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Pathways on demand: automated reconstruction of human
signaling networks
Anna Ritz1,4, Christopher L Poirel1,5, Allison N Tegge1, Nicholas Sharp1,6, Kelsey Simmons2, Allison Powell2, Shiv D Kale2 and
TM Murali1,3

Signaling pathways are a cornerstone of systems biology. Several databases store high-quality representations of these pathways
that are amenable for automated analyses. Despite painstaking and manual curation, these databases remain incomplete. We
present PATHLINKER, a new computational method to reconstruct the interactions in a signaling pathway of interest. PATHLINKER
efficiently computes multiple short paths from the receptors to transcriptional regulators (TRs) in a pathway within a background
protein interaction network. We use PATHLINKER to accurately reconstruct a comprehensive set of signaling pathways from the
NetPath and KEGG databases. We show that PATHLINKER has higher precision and recall than several state-of-the-art algorithms, while
also ensuring that the resulting network connects receptor proteins to TRs. PATHLINKER’s reconstruction of the Wnt pathway identified
CFTR, an ABC class chloride ion channel transporter, as a novel intermediary that facilitates the signaling of Ryk to Dab2, which are
known components of Wnt/β-catenin signaling. In HEK293 cells, we show that the Ryk–CFTR–Dab2 path is a novel amplifier of β-
catenin signaling specifically in response to Wnt 1, 2, 3, and 3a of the 11 Wnts tested. PATHLINKER captures the structure of signaling
pathways as represented in pathway databases better than existing methods. PATHLINKER’s success in reconstructing pathways from
NetPath and KEGG databases point to its applicability for complementing manual curation of these databases. PATHLINKER may serve
as a promising approach for prioritizing proteins and interactions for experimental study, as illustrated by its discovery of a novel
pathway in Wnt/β-catenin signaling. Our supplementary website at http://bioinformatics.cs.vt.edu/ ~murali/supplements/2016-sys-
bio-applications-pathlinker/ provides links to the PATHLINKER software, input datasets, PATHLINKER reconstructions of NetPath pathways,
and links to interactive visualizations of these reconstructions on GraphSpace.
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INTRODUCTION
A major focus in systems biology is the identification of the
networks of reactions that guide the propagation of cellular
signals from receptors to downstream transcriptional regulators
(TRs). Over the past two decades, databases have been developed
to store the interactions present in signaling pathways,1–5 facilitat-
ing their retrieval for computational analyses. While these databases
have been iteratively improved over the years, they are still largely
built through extensive and time-consuming manual curation.
Further, the proteins and interactions within the same signaling
pathway may vary considerably from one database to another.
Inspired by these challenges, we sought to develop a

computational approach to automatically reconstruct signaling
pathways from a background network of molecular interactions
(the interactome). We conceptualized the problem as follows
(Figure 1): given as input only the receptors and the transcription
factors/regulators (TRs) in a specific signaling pathway, can we
analyze the interactome to recover the pathway with high
accuracy? Several earlier methods have addressed a computa-
tionally similar problem of connecting a set of sources or “causes”
(akin to receptors) to a set of targets or “effects” (akin to TRs)
through a compact sub-network of the interactome.6–18 However,

most of these methods are routinely evaluated on data in budding
yeast. To tackle the increased complexity of human signaling
pathways, we sought to develop an algorithm with two desirable
characteristics. First, the method must be able to compute a
reconstruction that captures a large subset of the interactions in
the curated signaling pathway. Ideally, it should have a tunable
parameter that smoothly determines the size of the solution.
Second, to reflect the process of signal transduction, the receptors
must be connected to the downstream TRs in the reconstructed
pathway.
We develop PATHLINKER, an algorithm that satisfies both criteria.

PATHLINKER finds the k highest scoring paths from any receptor to
any TR, where k is a user-defined parameter (Figure 1). As the
value of k increases, the solution smoothly increases to capture
more interactions in the curated pathways. By design, every
interaction in the reconstruction lies on some path from a receptor
to a TR. Thus, PATHLINKER satisfies both criteria for a reconstruction
algorithm.
We apply PATHLINKER to a comprehensive set of 15 signaling

pathways in the NetPath database3 and 32 pathways in the KEGG
database,5 both of which are manually curated. Compared with
several other approaches,15–20 we show that PATHLINKER is the only

1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA; 2Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA and 3ICTAS Center for Systems Biology of
Engineered Tissues, Virginia Tech, Blacksburg, VA, USA.
Correspondence: TM Murali (murali@cs.vt.edu)
4Current address: Department of Biology, Reed College, Portland, OR, USA.
5Current address: RedOwl Analytics, San Francisco, CA, USA.
6Current address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
Received 9 July 2015; revised 26 November 2015; accepted 27 November 2015

www.nature.com/npjsba
All rights reserved 2056-7189/16

© 2016 The Systems Biology Institute/Macmillan Publishers Limited

http://bioinformatics.cs.vt.edu/~murali/supplements/2016-sys-bio-applications-pathlinker/
http://bioinformatics.cs.vt.edu/~murali/supplements/2016-sys-bio-applications-pathlinker/
http://dx.doi.org/10.1038/npjsba.2016.2
mailto:murali@cs.vt.edu
http://www.nature.com/npjsba


method that can reconstruct this pathway with high recall while
also ensuring connectivity between receptors and TRs. To further
highlight PATHLINKER’s effectiveness, we examine results for the Wnt
pathway in detail. One of the highest scoring paths computed by
PATHLINKER in the Wnt pathway reconstruction suggests that cystic
fibrosis transmembrane conductance regulator (CFTR) and its
interactions with receptor-like tyrosine kinase (Ryk) and Dab,
mitogen-responsive phosphoprotein, homolog 2 (Dab2), both of
which are known members of the Wnt pathway, comprise a novel
signaling mechanism from Wnts to β-catenin. We experimentally
validate this role for CFTR using loss of function short interfering
RNA (siRNA)-based silencing.

RESULTS
We first evaluated the ability of PATHLINKER and other algorithms to
reconstruct a diverse collection of 15 signaling pathways in the
NetPath database (Supplementary Section S1). We then experi-
mentally validated a novel prediction from PATHLINKER on the Wnt
signaling pathway.

