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ABSTRACT
Signaling pathways play an important role in the cell’s re-
sponse to its environment. Signaling pathways are often rep-
resented as directed graphs, which are not adequate for mod-
eling reactions such as complex assembly and dissociation,
combinatorial regulation, and protein activation/inactivation.
More accurate representations such as directed hypergraphs
remain underutilized. In this paper, we present an exten-
sion of a directed hypergraph that we call a signaling hyper-
graph. We formulate a problem that asks what proteins and
interactions must be involved in order to stimulate a specific
response downstream of a signaling pathway. We relate this
problem to computing the shortest acyclic B-hyperpath in a
signaling hypergraph — an NP-hard problem — and present
a mixed integer linear program to solve it. We demonstrate
that the shortest hyperpaths computed in signaling hyper-
graphs are far more informative than shortest paths found
in corresponding graph representations. Our results illus-
trate the potential of signaling hypergraphs as an improved
representation of signaling pathways and motivate the de-
velopment of novel hypergraph algorithms.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and Genet-
ics; E.1 [Data Structures]: Graphs and Networks; G.1.6
[Optimization]: Linear Programming

General Terms
ALGORITHMS,THEORY

Keywords
Hypergraphs, Mixed integer linear programming, Signaling
pathways, Wnt signaling

1. INTRODUCTION
Cells respond to signals from their environment through

signaling pathways composed of molecular reactions that
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start at membrane-bound receptors and terminate at tran-
scription factors (TFs) that regulate downstream gene ex-
pression. Many types of reactions occur in signaling path-
ways, e.g., complex assembly and disassembly, activation or
deactivation of one protein or complex by another protein or
complex, and regulation of reactions by proteins/complexes,
etc. Computational methods for reasoning about signal-
ing pathways must be faithful to the complexity of reac-
tions within them. Directed and undirected graphs are the
most pervasive representations of the structure of signaling
pathways. However, graphs can only model interactions be-
tween pairs of molecules; thus they cannot accurately rep-
resent the manifold aspects of signaling pathways that in-
volve coordinated activity of assemblages of more than two
molecules [13, 18]. Directed hypergraphs and their relatives
(reviewed in Section 2) are emerging as attractive alterna-
tives to graphs. Unfortunately, directed hypergraphs con-
tinue to remain an underutilized representation for signaling
pathways, despite the fact that hypergraph theory has been
a well-established area of mathematics since the 1960s [3].

Recently we highlighted the potential and power of hyper-
graphs to address questions such as pathway reconstruction,
enrichment, and crosstalk [23]. Until now, methods to solve
these problems have represented pathways simply as set of
proteins or as directed or undirected graphs. In this paper,
we formally define the signaling hypergraph as a powerful
representation of signaling pathway structure. Signaling hy-
pergraphs capture several aspects of signaling reactions and
the connections among them. We use signaling hypergraphs
to address two general classes of questions that may be posed
on pathways:

1. Is there a set of reactions that begins at protein A and
terminate at protein B?

2. If we are given a set of reactions annotated to a specific
pathway P and a comprehensive signaling network H,
can we identify un-annotated reactions in H that are
likely to be in P?

We reduce these problems to that of computing hyper-
paths in a signaling hypergraph. We consider B-hyperpaths,
which generalize paths in a directed graph by accounting for
the fact that a reaction can occur only if all its reactants
are present. A B-hyperpath from node s to node t has a
natural interpretation in signaling pathways: the hyperpath
contains all the intermediate reactants and products needed
to “reach” t from s. Unlike shortest paths in graphs, short-
est B-hyperpaths may contain cycles (see Section 3). We
restrict our attention to acyclic B-hyperpaths in analogy to
shortest path and related algorithms (e.g., Steiner trees) on



graphs, which return acyclic networks. We acknowledge that
feedback loops are important aspects of signaling pathways,
and we expect to study cyclic B-hyperpaths in the future.

We make four major contributions in this work. First,
we describe signaling hypergraphs, which represent com-
plexes, complex assembly/disassembly, and positive regula-
tion more accurately than corresponding graph representa-
tions. Second, we present several properties of B-hyperpaths
and formulate the NP-complete problem of computing the
acyclic B-hyperpath with the smallest number of hyper-
edges. Third, we define a mixed integer linear program
(MILP) to solve this problem. Finally, we find optimal B-
hyperpaths in signaling hypergraphs constructed from a sig-
naling pathway database (summarized below). Although
notions such as B-hyperpaths have been available since the
early 1980s, our work appears to be the first to modify and
apply these ideas to answer very natural questions on sig-
naling pathways.

We compute B-hyperpaths in signaling hypergraphs of
varying sizes from the National Cancer Institute’s Pathway
Interaction Database (NCI-PID) [25]. We focus on the Wnt
signaling pathway, a well-studied pathway involved in de-
velopment and often perturbed in cancer. Starting with
the canonical Wnt signaling pathway, we identify acyclic
B-hyperpaths that end in different forms of β-catenin that
correspond to the absence and presence of Wnt signaling,
answering Question 1 above. We then explore Question 1
on a more comprehensive Wnt signaling pathway by finding
acyclic B-hyperpaths that connect membrane-bound com-
plexes to downstream target genes (TCF1 and LEF1). We
show that the resulting B-hyperpaths are much more infor-
mative than paths and Steiner trees on corresponding graph
representations of the Wnt signaling pathway. Finally, we
consider the annotated Wnt signaling pathway in the con-
text of the entire NCI-PID dataset. To answer Question 2,
we identify reactions that are not annotated to the Wnt
pathway that connect it to the Androgen Receptor pathway.

2. RELATED RESEARCH
We discuss generalizations of signaling pathway graph rep-

resentations and emphasize their strengths and limitations.
Representing complexes. Compound graphs permit a com-

pound node to contain a set of nodes [9], e.g., a set of pro-
teins in a complex. Similarly, metagraphs support scalable
network structure by allowing metanodes to have a nested
structure [15]. Compound nodes and metanodes may them-
selves be connected by edges. Similarly, undirected hyper-
graphs allow interactions among two or more entities [10].
Software that computes paths, loops, and motifs on com-
pound graphs [8] and visualizes metagraphs [15] have accel-
erated the adoption of these representations.

