded the probability of
occurrence of any specific linear ordering of the genes in G by
a factor of 1.8, they collapsed G into a structure similar to our
notion of hyperedge. They applied their method to quantita-
tive GI data between pairs of genes [12] whose single mutants
upregulated the unfolded protein response (UPR) in the endo-
plasmic reticulum.

We obtained the 500 APNs computed by them. We treated
each APN as an undirected, unweighted graph so as to focus
purely on the network topology rather than on the direction-
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ality of the probabilistic dependencies. Here we discuss the
properties of the hyperedges we computed and what light they
shed on the interactions between these genes. Battle et al.
highlighted examples of interactions and network structures
that have support in the literature. In contrast, we focus our at-
tention on groups of genes and related processes among whom
pair-wise interactions are difficult to discern in the ensemble
of APNs. Our intent is to demonstrate the utility of our ap-
proach to interpret this ensemble of networks, rather than to
explicitly compare our results to those of Battle et al.
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(a) Theoretical lower bounds (λ) on density for vari-
ous (β, σ)-hyperedges of size three.
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(b) The FPR for various choices of β and σ. Red cells
correspond to parameter values for which our algorithm
did not compute any clusters. Gold boxes highlight pairs
of β and σ we used for further biological analysis.

Figure 2: (a) Analysis of the theoretical lower bounds on
hyperedge density and (b) visualization of the false positive
rates in the ensemble of APNs. Grey cells indicate pairs
of β and σ that are invalid, i.e., no collection of graphs can
support hyperedges with such high values of β and σ.

Evaluation strategy. We executed our algorithm on
the ensemble of 500 networks with k = 3, 4, and 5, eight val-

ues of σ, {i/8, 1 ≤ i ≤ 8}, and β = 2j/500, 1 ≤ j ≤ 2(
k
2).

For each dense subgraph computed by our algorithm, we eval-
uated whether it was truly a (β, σ)-hyperedge. If it was not, we
deemed this hyperedge a false positive, and measured the false
positive rate as the ratio of the number of false positives to the
total number of computed dense subgraphs. As pointed out
earlier, our approach may also have false negatives. However,
we do not have a method for estimating their count.

This set of 500 networks did not support any four-node hy-
peredges unless the values of β and σ were very small, which
are uninteresting for our purpose. Hence, we focused our at-
tention on three-node hyperedges. Such hyperedges contain
too few nodes to support functional enrichment of GO terms.
Therefore, we asked if genes that belonged to multiple hy-
peredges were enriched in any biological function. Accord-
ingly, we computed the degree distribution of the hypergraph,
i.e., for every gene we computed the number of hyperedges in
which it participated. We computed GO terms enriched in this
ranked list of genes using the FuncAssociate algorithm [3],
which can take ranked lists of genes as input. We reasoned
that this analysis would help us identify biological processes
whose genes participated in numerous hyperedges, i.e., pro-
cesses whose genes were connected in multiple ways both to
each other and to genes external to the process.

Results. Figure 2(a) displays how the lower bound on
density λ(3, β, σ) varies with the parameters. In general, af-
ter fixing β (or σ),λ density monotonically increases with an
increase in σ (or β, respectively). For small values of β or σ,
the lower bound is 0. Note that for a given value of β and σ,
we can prove that the sum of λ and γ is 1; thus, we only plot
the lower bounds in (a).

Figure 2(b) illustrates how the false positive rate (FPR), i.e.,
the fraction of dense subgraphs discovered in the summary
graph that are not (β, σ)-hyperedges, varies with β and σ.
When both parameters are small (lower left corner), the FPR
is close to 0. When σ is high (top) or when both parameters
are high (centre), the FPR is close to 1, suggesting that our
algorithm computes many dense subgraphs that do not satisfy
the constraints laid down by β and σ. We selected two values
of the parameters that had FPR less than 0.5: (0.032, 0.625)
and (0.064, 0.5), with FPR 0.34 and 0.29, respectively. In
the first case, 5/8 possible subgraphs each appear at least 16
times in the set of 500 graphs. In the second case, 4/8 possi-
ble subgraphs each appear at least 32 times in the 500 graphs.
The first case has the advantage of having a higher value of σ.
The second case has a lower value of σ, but involves more net-
works overall from the set of graphs. We examined functions
enriched in the list of genes sorted in decreasing order of the
number of hyperedges that contained them. We did not ob-
serve substantial differences in the results for the two sets of
parameters highlighted above. Hence, we focused our atten-
tion on the parameters (β = 0.032, σ = 0.625). Using these
parameter-values, we obtained 398 3-node hyperedges. Our
method took 1.54 seconds to compute these hyperedges.