Pathway reconstructions from the NetPath database
Comparison to other algorithms. We compared PATHLINKER with six
other network-based algorithms (Table 1), including shortest path

(SHORTESTPATHS, BOWTIEBUILDER19), random walk with restarts (RWR20),
network flow (RESPONSENET

17), Steiner forest (PCSF15), ANAT,18 and a
greedy seed-based method (Ingenuity Pathway Analyzer (IPA16).
Brief descriptions of these methods and the user-defined
parameters we selected appear in Supplementary Section S2.
For each pathway reconstruction, we used the interactions in

the NetPath pathway as the set of positives and a subsampled set
of interactions not present in the NetPath pathway as the set of
negatives (Supplementary Section S3). For each algorithm, we
aggregated the reconstructions of these pathways to measure the
precision and recall (Figure 2a and Supplementary Section S3). We
observed that ANAT, PCSF, RESPONSENET, SHORTESTPATHS, and
BOWTIEBUILDER achieved values of recall o0.1. While IPA returned
sub-networks with larger recall values, the precision was never
above 0.2. RWR achieved the best precision for recall values
between 0.05 and 0.13, and PATHLINKER and RWR were comparable
for all other values of recall.
To determine the source of the false positive interactions in

PATHLINKER compared with RWR, we asked if the false positives were
“close” to the pathway as represented in the NetPath database.
First, we recomputed precision of all algorithms after ignoring
interactions that involved at least one true positive node in the
NetPath pathway (“pathway-adjacent negatives”) before sub-
sampling the negatives (Figure 2b). This modification increased
the precision for all the algorithms, with PATHLINKER clearly
dominating all the other methods at values of recall between
0.2 and 0.6. To further investigate this trend, we computed each
interaction’s distance from any protein in the pathway, where a
distance of zero indicated a true positive and a distance of one
indicated a pathway-adjacent negative (Figure 2c and Supplemen-
tary Section S3). At a recall of 0.2, RWR contained a larger
proportion of true positives (purple regions) than PATHLINKER, while
the proportion of true positives was similar at recall 0.4 and 0.6.
However, the larger proportion of interactions that were at a
distance of 1 from the pathway (dark blue regions) across all three
values of recall indicates that PATHLINKER’s false positives were
closer to the pathway than RWR’s false positives.
To compare PATHLINKER and RWR using the criterion where

we required receptors and TRs to be connected in the
reconstruction, we assessed how quickly PATHLINKER and RWR
recovered the curated receptors and TRs. For PATHLINKER and RWR,
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Figure 1. Overview of the PATHLINKER algorithm. Given an interactome, we identify a set of receptors and a set of TRs for a particular curated
pathway (e.g., Wnt). We apply PATHLINKER to reconstruct the pathway, ranking proteins and interactions by their first occurrence in the k shortest
paths from any receptor to any TR. Using the curated pathway as a ground truth, we evaluate the performance of PATHLINKER. We combine the
ranked lists for multiple curated pathways to obtain an aggregate evaluation.

Table 1. Method abbreviations

Abbreviation Algorithm name/type Reference

PATHLINKER k shortest paths from any
receptor to any TR

This paper

SHORTESTPATHS Shortest paths from every
receptor to every TR

RWR Random walk with restarts Haveliwala et al.20

RESPONSENET Network flow Yeger-Lotem et al.17

PCSF Prize collecting Steiner forest Tuncbag et al.15

ANAT Shortest paths/Steiner trees Yosef et al.18

IPA Ingenuity Pathway Analyzer Ingenuity Pathway
Analysis (IPA)16

BOWTIEBUILDER Approximation to the Steiner tree
connecting receptors and TRs

Supper et al.19

Abbreviation: TR, transcriptional regulator.
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we recorded the index of the first interaction that contained
each receptor or each TR. Figure 2d shows the results for the
first 1,000 ranked interactions, and Supplementary Figure S2
shows the full ranking. PATHLINKER and RWR recovered receptors
at about the same rate, although PATHLINKER’s long tail
indicated that the last few receptors were difficult for
PATHLINKER to retrieve. Conversely, PATHLINKER successfully

recovered 90% of the TRs in the pathways in the first 1,000
ranked interactions, compared with only 38% recovered
by RWR.

Evaluation of PATHLINKER’s performance. We assessed PATHLINKER’s
performance in several additional ways to investigate its robust-
ness to the inputs and its effectiveness for other pathway
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Figure 2. Evaluation of pathway reconstructions aggregated over 15 NetPath pathways. (a) Precision and recall of the interactions in pathway
reconstructions computed by PATHLINKER and other algorithms. (b) Precision and recall of PATHLINKER and RWR without considering interactions
adjacent to the pathway (distance= 1). (c) Distances of each interaction from the pathway for PATHLINKER and RWR at recalls of 0.2, 0.4, and 0.6.
(d) Rank of receptors (top) and TRs (bottom) in the first 1,000 interactions from PATHLINKER and RWR reconstructions (rank for all interactions in
Supplementary Figure S2). (e) Median values of precision and recall of PATHLINKER when oversampling and undersampling receptors and TRs.
(f) Precision and recall of PATHLINKER when recovering proteins compared with interactions. (g) Precision and recall of PATHLINKER when
reconstructing 15 NetPath pathways compared with 32 KEGG pathways. RWR, random walk with restarts.
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databases. First, we added (incorrect) receptors/TRs to the input or
removed correct receptors/TRs from the input and compared the
resulting reconstructions (Figure 2e and Supplementary Section S3).
When we deleted 30% of the receptors and 30% of the TRs from the
input, the mean precision at recall of 0.3 and 0.6 dropped by 11%
(from 0.42 to 0.38) and 27% (from 0.28 to 0.22), respectively,
compared with the precision values with the correct inputs
(Supplementary Figure S3). The results were similar for random
additions of 30% of the receptors and 30% of the TRs.

Second, we evaluated the performance of recovering proteins
in the reconstructions. At similar values of recall, PATHLINKER’s
precision for protein recovery was much higher than that
for interaction recovery (Figure 2f). In fact, the precision values
of all algorithms improved considerably (comparing Figures 2a,b
with Supplementary Figure S4). When excluding proteins
that have an interaction with at least one protein in the pathway,
all algorithms have nearly perfect precision (Supplementary
Figure S4).
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Figure 3. Visualizations of Wnt pathway reconstructions. (a) Visualizations of PATHLINKER, RWR, and IPA pathway reconstructions at a recall of 0.2.
The displayed networks correspond to this value of recall (black arrows in the precision/recall curve.) Blue triangles: Wnt receptors; yellow
squares: Wnt TRs, green edges: NetPath interactions, purple edges: KEGG interactions that are not present in NetPath. (b) Network formed by
the 200 highest scoring paths in PATHLINKER’s reconstruction of the Wnt pathway. The number in each node denotes the index of the first path
in which that protein appears. Triangles: receptors; squares: TRs, green nodes/edges: NetPath proteins/interactions, purple nodes/edges: KEGG
proteins/interactions that are not present in NetPath, orange nodes: proteins known to be involved in Wnt signaling crosstalk. The blue region
highlights the novel Ryk–CFTR–Dab2 path, which we experimentally validate in this paper. IPA, Ingenuity Pathway Analyzer; RWR, random
walk with restarts.
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Our analysis thus far relied on 15 pathways from a single
database. Our last three assessments estimated the effect of
interactions present only in NetPath and extended the scope of