Representing pathway directionality. A factor graph [12,
27] is a bipartite graph with partitions corresponding to
molecules and to factors, which represent (potentially di-
rected) reactions in a pathway. Factors are connected to the
molecules that participate in the reaction. The PARADIGM
software [27] uses probabilistic inference on factor graphs to
estimate a pathway’s activities from high-throughput data
on molecular changes in cancer tissues. A Petri net [21,
22] is a directed bipartite graph with two types of nodes
– places and transitions – and tokens on the places. In
Petri net models of signaling pathways, places represent pro-
teins, transitions represent reactions among proteins, and

the number of tokens in a place represent the concentration
of proteins. “Firing” a transition corresponds to redistribut-
ing the tokens based on certain rules.

Representing regulation. Influence graphs [24] are graphs
where each edge has a sign describing one molecule’s affect
on the other. More generally, logic models [24] define logic
functions on hyperedges with potentially multiple nodes in
the tail but a single node in the head. Multi modal net-
works [13] are generalizations of hypergraphs that include
a single regulator for each hyperedge. Finally, dynamic
models (often based on ordinary differential equations) can
describe the control mechanisms within signaling pathways
faithfully [17].

Limitations of related work. A major limiting factor of
compound graphs and metagraphs is that they connect pairs
of entities, making interactions consisting of more than two
entities (such as complex assembly and disassembly) diffi-
cult to model. Factor graphs and Petri nets are not ideal for
generalizations of common graph-theoretic operations such
as connectivity and paths, which is the focus of this pa-
per. Influence graphs and logic networks represent protein
regulation, but they operate only on the “active” forms of
proteins. Moreover, it is unclear how they represent com-
plex assembly/disassembly. Finally, the large amounts of
experimental data needed by dynamic models in order to fit
and tune parameters limits their scalability.

3. DEFINITIONS

3.1 Signaling Hypergraphs
Let V be a finite set of nodes. A directed hyperedge e is a

pair (T (e), H(e)) where both the tail T (e) and the head H(e)
are non-empty subsets of V . A directed hypergraph H =
(V,E) consists of a finite set V of nodes and a finite set E
of directed hyperedges. H is a directed graph in the special
case where |T (e)| = |H(e)| = 1.

At first glance, directed hypergraphs seem sufficient for
representing signaling reactions: each hyperedge consists
of a set of reactants in the head and a set of products in
the tail. However, many signaling reactions involve protein
complexes, where a set of proteins act as a single unit in
a reaction. Further, directed hypergraphs do not represent
molecules that regulate a reaction (e.g., a kinase that phos-
phorylates, and subsequently activates, a substrate).

To model complexes, we define a hypernode1 as a set of
nodes U ⊆ V that act together as a single unit. U may
contain a single node, e.g., to represent a protein that acts on
its own. We use V to denote the set of hypernodes, assuming
that each node in V appears in some hypernode in V. We
define a signaling hyperedge e to be a pair (T (e), H(e)) where
both the tail T (e) and the head H(e) are non-empty subsets
of V, i.e., each member of the tail or the head is a hypernode.

To model positive regulation, we represent each positive
regulator as a hypernode. If a hypernode U is a positive
regulator for a reaction, we add U to the tail of the signaling
hyperedge representing that reaction. Signaling hyperedges
can represent the logic of multiple positive regulators, e.g.,
if all positive regulators must be present for the reaction to
occur, we add all the regulators to the tail of the signaling
hyperedge. Alternatively, if any of the positive regulators

1Hypernodes may be referred to as undirected hyperedges,
compound nodes [9, 8], or metanodes [15] in the literature.
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Figure 1: (A) A signaling hypergraph. Dashed por-
tions of hyperedges denote positive regulation and
are for visualization purposes only. (B) An acyclic
B-hyperpath and (C) a cyclic B-hyperpath from
{a,b} to {c,d} (red hyperedges).

can trigger the reaction, we can make copies of the signaling
hyperedge, one for each regulator.

We define a signaling hypergraph H = (V,V, E), where V
is a finite set of nodes, V ⊆ 2V is a set of hypernodes and E
is a finite set of signaling hyperedges. Figure 1A illustrates
a signaling hypergraph with five nodes (a,b,c,d,e), seven hy-
pernodes, and five hyperedges. The gray circles denote hy-
pernodes containing more than one element (e.g. {a,b}).
When it is clear from the context, we will refer to signaling
hyperedges and signaling hypergraphs simply as hyperedges
and hypergraphs, respectively.

Scope of signaling hypergraph representations. Signaling
hypergraphs generalize earlier research by simultaneously
representing reactions among more than two molecules, com-
plexes, and combinatorial positive regulation. They also
model complex rearrangement and post-translational mod-
ifications. Signaling hypergraphs, as they are defined here,
do not yet represent negative regulation or more complex
regulatory logic. We expect to address these important as-
pects of signaling pathways in the future.

3.2 B-Hyperpaths
There are numerous ways to define paths in directed hy-

pergraphs [1, 26]. In this section, we describe how to extend
these ideas to signaling hypergraphs. One intuitive notion
is a straightforward generalization of a path in a directed
graph. An s-t path P (s, t) is an alternating sequence of hy-
pernodes and hyperedges starting at hypernode s ∈ V and
terminating a hypernode t ∈ V, i.e.,

P (s, t) = (U1, e1, U2, . . . , Uk−1, ek−1, Uk)

where s = U1, t = Uk, and for every 1 ≤ i ≤ k, Ui ∈ T (ei)
and Ui+1 ∈ H(ei) [1]. We say that a path P (s, t) is simple if
it contains no repeated hypernodes or hyperedges and that
P (s, t) is a simple cycle if U1 and Uk are both in the tail
of e1. We say that H is acyclic if it does not contain any
simple cycles for any pair of hypernodes s, t ∈ V.