The most enriched function was the GARP complex (LOD
= 3.1, adjusted p-value = 0). The genes involved in this com-
plex include VPS51, VPS52, VPS53, and VPS54. The Golgi-
associated retrograde protein (GARP) complex is required for
the recycling of proteins from endosomes to the late Golgi.
The original publication of the genetic interaction data [12]
noted that a significant set of genes whose deletion caused up-
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regulation of the UPR were involved in the late Golgi. Our
result suggests that the precise connections among these genes
are unclear, at least from the genetic interaction data. This
possibility is supported by the fact that the vps52/53/54 triple
mutant strain is phenotypically indistinguishable from each of
the single mutants [5]. Moreover, each of these genes partic-
ipates in at least 7 and as many as 18 hyperedges, indicating
that the interactions between the GARP complex and other ER
proteins are also quite unclear.

The second most enriched process was the GET complex
(LOD = 3.08, p-value 0.0024). This complex, which includes
the Get1, Get2, and Get3 proteins, is involved in Golgi to ER
Traffic, especially in facilitating insertion of tail-anchored pro-
teins into the ER membrane [22].

Another highly enriched GO term was “protein glycosyla-
tion” (rank 8, LOD = 1.9, adjusted p-value 0). This term
annotated 11 genes (ALG5, ALG6, ALG8, ALG9, ALG12,
BST1, DIE2, ERD1, OST3, PMT1, PMT2). The majority of
proteins synthesized in the rough ER undergo protein glyco-
sylation. Interestingly, Battle et al. reported that their method
accurately predicted the ordering of these genes. Their obser-
vation appears to contradict our results, which suggest that the
pair-wise connections among these genes are difficult to esti-
mate. Upon examining the subgraphs induced by this set of
genes in the ensemble of 500 networks, we observed that they
involved only 16 unique edges (reinforcing their findings) but
in numerous combinations (supporting our result), thus resolv-
ing the apparent contradiction. The SWR1 complex, which
is involved in chromatin remodeling, was also highly enriched
(rank 11, LOD = 1.7, adjusted p-value = 0.003).

In summary, we were able to use the FPR to select ap-
propriate values of the parameters β and σ. We could settle
on the value of k by examining the largest value for which
our method was able to compute hyperedges. Examination of
functional enrichment trends in the list of genes ranked in or-
der of the number of hyperedges they participated in allowed
us to discover several ER-related processes among which the
genetic interaction data did not support precise pair-wise inter-
actions. These results suggest that more in-depth experiments
may be needed to resolve the ambiguity in the connections
among these genes.

6. CONCLUSIONS
In this paper, we have proposed hypergraphs as a novel rep-

resentation for capturing the uncertainty inherent in inferring
gene interaction networks from systems biology datasets. Our
main theoretical contributions are two-fold: a formal defini-
tion of (β, σ)-hyperedges supported by an ensemble of net-
works and an algorithm for computing (β, σ)-hyperedges of
a fixed size. Applying these techniques to a dataset of 500
APNs inferred from quantitative genetic interaction data, we
discovered 398 hyperedges. Each hyperedge included genes
for which the APNs could not infer precise pair-wise interac-
tions.

We envision that this paper will serve as the basis for a rich
body of research. Several extensions and generalizations of
our ideas are immediate. For instance, we would ideally like
to compute maximal hyperedges (those that are not contained
in any other hyperedges). We would also like to systematically
enumerate all hyperedges. It may be possible to employ the
ideas from itemset mining here. Formulations of the problems

other than enumeration are also interesting, e.g., finding the
(β, σ)-hyperedge with the largest number of nodes or comput-
ing a set of non-redundant (β, σ)-hyperedges or discovering
statistically significant hyperedges. We plan to address these
problems in the future. We are also considering extensions to
weighted and directed graphs.

Ultimately, we are interested in directly inferring hyper-
edges from diverse datasets without going through the inter-
mediate step of inferring an ensemble of graphs. By discover-
ing such hypergraphs, we hope to pinpoint which set of genes
and proteins might be ideal for further experimentation. Incor-
porating the data from these experiments might help to refine
hyperedges and resolve the pair-wise interactions among the
nodes, resulting in a fruitful interplay and feedback between
computational and experimental scientists.
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