the analysis to a larger set of NetPath pathways and to the KEGG
database. First, we estimated the reliance of our reconstructions
on NetPath-only interactions by applying PATHLINKER to an
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interactome that excluded these interactions. Only 4% of the
interactions in the interactome were present in at least one
NetPath pathway; further, 35% of these interactions were
supported solely by NetPath (Supplementary Table S5). To
evaluate the resulting reconstruction, we used the 65% of NetPath
interactions that remained in the interactome as positives. While
the proportion of positives in the interactome dropped from 4%
to 2.6%, PATHLINKER’s performance was comparable to that in the
original interactome (Supplementary Figure S5). Next, we applied
PATHLINKER and RWR to an expanded set of 29 NetPath pathways
that contained at least one receptor and at least one TR, i.e., we
removed the criterion that at least three paths should connect
receptors to TRs in each pathway. We observed similar trends
in performance on the expanded set as on the original set of
15 pathways (Supplementary Figure S6). When we ignored
pathway-adjacent negatives, the precision of the reconstructions
for the expanded set was smaller than for the original set.
Nevertheless, PATHLINKER still clearly dominated over RWR
(Supplementary Figure S6). Finally, we assessed the performance
of PATHLINKER on another signaling pathway database. Accordingly,
we computed aggregate precision and recall over the reconstruc-
tions of 32 KEGG signaling pathways that contained at least three
paths from receptors to TRs, removing disease pathways from
consideration (Figure 2g). The aggregate precision-recall curves
for NetPath and KEGG pathways were comparable, with PATHLINKER
performing slightly better on NetPath pathways at very low
(o0.05) and high (40.4) values of recall.

Wnt pathway reconstructions. We visualized the topologies of the
Wnt pathway reconstructions from the PATHLINKER, RWR, and IPA at
a recall of 0.20 (Figure 3a and Supplementary Table S6). We
selected these three methods since every other approach
achieved a recall of at most 0.13 for the Wnt pathway
reconstructions (Supplementary Figure S7). In addition to the true
positive interactions from NetPath (green edges), all three
reconstructions contained interactions that are present in KEGG
but missing from NetPath (purple edges). IPA had a slightly higher
precision than PATHLINKER and RWR; however, the reconstruction
contained 13 connected components, and only 3 TRs were
connected to receptors. RWR’s reconstruction contained two
connected components and only two TRs. In contrast, PATHLINKER
produced a reconstruction with many receptor-to-TR paths that
contain NetPath and KEGG interactions, including 10 of the 13 TRs.
To more carefully explore the highest ranked paths in the

PATHLINKER reconstruction, we examined the network formed by the
top 200 paths computed by PATHLINKER using the receptors and TRs
in the Wnt pathway in NetPath (Figure 3b). For this analysis, we
added two receptors that were missing from the earlier precision-
recall analysis (Supplementary Section S1). The PATHLINKER network
included 16 proteins not previously known to be in the NetPath or
KEGG representations of the Wnt pathway (gray or orange nodes
in Figure 3b). Fifteen of these proteins are either involved in Wnt
crosstalk, have been shown to be involved in β-catenin signaling

in non-human models, or are involved in general post-
translational protein modifications (Supplementary Section S5).
The remaining protein, CFTR, was the highest ranked of all

proteins not previously known to be in Wnt pathway in the
NetPath or KEGG databases. It appeared in the 59th path
computed by PATHLINKER (Figure 3b). PATHLINKER indicated that CFTR
acted as a signal transducer from Ryk, a receptor tyrosine kinase
involved in Wnt signaling and organismal development,21–24 to
Dab, mitogen-responsive phosphoprotein, homolog 2 (Dab2), a
known negative regulator of β-catenin signaling.25,26 As Wnt
signaling is associated with several types of cellular differentiation
and specification, the closing of membrane channels to facilitate
morphological changes is biologically relevant.27

Exploring the role of CFTR in Wnt signaling
We designed a series of experiments to determine the role of Ryk,
CFTR, and Dab2 in Wnt/β-catenin-mediated signaling as predicted
by PATHLINKER (blue region in Figure 3b). We utilized a quantitative
TCF/LEF luciferase reporter assay and measurement of cellular
β-catenin levels to determine if silencing of Ryk, CFTR, or Dab2 has
a specific effect on Wnt/β-catenin signaling. We employed the
Wnt plasmid library28 to transiently express 11 different secreted
Wnt proteins (referred to hereby as Wnt) in HEK293 cells. Transient
expression of Wnts has been previously shown to induce the
expression of luciferase enzyme driven by a synthetic, tandem
TCF/LEF promoter when co-transfected into HEK293 cells.28 We
were able to determine and verify the extent of TCF/LEF-
promoted luciferase activity by each of the 11 Wnt proteins
tested (Figure 4a). Transient expression of Wnt 1, 2, 3, and
3a resulted in robust TCF/LEF-promoted luciferase activity
(X30-fold), while Wnt 2b2, 6, 7a, 7b, 8a, 9b, and 10b promoted
such activity to a much lesser extent (o30-fold) in comparison to
control samples not treated with Wnt.
We then determined the efficacy of transient silencing of

CFTR, Dab2, and Ryk by siRNA in HEK293 cells via western blot in a
dose-dependent manner (Figure 4b). In the No Wnt control cells,
cellular levels of β-catenin were not noticeably perturbed by siRNA
silencing of CFTR and Ryk, but increased as cellular protein levels
of Dab2 decreased. In these No Wnt control cells, we determined
there were no significant changes in TCF/LEF-promoted luciferase
activity in the absence of Ryk, Dab2, or CFTR. In the absence of
Dab2 or CFTR, both TCF/LEF-promoted luciferase activity (Figures
4c,d) and β-catenin levels determined by western blot (Figure 4e)
significantly increased for cells stimulated by nearly all Wnts (the
exception being Wnt2b2 in the absence of Dab2 for measurement
of β-catenin) in comparison to control scrambled siRNA-treated
cells. Conversely, in the absence of Ryk, there was (i) significant
ablation in TCF/LEF-promoted luciferase activity and (ii) decreased
levels of cellular β-catenin in the presence of only Wnt 1, 2, 3, or 3a
in comparison to control scrambled siRNA-treated cells. We noted
no significant difference of TCF/LEF-promoted luciferase reporter