Since simple paths report an alternating sequence of hy-
pernodes and hyperedges, they do not capture all the hy-
pernodes associated with each hyperedge in the path. Thus,
they are not useful for representing sequences of signaling
reactions that involve multiple reactants and/or products.
We use formalisms developed in the hypergraph literature [1,
26] to describe the notion that in order for all products of
a signaling reaction to be present, all reactants must be
present.

For a hypernode U ∈ V, the backward star BS(U) of U
is the set of hyperedges e for which U ∈ H(e). Given a
hypergraph H = (V, E) and a hypernode s ∈ V, we say

that hypernode U ∈ V is B-connected to s in H if either
(i) U = s or (ii) there exists a hyperedge e ∈ BS(U) such
that, for all W ∈ T (e), W is B-connected to s. We use the
notation BH(s) to denote the set of hypernodes that are B-
connected to s in H. Note that positive regulators fit into
the definition of B-connected in a biologically meaningful
way: in order for all products of a signaling reaction to be
present, all the reactants and all the positive regulators in
the tail of the reaction must be present.

A sub-hypergraph H′ = (VH′ , EH′) ofH consists of a subset
of hypernodes VH′ ⊆ V and a subset of hyperedges EH′ ⊆ E
of H, with the property that for every hyperedge e ∈ EH′ ,
the hypernodes in T (e) and H(e) are members of VH′ . Given
H and two hypernodes s, t ∈ V, an s-t B-hyperpath Π(s, t)
is a sub-hypergraph of H such that t ∈ BΠ(s,t)(s) and Π(s, t)
is minimal with respect to the deletion of hypernodes and
hyperedges. Note that we require that t be B-connected to
s using only the hypernodes and hyperedges in Π(s, t) itself.
We say that Π(s, t) is acyclic if it contains no simple cycles.
Figure 1B depicts an acyclic B-hyperpath and Figure 1C
depicts a B-hyperpath that contains a simple cycle.

We conclude our definitions with a concept that is anal-
ogous to a topological ordering of a directed acyclic graph.
Given a hypergraph H, an ordering o : V 7→ R of the hyper-
nodes in H is function that maps each hypernode in V to a
real number. We say that o is a valid ordering with respect
to H, if for every e ∈ E and for every pair of hypernodes
U ∈ T (e) and W ∈ H(e), o(U) < o(W ) [4].

3.3 Problem Statement
There may be many s-t B-hyperpaths in a hypergraph,

as Figure 1 illustrates. We wish to find hyperpaths that
represent a minimal set of reactions that lead from s to t.
In other words, we seek to compute a B-hyperpath Π(s, t)
of H with the smallest number of hyperedges:

Π(s, t) = arg min
Π:t∈BΠ(s)

|EΠ| (1)

We can assign costs to the hyperedges and compute the B-
hyperpath with the smallest cost. In this work, we simply
count hyperedges since NCI-PID is manually curated.

Finding the hyperpath Π(s, t) that minimizes Eq. (1) is
NP-hard by reduction from Minimum Set Cover [1], even
when H is a directed hypergraph (i.e., each hypernode con-
tains exactly one node), and we seek only acyclic hyper-
paths. Given a universe of n elements and k sets, this re-
duction involves the construction of a hypergraph where one
of the hyperedges contains all n elements in its tail. Since re-
actions in signaling pathways are unlikely to involve a very
large number of proteins, we are interested in computing
minimum acyclicB-hyperpaths in k-hypergraphs, where each
hyperedge has at most k hypernodes in its tail or in its head.
We can prove that even this more biologically-valid version
of the problem is also NP-complete.

Theorem 1. Finding the hyperpath Π(s, t) of a signaling
hypergraph H = (V,V, E) where each hyperedge e ∈ E has at
most k hypernodes in T (e) or in H(e) is NP-hard for k ≥ 3.

We can prove Theorem 1 by reduction from Minimum k-Set
Cover; due to lack of space, we omit the proof.

3.4 Properties of Acyclic B-Hyperpaths
In this section, we state several properties ofB-hyperpaths

and B-connectedness, which we will use in Section 4 to prove
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Figure 2: A hypergraph that satisfies constraints (2)-
(5) where t is not B-connected to s.

the correctness of our algorithm. We omit most proofs in
this section and the next due to lack of space.

First, we relate a valid ordering and the acyclicity of a
hypergraph H. Similar to a topological ordering in DAGs, a
hypergraphH = (V,V, E) has a valid ordering iff it is acyclic.
Second, if a hypergraph is acyclic, then there must be a
hypernode with no incoming hyperedges. In other words,
given an acyclic hypergraph H = (V,V, E), there exists some
hypernode U ∈ V such that BS(U) = ∅.

We now turn our attention to B-hyperpaths in H. Since
B-hyperpaths are defined using the notion of B-connection,
all hypernodes in a B-hyperpath Π(s, t) are B-connected to
s in the sub-hypergraph Π(s, t). More formally, if Π(s, t)
is a B-hyperpath, then BΠ(s,t)(s) = VΠ(s,t). A corollary of
this statement is that if Π(s, t) is a B-hyperpath in H, then
VΠ(s,t) ⊆ BH(s).

In this work, our goal is to compute acyclic B-hyperpaths.
Observe that B-hyperpaths need not be acyclic, even though
they are minimal with respect to deletion of hypernodes
and hyperedges. For example, the B-hyperpath defined by
the red hyperedges in Figure 1C contains the simple cycle
({a, b}, b, {a, b}). Since there are no simple cycles in acyclic
B-hyperpaths, we can characterize the “beginning” of the
B-hyperpath as the set of hypernodes that have an empty
backward star. The final claim states that for an acyclic
B-hyperpath Π(s, t), s is the only hypernode in Π(s, t) that
does not occur in the head of any hyperedge in Π(s, t).