Figure 4. Experimental validation of CFTR’s effect on Wnt-mediated signaling. (a) Normalized TCF/LEF promoter-driven luciferase activity in
the presence and absence of 11 different secreted Wnt (sWnt) proteins via transient expression. White bars signify a 30-fold greater activation
in comparison to the No Wnt control. Gray bars signify less than 30-fold activation in comparison to the No Wnt control.
(b) Efficacy of dose-dependent siRNA-mediated silencing of Ryk, Dab2, and CFTR on respective cellular protein levels and intracellular
concentration of β-catenin as determined by western blot. (c, d) Normalized TCF/LEF promoter-driven luciferase activity post silencing of Ryk,
Dab2, CFTR, or control scrambled siRNA in the presence or absence of 11 different sWnt proteins via transient expression. Graph is divided
into two groups to better visualize differences between control scrambled siRNA and Ryk-, CFTR- or Dab2-specific siRNA silencing.
(e) Intracellular concentration of β-catenin via western blot post silencing of Ryk, Dab2, or CFTR in the presence or absence of 11 different
sWnt proteins via transient expression. Please refer to Supplementary Figure S9 for quantification of these data. (f) Summary of the correlation
between Luciferase activity (c, d) and band intensity (e) under different experimental conditions. “++”, ⩾ 1.3-fold; “+”, 1.3-fold4x⩾ 1-fold;
“− ”, o1-fold; NRL, normalized relative luminescence; QNβ, qualification of normalized β-catenin intensity; VS, very strong (⩾30-fold); S, strong
(30-fold4x⩾ 15-fold); W, weak (o15-fold). (g) Co-immunoprecipitation of endogenous Ryk and Dab2 using endogenous CFTR as a bait in the
presence or absence of Wnts 1, 2, 2b2, 3, or 3a.
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activity or levels of cellular β-catenin for cells expressing Wnt 6, 7a,
7b, 8a, 9b, 10b in comparison to the control scrambled siRNA.
Cellular β-catenin levels determined by western blot were in

accord with the activation of TCF/LEF promoter when stimulated
by the respective Wnt (Figure 4e). In the presence of a stimulatory
Wnt (specifically Wnt 1, 2, 3, and 3a), an increase in β-catenin
levels in comparison to the No Wnt Control correlated with
increased TCF/LEF-promoted luciferase activity (Figure 4f and
Supplementary Figure S9). In instances where normalized relative
luminescence was ablated, quantification of β-catenin was
marginal or diminished as well (Figure 4f).
Utilizing endogenous CFTR as a bait, we were able to

co-immunoprecipitate both Ryk and Dab2 in No Wnt control cells
(Figure 4g). These interactions were qualitatively diminished in
HEK293 cells transiently expressing Wnt 1, 2, 2b2, 3, and 3a. We
hypothesize that Wnt-mediated receptor endocytosis triggers
CFTR to the degradation pathway rather than membrane
recycling, resulting in decreased cellular levels of CFTR and
potentially Ryk and Dab2. Further studies on cellular trafficking of
the Ryk–CFTR–Dab2 complex will provide insight into these
results.

DISCUSSION
Reconstructing multiple pathways
We have considered two distinct types of algorithms: those
that returned a single sub-network, producing a point on the
precision-recall curve (SHORTESTPATHS, RESPONSENET, PCSF, and ANAT,
BOWTIEBUILDER, and IPA and those that provided a ranked list of
interactions, producing precision-recall curves (PATHLINKER and
RWR). In the case of IPA, since changing parameters yielded
networks with substantially different precision and recall, we
present results for this algorithm for nine parameter values. Since
the single sub-network approaches had the goal of computing
compact sub-networks that connected sources to targets, they
were able to reconstruct pathways with high precision but only
with low recall. Only the algorithms that offered a ranked list of
interactions, PATHLINKER and RWR, reached a recall of ⩾ 0.6. These
results showed that an important component of a pathway

reconstruction algorithm was a parameter, such as k, whose
increase caused a smooth variation and expansion of the resulting
network. While both RWR and PATHLINKER had this property, only
PATHLINKER offered an additional guarantee of connecting receptors
to TRs (Figure 2d and the networks in Figure 3a). We conclude that
PATHLINKER reconstructions captured the structure of signaling
pathways much better than IPA and RWR, despite comparable
performance in terms of precision and recall.
Several previous studies have focused on recovering only the

proteins within a pathway, a methodology commonly used to
predict the biological processes of which a protein may be a
member.29 All algorithms improved considerably when evaluating
the proteins in the pathway reconstructions (Figure 2f), demon-
strating that reconstructing the interactions within a pathway is a
more challenging problem than that of recalling the proteins in
the pathway. In addition, false positive interactions in reconstruc-
tions that are “near” the curated pathway may indeed represent
valid interactions that have not yet been added to the pathway
through the curation process (Figures 2b,c). High-confidence
predictions adjacent to the pathway may be ideal candidates for
further experimental studies aimed at expanding known signaling
pathways.

Novel role of the Ryk–CFTR–Dab2 path in Wnt/β-catenin signaling
Wnt proteins are essential components of higher order eukaryotic
development, cellular homeostasis, and wound healing. The
canonical Wnt signaling pathway has been shown to be
specific for a subset of Wnts, while other Wnts are known to
signal through alternate means (reviewed in the study by
MacDonald et al.30). Using 11 of the 19 known Wnts, we further
this understanding by showcasing how the tested Wnts
differentially activate the TCF/LEF promoter via β-catenin to
significantly varying degrees. We show that Wnts 1, 2, 3, and 3a
are capable of Z30-fold activation of the TCF/LEF promoter, and
do so in part via a novel Ryk–CFTR–Dab2 pathway that further
regulates the cellular levels of β-catenin.
Ryk is a predicted tyrosine-protein kinase containing an

extracellular WIF domain that has been previously shown to
directly bind to Wnt 1 and Wnt 3a, though its signaling

Figure 5. Suggested model for Ryk–CFTR–Dab2-mediated amplification of Wnt 1-, 2-, 3-, and 3a-specific signaling. In the absence of Wnt 1, 2,
3, and 3a, a subset of Dab2 is associated with either homeostatic recycling of CFTR or formation and maintenance of the β-catenin destruction
complex. In the presence of these Wnts, Dab2 is recruited to the Ryk–CFTR membrane complex thereby allowing Axin and Dvl3 to be
recruited to the LRP5/6-Frizzled membrane complex and facilitating the phosphorylation and degradation of Axin. Freed β-catenin is
subsequently able to accumulate and translocate into the nucleus to catalyze gene-specific transcription.
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mechanism was unknown.23 Silencing of Ryk by siRNA in mice
results in defects in axon guidance and neurite outgrowth in
response to Wnt 3a induction.22 The interaction between Ryk and
CFTR was first determined in the CFTR interactome30 and was not
directly pertinent to the study’s dissection of the Hsp90
co-chaperone, Aha1, and CFTR interaction.31 We validated the
Ryk–CFTR and CFTR–Dab2 interaction via co-immunoprecipitation.
CFTR functions intrinsically as a membrane chloride ion channel
protein and known point mutations result in impaired function-
ality resulting in the clinical manifestation of cystic fibrosis.32 CFTR
is impacted by intracellular calcium (reviewed in the study by
Antigny et al.33), an alternate product of certain non-canonical
Wnt signaling pathways.33,34 Dab2 is involved in endosomal
recycling and degradation of CFTR and is a well-known regulatory
component of receptor-mediated endocytosis.35,36 Dab2 also
functions as a negative regulator of the β-catenin destruction
complex.26,37,38 Even though prior groups had previously identi-
fied these functionalities independently, there was no evidence or
speculation for the role of CFTR in Wnt/β-catenin-mediated
signaling particularly by Ryk or Dab2.
We present a model incorporating the Ryk–CFTR–Dab2 pathway

as an amplifier of Wnt 1-, 2-, 3-, and 3a-specific β-catenin signaling
(Figure 5). Our results suggest the recruitment of Dab2 to the
Ryk–CFTR membrane complex in the presence of specific Wnt
proteins. This process further impedes the formation of the
β-catenin destruction complex, thereby freeing additional
β-catenin to further amplify TCF/LEF promoter transcription. It is
currently unknown if Wnt signaling via Ryk modifies the sodium
transport function of CFTR in preparation for context specific
cellular processes or if Wnt-specific signaling facilitates the
degradation of CFTR. Further molecular characterizations are
required to provide insight into the novel role of CFTR in
facilitating Wnt 1-, 2-, 3-, and 3a-specific signaling.
In conclusion, we have presented PATHLINKER, an algorithm that

automates the reconstruction of human signaling pathways by
connecting the receptors and TRs for a pathway through a
physical and regulatory interaction network. Based on our
comprehensive analysis on 15 NetPath pathways, PATHLINKER
achieved much higher recall (while maintaining reasonable
precision) than several other methods. Furthermore, it was the
only method that could control the size of the reconstruction
while ensuring that receptors were connected to TRs in the result.
PATHLINKER’s reconstruction of the Wnt pathway indicated that CFTR
facilitates the signaling from Ryk to Dab2. In HEK293 cells, we
validated this path experimentally and showed its specificity for
4 of the 11 Wnts tested (Wnt 1, 2, 3, and 3a). Based on these
results, we propose a model that suggests Dab2 is recruited to the
Ryk–CFTR membrane complex in response to a defined Wnt
stimulus that ultimately amplifies Wnt 1, 2, 3, and 3a canonical
signaling. In summary, PATHLINKER provides a promising framework
for reconstructing a well-studied signaling pathway given
relatively little information about its components. It may serve
as a powerful approach for discovering the structure of poorly
studied processes and prioritizing both proteins and interactions
for experimental study.

MATERIALS AND METHODS
PATHLINKER
The problem of pathway reconstruction takes as input (i) a weighted
directed interactome G containing physical and regulatory interactions
between pairs of proteins, (ii) the receptors S in a signaling pathway of
interest, and (iii) the TRs T in the same pathway. A reconstruction of a
pathway P consists of a sub-network of G that connects the receptors in P
to the TRs in P using proteins and interactions in G.
Given an interactome G= (V, E), where every edge e in E has an

associated weight we between 0 and 1, a receptor set S, a TR set T, and a
user-defined parameter k, PATHLINKER computes the k highest scoring

loopless paths that begin at any receptor in S and terminate at any TR in T.
We define the score of a path to be the product of the edge weights along
the path. We add an artificial source s with a directed edge (s, x) for each
node x∈ S and an artificial sink t with a directed edge (y, t) for each node
y∈ T. We assign the following cost to each edge (u, v):

cuv ¼ - log wuvð Þ if u; v AV∖fs; tg
0 if u ¼ s or v ¼ t:

�

Let the cost of a path be the sum of the costs of the edges in the path.
Therefore, the least costly s t path is equivalent to the path from S to T
that maximizes the path score. PATHLINKER computes the k highest scoring
paths in this modified graph by incorporating a novel integration of Yen’s
algorithm39 with the A* heuristic (Supplementary Section S6). This
technique is up to 41 times faster than Yen’s algorithm by itself
(Supplementary Figure S8) and is thus capable of handling the complexity
of human interaction networks and signaling pathways.
We compute a pathway reconstruction Gk for each value of k by taking

the union of the k highest scoring paths. By construction, the interactions
in the k shortest paths are a subset of those in the (k+1) shortest paths,
thereby ensuring that our reconstructions vary smoothly with k. For
precision and recall calculations, we compute k= 20,000 paths and rank
each node and edge by the index of the first path in which it appears. This
value of k reflects the high degree of redundancy (edge reuse) among
paths in signaling networks.

Data sets
We constructed a directed human protein interactome from numerous
protein–protein interaction and signaling pathway databases.3–5,40 The
resulting network contained 12,046 nodes and 152,094 directed edges,
where multiple types of evidence supported many of the edges. We
weighted each edge in the network using a Bayesian approach that
computes interaction probabilities based on the sources of evidence.17 We
identified sets of signaling receptors and TRs from previously published
lists of human receptors41 and TRs.42,43 We selected 15 NetPath pathways
and 32 KEGG pathways that each contained at least one receptor, at least
one TR, and were connected by at least three paths (Supplementary Tables
S3 and S4). For more information, refer to Supplementary Section S1.

Experimental methods
We conducted experiments in HEK293 cells using the public Wnt plasmid
Library28 and validated siRNA. We present detailed methods in
Supplementary Section S7.
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Supplementary Information

1 Datasets

Human interactome. We constructed a directed human protein interactome from numer-
ous protein-protein interaction and signaling pathway databases. The interactome consisted
of nodes representing proteins, bi-directed edges representing physical interactions, and di-
rected edges representing regulatory/signaling interactions. The interactome included 40,447
physical interactions between protein pairs downloaded using PSICQUIC [9] from the fol-
lowing databases: BIND, DIP, InnateDB, IntAct, MINT, MatrixDB, and Reactome. We
ignored interactions from PSICQUIC that were computationally predicted, functional, or
from unspecified experimental methods (Supplementary Table S1). We identified signaling
interactions from three pathway databases: 382 signaling interactions and 3,414 physical
interactions from NetPath [10], 20,154 signaling interactions and 2,286 physical interactions
from KEGG [11], and 12,093 signaling interactions and 41,314 physical interactions from
SPIKE [12]. The signaling pathway databases often annotated interactions differently. For
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example, a NetPath physical interaction may be represented in KEGG as a signaling interac-
tion. We used this information to replace 2,856 physical interactions by the more informative
directed signaling interaction. The resulting network contained 12,046 nodes and 152,094
directed edges, where many of the edges were supported by multiple types of evidence. Note
that by construction, the NetPath and KEGG signaling pathways were subgraphs of the
human interactome. However, we did not annotate these interactions with the identities of
the pathways of which they were members. We used UniProtKB protein identifiers for all
analyses.

Table S1: Physical interaction experimental evidence codes from PSICQUIC that we ignored
during interactome construction.