4. ALGORITHMS
For ease of exposition, we describe our approach to com-

puting minimum s-t B-hyperpaths in two parts. First, we
develop an MILP to compute an acyclic B-connected sub-
hypergraph that contains s and t. Although we can compute
such a sub-hypergraph in polynomial time [11], we present
an MILP so that we can augment it with an objective func-
tion in the second part to solve the NP-complete problem of
computing optimal B-hyperpaths.

4.1 Acyclic B-Connected Sub-Hypergraphs
Given a hypergraph H and two hypernodes s and t in
VH, we wish to compute an acyclic sub-hypergraph H′ that
contains s and t such that t ∈ BH′(s), i.e. t is B-connected
to s in H′. Note that H′ may not be an s-t B-hyperpath
because it is not necessarily minimal.

First, for every U ∈ V, we introduce a binary (0-1) vari-
able αU . We also introduce a binary variable αe for every
hyperedge e ∈ E. The output sub-hypergraph H′ is defined
by the values of these variables: the hypernode U (respec-
tively, hyperedge e) is in H′ iff αU = 1 (resp., αe = 1).
Given a setting of the variables in α, we will henceforth re-
fer to the corresponding sub-hypergraph as H(α) and to the
hypernodes and hyperedges in this sub-hypergraph as V(α)
and E(α), respectively. The α variables must satisfy the
following linear constraints:

∀ U ∈ V \ {s} :

αU ≤
∑

e∈BS(U)

αe if BS(U) 6= ∅

αU = 0 otherwise

(2)

∀ e ∈ E :
∑

U∈T (e)

αU ≥ |T (e)|αe (3)

∀ e ∈ E :
∑

U∈H(e)

αU ≥ |H(e)|αe (4)

αt = 1. (5)

These constraints have the following meaning. With the ex-
ception of hypernode s, every hypernode U such that αU = 1
has at least one incoming hyperedge e such that αe = 1 (con-
straint (2)). For every hyperedge e such that αe = 1, all hy-
pernodes in the tail (constraint (3)) and the head (constraint
(4)) must have α values of one. Constraints (2) and (3) en-
code the definition of B-connectedness, while constraint (3)
says that if we can ensure that all hypernodes in the tail
of a hyperedge are B-connected to s, then we automatically
ensure the B-connectedness of all hypernodes in the head.
Finally, we require that t is in H(α) (constraint (5)).

Together, constraints (2)–(5) seek to ensure that t is in
H(α) and that all the hypernodes in H(α) are B-connected
to s. However, disconnected sub-hypergraphs with cycles
may satisfy the constraints (Figure 2). To address this issue,
we introduce a real-valued order variable oU for each U ∈ V.
We ensure that o defines a valid ordering with respect to
H(α) through the following constraint, which ensures that
for each edge in H(α), every hypernode in the tail of the
edge must have an order value smaller than the order value
of every hypernode in the head of the edge:

∀ e such that αe = 1; ∀(U,W ) ∈ T (e)×H(e) : oU < oW .

These constraints apply only to those edges e where αe = 1.
Furthermore, linear programs require weak inequalities to
define boundary regions. To address both points, we intro-
duce two constants: ε, which takes a very small value and
C, which takes a very large value. The following linear con-
straint applies to all edges in H:

∀e∈E;∀(U,W )∈ T (e)×H(e) : oU ≤oW−ε+C(1−αe). (6)

Eq. (6) is only enforced when αe = 1 for hyperedge e; when
αe = 0, the large constant C dominates the right hand side,
trivially satisfying the inequality. We relax the strict in-
equality by requiring that oW is at least ε larger than oU .2

Given a hypergraph H and two hypernodes s and t in H,
we say that an assignment of α and o variables is feasible if it
simultaneously satisfy the constraints in Equations (2)-(6).
Given a feasible assignment, we make a number of claims
about the resulting sub-hypergraph H(α) using the lemmas
presented in Section 3.4.

Lemma 1. H(α) is acyclic.

Lemma 2. The only hypernode with an empty backward
star in H(α) is s.

Lemma 3. Hypernode s has the smallest value for the or-
der variable in H(α); i.e., s = arg minU∈H(α) oU .

From these claims, we prove the following lemma:

Lemma 4. All hypernodes in V(α) are B-connected to hy-
pernode s in H(α), i.e., BH(α)(s) = V(α).

2To reduce the search space for the MILP, we bound the
order variables so that oU ∈ [0, 1] for all hypernodes U ∈ V.



Proof. We will use strong induction on the order vari-
ables. Without loss of generality, rename the hypernodes
in V(α) by increasing value of the order variables, so that
oUi < oUi+1 , for all 1 ≤ i < n, where n = |V(α)|. Note
that s = U1 by Lemma 3. By the definition of B-connected,
s is B-connected to itself, establishing the base case. Now
consider hypernode U2. Eq. (2) requires that U2 must have
at least one hyperedge e in its backward star in H(α). Con-
straint (6) requires that if Ui is a hypernode in the tail of e,
for some value of i, then oUi < oU2 . The only possible value
of i is 1. Thus, there must exist a hyperedge e such that
T (e) = {s} and U2 ∈ H(e), proving that U2 is B-connected
to s in H(α).

For the inductive hypothesis, we assume that hypernodes
U1, U2, . . . , Uk−2, Uk−1 are B-connected to s in H(α). To
prove that Uk is also B-connected to s in H(α), we must
show that there exists a hyperedge e ∈ E(α) such that
Uk ∈ H(e) and every hypernode W ∈ T (e) is B-connected to
s. Constraint (2) requires that there exists some hyperedge
e ∈ E(α) that is in the backward star of Uk. Now con-
straint (3) applies to e. Therefore, all hypernodes in T (e)
are in V(α). Finally, Eq. (6) requires that for any hypernode
Ui in T (e), oUi < oUk , i.e., i < k. Therefore, by the induc-
tive hypothesis, each hypernode in T (e) is B-connected to
s. Together, these statements establish that hypernode Uk
is B-connected to s.

Observe that t is in V(α) because we fix αt to 1 in con-
straint (5); thus, ot will have a value and we will consider t
in the inductive proof, leading to the following corollary.