Proteomics Standard Initiative
Molecular Interaction (PSI-MI) ID Description

MI:0036 domain fusion
MI:0046 experimental knowledge based
MI:0063 interaction prediction
MI:0064 interologs mapping
MI:0085 phylogenetic profile
MI:0087 predictive text mining
MI:0105 structure based prediction
MI:0363 inferred by author
MI:0364 inferred by curator
MI:0686 unspecified method coexpression
MI:0045 experimental interaction detection

Weighting the human interactome. We weighted each edge in the network using
a Bayesian approach that computes interaction probabilities [6]. This method assigns a
high probability to an interaction that is supported by evidence that connects proteins co-
annotated to the same set of user-specified biological processes. The weighting scheme takes
as input the human interactome annotated with experimental evidence sources and a set of
GO terms. We used the experimental evidence codes supplied by PSICQUIC, KEGG edges
(divided into interaction types), NetPath edges, and SPIKE edges as sources of evidence in
the interactome. We selected the GO term “regulation of signal transduction” and eight
other terms that were (i) children of the “signal transduction” and (ii) annotated more than
50 genes (Supplementary Table S2). From these GO terms, we established the set of posi-
tives as all pairs of proteins co-annotated to the same GO term. We also established the set
of negatives as pairs that were not co-annotated to the same GO term, sub-sampling this set
so that it was 10 times as large as the positive set. We computed the probability that each
source of evidence connects pairs of proteins co-annotated to the same GO term and used
these data to compute the probability of each edge. Many evidence probabilities were close
to 1. To mitigate the effect of these evidence types on our algorithms, we set a threshold of
0.75 on all probabilities [6].
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Table S2: GO terms considered for evidence-based weighting. The first eight terms are
children of the “signal transduction” GO term.

# Genes GO Term GO Description
155 GO:0030522 intracellular receptor signaling pathway
387 GO:0002764 immune response-regulating signaling pathway
73 GO:0030968 endoplasmic reticulum unfolded protein response
252 GO:0097190 apoptotic signaling pathway
80 GO:0007602 phototransduction

1898 GO:0007166 cell surface receptor signaling pathway
1023 GO:0035556 intracellular signal transduction
179 GO:0023014 signal transduction by phosphorylation
1728 GO:0009966 regulation of signal transduction

Receptor and TR lists. We identified a set of 2,124 signaling receptors from a previously-
published list of human signal receptors [13]. In addition, we manually included three mem-
bers of the CD3-TCR complex (CD3D, CD3E, and CD3G), which serve as receptors for the
T Cell Receptor pathway that were not present in the published list. We retrieved a set
of 2,286 human TRs reported in two studies: i) all TRs listed by Ravasi et al. [14] and ii)
high-quality TRs from Vaquerizas et al. [15]. The latter classified TRs as ‘a’, ‘b’, ‘c’, ‘x’, and
‘other’. We took only TRs classified as ‘a’, ‘b’, or ‘other’ because TRs in these classes have
experimental evidence of regulatory function in a mammalian organism or were manually
curated to be TRs. We identified the receptors and TRs in each signaling pathway by taking
the intersection of the proteins in the pathway with the list of receptors and list of TRs.

The precision and recall results were determined solely by running PathLinker and
other algorithms with the receptor and TR lists described above. When we carefully exam-
ined the NetPath receptors for the Wnt pathway, we observed that two Frizzled receptors,
FZD4 and FZD6, were missing from the literature-determined lists. For analysis to iden-
tify potential hypotheses for followup in the lab, we manually added these receptors to the
PathLinker inputs and re-ran PathLinker.

NetPath pathways. We identified 15 NetPath pathways that met the following criteria:
i) the pathway contained at least one receptor, ii) the pathway contained at least one TR, and
iii) the minimum cut between the receptors and TRs was at least three in the NetPath path-
way (i.e., three edges must be removed from the pathway to disconnect the receptors from
the TRs) (Supplementary Table S3). The first two criteria ensured that each pathway had a
natural beginning and end to the signal propagation. The third criteria ensured the pathway
was sufficiently connected. We included the third criterion because several pathways had a
minimum cut of zero; such curated pathways were likely highly incomplete as there was no
connection (path) from any signaling receptor to a downstream TR. We did not consider
the Notch pathway since its receptors have intracellular domains that are also TRs. We
downloaded NetPath SBML Level 2 Version 1 files from http://www.netpath.org. These
files represent interactions as a set of reactants, products, and modifiers; we treated each
(modifier,reactant) pair as a pairwise interaction. We treated interactions denoted as ‘phys-
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ical’ or ‘interaction’ as bi-directed and all other types were directed (e.g., ‘phosphorylation,’
‘methylation,’ and ‘acetylation’).

Table S3: NetPath pathways used for analysis. Recoverable receptors/TRs are those remain-
ing after removing incoming edges to receptors and outgoing edges from TRs (see “Evaluation
Framework”).

Min # # # Recoverable # Recoverable
Pathway #Nodes #Edges Cut Receptors TRs Receptors TRs
BDNF 72 139 4 5 4 5 4
EGFR1 231 1456 30 6 33 6 33
IL1 43 178 7 3 5 3 5
IL2 67 242 16 3 12 3 12
IL3 70 176 5 2 9 2 9
IL6 53 162 6 4 14 4 14
IL7 18 52 5 2 3 2 3
Kit Receptor 76 207 5 6 8 6 8
Leptin 55 135 8 3 15 3 15
Prolactin 68 199 10 4 10 4 10
RANKL 57 142 4 2 12 2 12
TCR 154 504 8 7 20 6 20
TGFβ Receptor 209 863 32 5 77 5 77
TNFα 239 913 15 4 44 4 44
Wnt 106 428 7 14 14 14 13

KEGG pathways. The KEGG database contains 276 human pathways divided into six
categories: Metabolism, Genetic Information Processing, Environmental Information Pro-
cessing, Cellular Processes, Organismal Systems, and Human Diseases. We focused on Envi-
ronmental Information Processing, Cellular Processes, and Organismal Systems since these
groups contained signaling related pathways. We ignored pathways in the Metabolism and
Genetic Information Processing categories since they were not related to signaling. We did
not consider the Human Diseases category either, since our goal in this work was to focus
on normal physiological processes. Each of these categories contains several subgroups of
pathways. We considered only those subgroups related to signaling. Of the remaining 54
KEGG pathways, we analyzed the 32 pathways that met the following criteria: i) the path-
way contained at least one receptor, ii) the pathway contained at least one TR, and iii)
the minimum cut between the receptors and TRs was at least three in the KEGG pathway.
(Supplementary Table S4). We parsed the KEGG KGML pathway files, an XML-style file
format specific to KEGG pathways. Our parser follows the description of the KEGG Markup
Language (KGML) available at http://www.kegg.jp/kegg/xml/docs/. We parsed KEGG
entries that corresponded to genes, proteins, and complexes (gene and group types). We
collected UniProtKB identifiers from the original KGML files. We retained only “reviewed”
UniProtKB identifiers, as defined by the UniProtKB database. If a single KEGG identifier
mapped to multiple reviewed UniProtKB identifiers, then we duplicated the information for
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each UniProtKB identifier.We parsed the protein-protein relations (PPRel), treating inter-
actions as bi-directed edges if they were denoted as ‘binding/association’ or ‘dissociation’,
or if they are components of the same complex. We treated all other interaction types (e.g,
‘activation’, ‘inhibition’, ‘phosphorylation’) as directed edges. KEGG contained information
about interactions between protein families, e.g., Wnt and Fzd. In this case, we considered
each (Wnt,Fzd) protein pair as a separate interaction.

Table S4: KEGG pathways used for the aggregate precision and recall computation.

Name KEGG ID Name KEGG ID

Adherens junction hsa04520 Adipocytokine signaling pathway hsa04920

Apoptosis hsa04210 Axon guidance hsa04360

Chemokine signaling pathway hsa04062 Circadian entrainment hsa04713

Dopaminergic synapse hsa04728 Endocytosis hsa04144

ErbB signaling pathway hsa04012 Focal adhesion hsa04510

FoxO signaling pathway hsa04068 GnRH signaling pathway hsa04912

HIF-1 signaling pathway hsa04066 Hippo signaling pathway hsa04390

Insulin signaling pathway hsa04910 Jak-STAT signaling pathway hsa04630

Prolactin signaling pathway hsa04917 MAPK signaling pathway hsa04010

Melanogenesis hsa04916 Natural killer cell mediated cytotoxicity hsa04650

Neurotrophin signaling pathway hsa04722 NF-kappa B signaling pathway hsa04064

Notch signaling pathway hsa04330 Osteoclast differentiation hsa04380

TGF-beta signaling pathway hsa04350 Thyroid hormone signaling pathway hsa04919

Tight junction hsa04530 Toll-like receptor signaling pathway hsa04620

VEGF signaling pathway hsa04370 Wnt signaling pathway hsa04310

Leukocyte transendothelial hsa04670 Signaling pathways regulating hsa04550

migration pluripotency of stem cells

We found that there were relatively few TRs from Ravasi et al. and Vaquerizas et al.
that appeared in KEGG pathways. On average, there were about twice the number of TRs
from these lists that appeared in NetPath pathways compared to KEGG (18.6 and 9.8,
respectively). KEGG pathways contained on average 11.9 proteins that were not in the
TR lists but had no outgoing edges in the interactome, which may be considered alternate
“targets” for PathLinker. The number of such proteins was much smaller for NetPath
pathways (4.1 on average). For the KEGG analysis, we included proteins that have no
outgoing edges as end-points for PathLinker, in addition to the TRs.

2 Algorithms for Comparison

We briefly describe each algorithm and discuss the parameters we use (Supplementary Fig-
ure S1). Unless otherwise specified, we run all methods on a weighted, directed network.

RWR [3] is a random walk with restarts, also known as a teleporting random walk or topic-
based PageRank. At each step, a walker moves to a neighbor with probability (1-q) and
“restarts” at one of the receptors with probability q. In practice, the interactome we use is
aperiodic (since there is at least one cycle of length 2 and at least one cycle of length 3),
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but not necessarily irreducible. To ensure irreducibility, we add edges from each node to all
other nodes in the interactome with a small teleportation probability of 1/(|V | × 106). We
use the well-known power iteration method to efficiently compute the stationary distribution
of the random walk. We compute the flux score for edge (u, v) by multiplying the visitation
probability of u by the edge weight and normalizing by the weighted out degree of u. We
rank the interactions and proteins of a reconstruction by decreasing order of flux score.

ANAT [4] returns a sub-network connecting receptors to TRs that allows a trade-off between
shortest paths and minimum Steiner trees with a parameter α. We ran the steinprt software
package for ANAT to compute one sub-network for each signaling pathway. We selected
α = 0 since it achieved higher precision than all other values of α on NetPath pathways.

PCSF [5] solves a Prize-Collecting Minimum Steiner Forest problem using a message passing
algorithm, which returns a single sub-network. We introduced a source node connected to
all receptors, set all TRs as terminal nodes, and ran the msgsteiner software package to
identify a set of Steiner trees. PCSF takes two parameters: p, the value of the prize for each
terminal and ω, the penalty on the number of trees. Different parameter values produced
similar precision and recall on NetPath pathways; we set p = 5 and ω = 0.10.

ResponseNet [6] uses a min-cost network flow approach to identify a sub-network that
connects receptors to TRs. We implemented ResponseNet in Python and solved the linear
program using CPLEX. ResponseNet requires a parameter γ that controls the number of
interactions that carry flow. Different parameter values produced similar precision and recall
on NetPath pathways; we set γ = 20. In principle, we could rank interactions and proteins of
a reconstruction by decreasing order of flow. However, since ResponseNet typically yielded
non-zero flow on a small number of edges, we included any node with incoming positive flow
and any edge with positive flow in the output network.

The Ingenuity Pathway Analyzer (IPA) contains many algorithms that identify subsets of
their interactome. IPA’s Network Generation algorithm identifies a sub-network that links
user-specified nodes [7]. We implemented this algorithm for comparison, calling it IPA. It
operates on an unweighted network, and requires a parameter nmax that determines the size
of the computed networks. We ran IPA on an unweighted version of the interactome using
multiple values of nmax, since different parameter values returned sub-networks with different
values of precision and recall.

ShortestPaths computes shortest paths between receptors and TRs. Specifically, for every
receptor r and every TR t, we identify the shortest path between r and t. When there are
multiple shortest paths between r and t, we include all of them. We output a network
composed of the union of all shortest paths computed for all receptor-TR pairs. Note that
this algorithm is a variation of ANAT with α = 0.

BowTieBuilder uses a heuristic approach to compute a Steiner tree connecting recep-
tors to TRs [8]. First, BowTieBuilder initializes the reconstructed pathway P to in-
clude the set of receptors and TRs, and sets all receptors and TRs as unvisited. Next,
BowTieBuilder compute a distance matrix D containing the length of the shortest path
from every receptor r to every TR t. BowTieBuilder then iteratively selects the shortest
path in D that connects an unvisited node and a visited node. If there is no such path, it
identifies the shortest path between any two unvisited nodes. The algorithm adds this path
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to the network P and marks all the nodes along the path as visited. BowTieBuilder then
updates the matrix D to include the length of the shortest path from any receptor or TR
to nodes along the added path. BowTieBuilder repeats these steps until all receptor and
TR nodes are marked as visited. The network P represents the reconstructed pathway.