Corollary 5. Hypernode t is B-connected to hypernode
s in H(α), i.e., t ∈ BH(α)(s).

From the proof of Lemma 4, we also see that there must be
a hyperedge in E(α) connecting s to U2 (and possibly other
nodes). Thus, there is at least one hyperedge e in E(α)
such that hypernode s ∈ T (e), which allows us to prove the
following lemma.

Lemma 6. H(α) contains an acyclic s-t B-hyperpath as
a sub-hypergraph.

The previous lemmas establish that if the MILP has a
feasible solution, then H(α) is acyclic, contains both s and
t, and that all hypernodes in V(α) are B-connected to s in
H(α). Moreover, H(α) contains an acyclic s-t B-hyperpath.
The next lemma establishes the inverse property: if the hy-
pergraph H contains an acyclic s-t B-hyperpath, then the
MILP has a feasible assignment.

Lemma 7. If H contains an acyclic B-hyperpath Π(s, t) =
(VΠ(s,t), EΠ(s,t)), then there is a feasible assignment where
H(α) = Π(s, t).

Proof. (Sketch) We can easily construct the feasible as-
signment that corresponds to H′ = Π(s, t). Define an as-
signment A of the α variables as follows:

αU =

{
1 if U ∈ VΠ(s,t)

0 otherwise.
αe =

{
1 if e ∈ EΠ(s,t)

0 otherwise.

It is not difficult to show that the assignment A satisfies
constraints (2)–(5). To complete the proof, we can use the
fact that a valid ordering exists for Π(s, t) (it is acyclic) to
determine an assignment for the order variables in the MILP
that satisfy constraint (6).
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Figure 3: Converting a hypergraph H (A) into a
graph with complexes (B) and a graph (C).

4.2 Minimum Acyclic B-Hyperpaths
We now augment the MILP developed so far with an ob-

jective function in order to compute a minimum acyclic s-t
B hyperpath, i.e., one that minimizes Eq. (1). We compute
an assignment of variables that solves the following opti-
mization problem:

arg min
α,o

∑
e∈E

αe subject to constraints (2)-(6). (7)

The following theorem captures our main result.

Theorem 2. Given a hypergraph H = (V,E, c) and two
hypernodes s, t ∈ V , a feasible solution of (7) is an acyclic
s-t B-hyperpath Π(s, t) with minimal cost C(Π(s, t)) over all
acyclic s-t B-hyperpaths in H.

Proof. (Sketch) Let H(α) be the sub-hypergraph of H
that minimizes the objective function in (7). We can prove
that H(α) is acyclic (Lemma 1), that t ∈ BH(α)(s) (Corol-
lary 5), and that H(α) is minimal with respect to the dele-
tion of hyperedges and hypernodes (since H(α) is the opti-
mal solution to the MILP).

Thus, the sub-hypergraph H(α) that minimizes the objec-
tive function (7) is indeed an acyclic s-t B-hyperpath Π(s, t).
The value of the objective function for Π(s, t) is |EΠ(s,t)| be-
cause αe = 1 for all e ∈ EΠ(s,t). Therefore, Π(s, t) has
the smallest number of hyperedges over all acyclic s-t B-
hyperpaths in H.

4.3 Conversion to Graph Representations
For the purpose of comparing signaling hypergraphs to

graphs, we convert each signaling hypergraph H = (V,V, E)
to two different graph representations (Figure 3). First, we
build a directed graph with complexes GC = (V, EGC ) whose
nodes are the hypernodes in H and where EGC consists of all
pairs of hypernodes in the tail and head of each hyperedge
in H, i.e., EGC =

⋃
e∈E{T (e)×H(e)}. Note that each edge

in EGC connects exactly two hypernodes (Figure 3B). The
graph with complexes is akin to a compound graph, except
that it does not explicitly represent the nested structure
of complexes. However, it is not difficult to compute this
structure from the hypernodes.

Second, we convert the graph with complexes GC into
a graph G = (V,EG) (Figure 3C). The nodes of GC are
identical to the set of hypernodes of H. The edges in EG
are the union of two sets of edges: (a) For each hypernode
U in V, we connect all pairs of nodes in U by an undirected
edge, corresponding to the common practice of representing
a complex by a clique in a graph. (b) For each edge (U, V )
in GC , we connect every node in the hypernode U to every
node in the hypernode in V by a directed edge. Finally, we
replace every undirected edge by two directed edges.



Small Wnt Large Wnt NCI-PID

# Pathways 2 6 213
# Neg. Regs 6 25 856

Signaling Hypergraph H
# Nodes 47 304 6793
# Hypernodes 57 354 8779
# Hyperedges 34 223 7735

Graph With Complexes GC
# Nodes 47 304 6793
# Hypernodes 57 354 8779
# Edges 80 541 15622

Graph G
# Nodes 47 304 6793
# Edges 294 1435 40346

Table 1: Selected Signaling Pathways for Analysis.
Negative regulators (second row) are ignored in each
pathway.

4.4 NCI-PID Pathways
NCI-PID [25] contains curated human pathways that in-

clude biochemical reactions, complex assembly, cellular com-
partment transport, transcriptional regulation, and regula-
tion of biological processes. We focused on the Wnt signaling
pathway, in part due to its central role in development and
a number of cancers.

We automatically constructed three sets of signaling hy-
pergraphs by combining different sets of signaling pathways
annotated in NCI-PID: a small Wnt signaling pathway, a
large Wnt signaling pathway, and the entire set of all NCI-
PID pathways. The small Wnt signaling pathway consisted
of the union of two NCI-PID pathways: “degradation of
β-catenin” and “canonical Wnt signaling”. The large Wnt
signaling pathway included four additional NCI-PID path-
ways: “noncanonical Wnt signaling,” “Wnt signaling net-
work,”“regulation of nuclear β-catenin” and “presenilin ac-
tion in Notch and Wnt signaling”, which corresponded to
non-canonical branches of Wnt signaling. The NCI-PID
pathways are freely available in BioPAX format [7], and we
processed them using an in-house parser built upon Pax-
Tools [6]. Signaling hypergraphs do not currently support
negative regulation; thus negative regulators were ignored
(Table 1). NCI-PID represents complexes as sets of unique
NCI-PID protein IDs; thus we were able to extract com-
plexes and parse them as hypernodes. Multiple forms of the
same protein may be present with attributes such as com-
partmentalization, activation, and post-translational modi-
fications (PTMs) such as phosphorylation and ubiquitina-
tion. We treated each variant as a distinct entity. We used
this information to analyze and visualize our results, as the
reader can see in the figures in Section 5.

Table 1 displays statistics on these three sets of pathways
when represented as signaling hypergraphs H and upon con-
version to graphs with complexes GC and graphs G. For the
full NCI-PID database, the number of edges in Gc is twice
the number of signaling hyperedges in H; the number of
edges in G is about five times as many. These statistics sug-
gest that the information loss incurred upon making these
conversions of signaling hypergraphs is accompanied by a
significant inflation in the number of edges.

5. RESULTS
Given a signaling hypergraph H = (V,V, E) and two hy-

pernodes s, t ∈ V, we wished to compute s-t B-hyperpaths
with the smallest number of hyperedges in H. We outline
the general procedure for computing B-hyperpaths in H in
Algorithm 1. First, we computed all hypernodes that were
B-connected to s in H [1] and the sub-hypergraph H′ of
H induced by these hypernodes, returning an infeasible so-
lution if t was not B-connected to s (lines 1-5). We then
solved for α and o variables using the MILP that optimizes
Eq. (7) (Section 4), and stored the optimal objective (lines 6-
7). Since there may be many B-hyperpaths with the same
number of hyperedges, we iteratively solved the MILP after
adding a constraint that forced a new B-hyperpath (line 11).
We returned all the B-hyperpaths with the smallest number
of hyperedges.

Algorithm 1 RunMILP(H,s,t)

Require: H = (V,V, E); s ∈ V, t ∈ V
1: BH(s) := Set of hypernodes in S that are B-connected

to s
2: H′ := sub-hypergraph of H induced on BH(s)
3: if t is not in BH(s) then
4: return Infeasible Assignment
5: end if
6: α, o := Solve Eq. (7) on H′, s, and t
7: opt := |E(α)|
8: R := ∅
9: while |E(α)| = opt do

10: R := R ∪H(α)
11: Add constraint such that

∑
e∈EH′

αe < |E(α)|.
12: α, o := Re-solve the MILP on H′, s, and t
13: end while
14: return R

We applied this procedure to signaling hypergraphs as
well as their graph-with-complexes and graph counterparts.
We acknowledge that the minimal acyclic B-hyperpath path
problem can be solved in polynomial time using Dijkstra’s
algorithm. However, we continued to use the MILP ap-
proach to ensure uniformity of analysis across all inputs.

5.1 Small Wnt Signaling Pathway
The NCI-PID pathway describing the degradation of β-

catenin terminates at ubiquitinated β-catenin. The NCI-
PID canonical Wnt signaling pathway terminates at nuclear
β-catenin, which is a transcriptional co-regulator. To answer
Question 1 from the introduction, we asked what reactions
terminate at the (a) ubiquitinated form of β-catenin and (b)
the nuclear form of β-catenin.

We made the following modifications to the small Wnt sig-
naling pathway before applying the MILP. We introduced
a source hypernode s and connected s to 21 hypernodes
with an empty backward star. We also connected s to a
hypernode representing a complex of APC, Axin1, and β-
catenin; this complex is part of a cycle involving cytoplasmic
β-catenin, and including the hypernode in the set of sources
“breaks” this loop. Finally, we removed one self-loop that
contained the same form of β-catenin in the head and the
tail. The modified signaling hypergraph consisted of 58 hy-
pernodes, 48 nodes, and 56 hyperedges. All hypernodes and
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Figure 4: Optimal B-hyperpaths in the small Wnt
signaling pathway to (a)-(c) ubiquitinated β-catenin,
denoted by ‘U,’ and (d)-(f) nuclear β-catenin.

hyperedges were B-connected to s.3 We computed the op-
timal B-hyperpaths from the source hypernode s (i) to the
ubiquitinated form of β-catenin and (ii) to the nuclear form
of β-catenin.

Reactions involved in ubiquitinated β-catenin. The MILP
returned one optimalB-hyperpath with four hyperedges (Fig-
ure 4(a)). Since β-catenin is marked for degradation in the
absence of Wnt signaling, the absence of Wnt proteins from
this B-hyperpath was not surprising. The APC/GSK3/
Axin2/β-catenin complex splits to produce two smaller com-
plexes: APC/β-catenin and Axin2/GSK3. The SCF ubi-
tiquitin ligase complex composed of CUL1, SKP1, and an
F-box protein then splits the APC/β-catenin complex and
ubiquitinates β-catenin, marking it for degradation.

In the graph-with-complexes representation, there was a
single path of length two from s to ubiquitinated β-catenin
through the SCF complex (Figure 4(b)). This path corre-
sponded to a simple path in the signaling hypergraph. In
the graph representation, there were five paths of length
two. Each of the first three paths was a simple path in the
signaling hypergraph and contained one of the members of
the SCF complex (e.g., the path (s,CUL1,ubiquitinated β-
catenin)). However, the other two paths, through APC and
through phosphorylated β-catenin, were not simple paths
in the signaling hypergraph. The graph representation col-
lapsed the two complexes in the solution for signaling hyper-
graphs, yielding the path from s to ubiquitinated β-catenin
through phosphorylated β-catenin (Figure 4(c)).

3We say that a hyperedge is B-connected to s if all hypern-
odes in its tail are B-connected to s.

Reactions involved in nuclear import of β-catenin. The
MILP returns a single optimal B-hyperpath consisting of
11 hyperedges (Figure 4(d)). Here, Wnt signaling is neces-
sary for the formation of the WNT3A/FZD5/LRP6 complex
at the cell membrane, which activates a regulator (PP2A-
B56α) that dissociates β-catenin from its complex with the
destruction box APC/Axin1/GSK34 and dephosphorylates
β-catenin, which in turn translocates to the nucleus. The op-
timal B-hyperpath also contains details about the formation
of the APC/GSK3/Axin1/β-catenin complex: first, CK1
family proteins phosphorylate β-catenin in the APC/Axin1/β-
catenin complex, and GSK3 then joins the complex and be-
comes activated.

In the graph-with-complexes representation, there is a sin-
gle path of length three from s to nuclear β-catenin that con-
tains RanBP3 (Figure 4(e)). RanBP3 is in the Wnt signaling
pathway because it aids in the nuclear export of β-catenin
back to the cytoplasm [14]; thus, this path is misleading in
this context. There are seven paths of length three from s
to nuclear β-catenin in the graph representation; the path
through RanBP3 is the only one that corresponds to a simple
path in the signaling hypergraph. The other paths (through
WNT3A, Axin1, GSK3, APC, FZD5, and phosphorylated
β-catenin) are all present in multiple complexes that are
collapsed in the graph representation. The path through
Axin1 is shown in Figure 4(f).

5.2 Large Wnt Signaling Pathway
TCF1 and LEF1, transcription factors involved in Wnt

signaling, are also downstream targets of Wnt. To answer
Question 1 for the large Wnt signaling pathway, we com-
puted minimum acyclic B-hyperpaths to identify reactions
that regulate the transcription of genes tcf1 and lef1.

We introduced a source hypernode s and connected it to
149 hypernodes with an empty backward star. We also con-
nected s to the same hypernode in the cycle involving cyto-
plasmic β-catenin as for the small Wnt signaling pathway,
and removed eight self-loops. The modified signaling hyper-
graph consisted of 356 hypernodes, 306 nodes, and 374 hy-
peredges, of which 354 hypernodes and 372 hyperedges were
B-connected to s. To identify a series of reactions that reg-
ulate both tcf1 and lef1 gene transcription, we added a tar-
get hypernode t and a single hyperedge ({TCF1, LEF1},t)
to the signaling hypergraph. For t to be B-connected to s,
both TCF1 and LEF1 must be B-connected to s.

There were four optimal B-hyperpaths in the signaling
hypergraph (Figure 5(a) and Table 2). The B-hyperpaths
shared a majority of the hyperedges, which established that
nuclear β-catenin is B-connected to s. These hyperedges
were identical to those used to connect nuclear β-catenin to
s in the small Wnt pathway (Figure 4) except that they in-
cluded the formation of the WNT3A/FZD5/LRP6 complex.
The four B-hyperpaths differed in the complexes containing
TLE and TCF family proteins that bind to the promoter
regions of LEF1 and TCF genes (Table 2). For example,
the transcription factor TCF1E can be replaced by TCF4E
in Figure 5 to regulate LEF1 transcription.

The five optimal paths from s to t in the graph-with-
complexes representation echoed these differences, though
they did not contain the steps to transport β-catenin to the

4This reaction in NCI-PID does have one copy of β-catenin
among the reactants and two copies of β-catenin among the
products.
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representation (Table 2).

nucleus (Table 2). The graph representations connected s to
t directly through LEF1 and TCF1, since LEF1 and TCF1
also happen to be members of complexes with empty back-
ward stars (Table 2). We also explored Steiner trees in the
graph with complexes. Steiner trees find a sub-graph that
span a set of terminal hypernodes in a graph, which are s,
LEF1, and TCF1 in our case. We computed the Steiner tree
with the smallest number of edges connecting s to TCF1 and
to LEF1 in the graph-with-complexes representation.5 The
resulting Steiner trees contained six edges of edge-disjoint
simple paths from s to LEF1 and to TCF1. Figure 5(b)
illustrates one of these Steiner trees. The Steiner tree, like
all of the shortest paths in the graph-with-complexes rep-
resentation, did not include the transport of cytoplasmic
β-catenin to the nucleus, a crucial component of TCF1 and
LEF1 transcriptional activation.

5.3 Full NCI-PID Signaling Pathway
Finally, we analyzed the full NCI-PID signaling pathway

to address Question 2 from the introduction. We asked the
following complementary two questions:

• New Sources to Known Targets: are there reac-
tions currently not annotated to the Wnt pathway that
are connected to transcriptional regulators in the Wnt
signaling pathway?

• Known Sources to New Targets: do reactions in
the Wnt pathway connect to transcriptional regulators

5We used MSGSteiner [2] to find a prize-collecting Steiner
tree that includes all terminals.

Shortest B-Hyperpath/Path from s #1

H (see Figure 5) 21
{TLE4,TCF4} replaced by {TLE2,TCF4}2 21
{TLE2,TCF1E} replaced by {TLE4,TCF4E}2 21
{TLE2,TCF1E} replaced by {TLE2,TCF4E}, and 21
{CTNNB1,TCF1E} replaced by {CTNNB1,TCF4E}2

GC (s,{TLE2,TCF1E},{CTNNB1,TCF1E},LEF1,t) 4
(s,{TLE4,TCF4},{CTNNB1,TCF4},TCF1,t) 4
(s,{TLE4,TCF4E},{CTNNB1,TCF4E},LEF1,t) 4
(s,PITX2,{CTNNB1,LEF1,PITX2},LEF1,t) 4
(s,{TLE2,TCF4},{CTNNB1,TCF4},TCF1,t) 4

G (s,LEF1,t) 2
(s,TCF1,t) 2

1 Number of hyperedges in optimal solution.
2 Major differences compared to solution in Figure 5.

Table 2: Optimal B-hyperpaths and paths for the
large Wnt signaling pathway.

or factors that are not currently annotated to the Wnt
signaling pathway?

These types of questions will not only help improve the
manual curation of signaling pathway databases, but will
also provide insight into potential means of pathway crosstalk
(where the stimulation of one pathway affects the down-
stream targets of another). To initiate this analysis, we re-
moved self-loops from hypernodes that appeared in the head
and the tail of 43 hyperedges.

For the “New Sources to Known Targets” problem, we
connected a source hypernode s to 3,065 elements that did
not appear in the large Wnt signaling pathway and had an
empty backward star. We connected 84 hypernodes from
the large Wnt signaling pathway that were located in the nu-
cleus t. The modified signaling hypergraph contained 8,781
hypernodes and 10,876 hyperedges, which reduced to 7,341
hypernodes and 8,569 hyperedges after finding the hypern-
odes that were B-connected to s.

The optimal B-hyperpath consisted of six hyperedges (s1

to t1 in Figure 6). The nuclear complex containing the
Androgen receptor (AR) and the hormone dihydrotestos-
terone (T-DHT) is present in the Wnt signaling pathway
due to a reaction with a complex involving β-catenin [20]
(this reaction does not appear in our solution). The opti-
mal B-hyperpath included two upstream biological events:
the formation of this complex in the cytosol followed by its
translocation of the complex to the nucleus. These upstream
events are included in the “Regulation of Androgen receptor
activity” NCI-PID pathway.

For the“Known Sources to New Targets”problem, we con-
nected s to 143 hypernodes in the large Wnt signaling path-
way that had an empty backward star. We connected 939
hypernodes that did not appear in the large Wnt signaling
pathway and were located in the nucleus to t. The modi-
fied signaling hypergraph contained 8,781 hypernodes and
8,809 hyperedges; this number reduced to 260 hypernodes
and 268 hyperedges after finding the hypernodes that are
B-connected to s. There were three optimal B-hyperpaths
containing three hyperedges; all involve simple paths leading
to post-translational modifications of JUN that are not in
the Wnt signaling pathway. This result was not surprising,
since Jun has many regulators and over 15 different post-
translational forms. To find the “next” best B-hyperpath,
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we removed the hyperedge connecting the Jun proteins to
t. In this modified hypergraph, the optimal B-hyperpath
contained 12 hyperedges (s2 to t2 in Figure 6). The tran-
scription of Cyclin-D1 (and the events leading up to it) are
members of the Wnt signaling pathway; the AR/T-HDT
complex is in the pathway as well. Surprisingly, the for-
mation of the AR/T-HDT/Cyclin-D1 complex is not in the
Wnt signaling pathway. Cyclin-D1 is a co-repressor of AR
[19], and the formation of the AR/T-DHT/Cyclin-D1 com-
plex appears in NCI-PID’s “Coregulation of Androgen re-
ceptor activity” pathway. Further, the complex formation is
a spontaneous reaction.

On hindsight, the results appear to be unsurprising. One
optimal B-hyperpath describes the formation of the AR/T-
DHT complex and its transport to the nucleus. The other
optimal B-hyperpath culminates in the spontaneous com-
plexing of AR/T-DHT with Cyclin-D1. However, the NCI-
PID curators selected to include these complexes and reac-
tions in three different pathways. Manual discovery of these
connections is likely to be very difficult. Signaling hyper-
graph theory offers a facile way to make such discoveries.

5.4 Performance Evaluation
The MILP was implemented in Python version 2.7.3, and

in practice ran in a manner of seconds for all experimental
scenarios. For the Wnt signaling pathways, the runtime of
the signaling hypergraph representations ranged from 0.1s to
1.29s; comparable to that of graphs with complexes (0.11s
to 0.49s) and graphs (0.79s to 1.49s) The runtime of the sig-
naling hypergraph MILP for the full NCI-PID pathway took
considerably longer in the “New Sources to Known Targets”
scenario (36.57s) compared to the “Known Sources to New
Targets” scenario (0.52s), reflecting the large difference in

the relative size of the signaling hypergraphs.

6. CONCLUSIONS
The limitations of graph-based approaches for signaling

pathways analysis have been recognized for years. A number
of representations have been developed that involve directed
hypergraphs and hypergraph-like notions. We have pro-
posed a related representation called signaling hypergraphs
that allow better characterization of reactions that involve
multiple complexes and proteins. Signaling hypergraphs
produce more informative hyperpaths than corresponding
graph representations on NCI-PID curated pathways.

We have described an MILP to compute optimal acyclic
B-hyperpaths in signaling hypergraphs. As we have noted
earlier, characterizing signaling hypergraphs that handle all
forms of regulation (including inhibition) and developing al-
gorithms to compute cyclic B-hyperpaths are points of fu-
ture work. Both of these aspects may require generaliz-
ing B-connectedness. Further, other notions of connected-
ness (including F -connection, which defines connectedness
among hypernodes according to the forward star rather than
the backward star) are worth considering for signaling path-
way analysis [1]. We also note that finding B-hyperpaths
that optimize other hyperpath measures, such as hyperpath
traversal cost and hyperpath rank, admit polynomial-time
solutions [1, 26] and may be useful in the context of sig-
naling pathways. Logic models that contain information
about the “state” of a protein or complex are a special case
of directed hypergraphs [24]. Incorporating this type of in-
formation in signaling hypergraphs may provide a scalable
alternative to dynamic models.

We initially chose NCI-PID to interrogate because it con-
tains a balance of manually-curated reactions and annotated
signaling pathways that are relatively well-connected. We
note that NCI-PID is not longer actively maintained, and
we have found minor inconsistencies and ambiguities upon
closer inspection of the Wnt signaling pathway. We plan
to convert other signaling pathway databases such as Reac-
tome [5] and KEGG [16] to signaling hypergraphs and apply
the MILP to these pathways.

We have reported optimal B-hyperpaths in Wnt signal-
ing, both within the annotated pathway as well as in the
context of the larger NCI-PID dataset. The corresponding
shortest paths and Steiner trees found in graph representa-
tions miss crucial components of the underlying reactions.
Further, some of the paths are misleading, as in the case
with RanBP3 in the Figure 4. Through the development
of new hypergraph-based algorithms, signaling hypergraphs
have the potential to more accurately reflect the complexity
of reactions in signaling pathway analysis.
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