Parameters used by the algorithms
Algorithm Parameter Meaning
RWR q Teleportation probability
ANAT α Tradeoff between global (Steiner tree) and

local (shortest path) solution
PCSF ω Penalty for adding a new tree

p Prize for each node
ResponseNet γ Number of interactions that carry flow
IPA nmax Maximum sub-network size
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Figure S1: (Top) Description of user-defined parameters for algorithms. (Bottom) Precision
and recall of interactions in the (a) Wnt pathway reconstruction and (b) 15 aggregated
NetPath reconstructions with variation in internal parameters. Gray rounded rectangles
denote parameter values that we used in the precision-recall analysis in the main manuscript.
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3 Evaluation Framework

Single pathway. Given a curated pathway and the weighted interactome G, we performed
the following steps to compute precision and recall. We identified the receptors and TRs
in the curated pathway using the receptor and TR lists. We called these pathway receptors
and pathway TRs. We removed edges incoming to the pathway receptors and edges outgoing
from pathway TRs from G. We performed this step before running PathLinker to ensure
that each path contained exactly one receptor and exactly one TR. We performed this step
for all the other algorithms as well, since we found that it improved their precision. We
applied each algorithm to G, using the pathway receptors as the sources S and the pathway
TRs as the targets T . We ranked the interactions (or proteins) in the solution returned by
each algorithm. For single sub-network solutions, we took the entire set of interactions. For
PathLinker, we ranked each interaction by the first path in which it appeared (increasing
order). For RWR, we ranked the interactions by edge flux score (decreasing order).

We identified the set P of positive interactions as those present in the curated pathway
(ignoring direction). We identified a set N of negative interactions as follows. Ideally, we
would have liked to use a curated dataset of negative examples. However, we are not aware
of a database that contains interactions that are not in any signaling pathway. Therefore, we
adopted the longstanding convention in the computational biology community of sampling
negative examples randomly from the universe [16–19], which in our application was the
set of all interactions in the interactome. We randomly sub-sampled a negative set N of
edges (ignoring direction) from the background interactome in the ratio of 50 negatives to
one positive, ensuring that N did not contain any edges in P . We acknowledge that the
choice of 50 is arbitrary and that each algorithm’s performance will depend on this number.
However, since we only used N in the estimation of precision, the choice of 50 does not affect
the output of the individual algorithms but only their relative performance. In the analyses
where we ignored KEGG positives or ignored pathway-adjacent negatives, we removed these
interactions from G before subsampling N .

We computed the precision and recall using the positive set P , the negative set N , and
the ranked interactions X. Let Xi denote the set of the first i interactions. The precision
and recall for Xi were

Precisioni =
|Xi ∩ P |

i
and Recalli =

|Xi ∩ P |
|P |

. (1)

We applied a similar method for computing the precision and recall when we reconstructed
the proteins in a curated pathway.

Multiple pathways. We computed the precision and recall for a set of m signaling path-
ways p1, p2, . . . , pm. After computing the precision and recall for each pathway individually,
we had m distinct collections of ranked edges, positive edges, and negative edges, denoted as
X(j), P (j), and N (j), respectively. We aggregated the ranked lists by appending the pathway
name to the edge, i.e., we computed,

X =
m⋃
j=1

[
((e, pj), k) for e, k ∈ X(j)

]
,
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where e was an edge in pathway pj and k was the rank of that edge in X(j). Finally, we
sorted the elements in X by the value k. We similarly appended the pathway name to the
positives and negatives:

P =
m⋃
j=1

[
(p, pj) for p ∈ P (j)

]
and N =

m⋃
j=1

[
(n, pj) for n ∈ N (j)

]
.

We used these three aggregated collections to compute precision and recall for X, P , and
N using Equation (1). We computed aggregate precision and recall for nodes in a similar
manner.

Quantifying Distance in the Interactome To calculate the distance from an edge in
a reconstructed pathway to the signaling pathway (such as the Wnt signaling pathway in
NetPath), we defined a measure δ based on the shortest path length. We first describe δ(n),
the distance from a node u to the signaling pathway. We computed the shortest path length
d(u, v) from u to every node v in the pathway using Dijkstra’s algorithm; we ignored direction
in this calculation. Let VP be the set of nodes in the signaling pathway (the positive set).
We defined

δ(u) = min
v∈VP

d(u, v),

where δ(u) = 0 if node u is in the signaling pathway. Let Ep be the set of edges in the signaling
pathway. We defined δ(u, v), the distance from edge (u, v) to the signaling pathway, as

δ(u, v) =

{
0 if (u, v) ∈ Ep

min (δ(u), δ(v)) + 1 otherwise.

Intuitively, δ((u, v)) is 0 if (u, v) is in the pathway. Otherwise, it is the length of the shortest
path connecting the edge to the pathway. Note that δ(u, v) = 1 for an edge (u, v) that is
not a member of the pathway, even if u and v are proteins in the pathway. For a ranked list
of edges in a pathway reconstruction, we visualized the distribution of these distances δ as
a bar chart.

Sampling receptors and TRs. We define a sampling percentage ρ relative to the pathway
receptors S and pathway TRs T . For example, when ρ = −30%, we omit 30% of the
receptors and 30% of the TRs. When ρ = 30%, we add 30% new receptors and 30%
new TRs. When ρ = 0%, we use the correct receptors and TRs. We considered ρ =
[−50%,−30%,−10%, 0%, 10%, 30%, 50%]. For each non-zero value of ρ and for each NetPath
pathway P , we randomly generate 25 sets of receptors and TR and apply PathLinker to
each set. For each value of ρ, we compute the median precision-recall curve by partitioning
the recall values into 1,000 bins.
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4 Precision and Recall Analyses
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Figure S2: Rank of the first occurence of receptors (left) and TRs (right) in interactions
from PathLinker and RWR reconstructions.
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Figure S3: Precision and recall of 25 PathLinker reconstructions sampled for every value
of ρ in [−30%,−10%, 0%, 10%, 30%].
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Table S5: Proportion of positive proteins and interactions in the interactomes. A protein or
an interaction is a positive if it appears in any of the 15 NetPath pathways.

Proteins Interactions
Interactome # Pos Total Fraction # Pos Total Fraction

Original interactome 1,254 12,063 0.104 3,795 95,617 0.040
Interactome without

Netpath-only interactions 1,235 12,044 0.102 2,493 94,315 0.026

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Original interactome 
Interactome without Netpath-only
interactions

Interactions from PathLinker 
Applied to Different Interactomes 

(Aggregated over 15 Reconstructions)

Figure S5: Performance of PathLinker on the original interactome compared to the inter-
actome without NetPath-only interactions.
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Table S6: Precision and Recall of Networks from Figure 3(a).

Ignoring Interactions
in KEGG

Method Threshold #Edges Precision Recall Precision Recall
PathLinker top 247 paths 193 0.648 0.203 0.745 0.203
RWR flux ≥ 8.26× 10−4 208 0.614 0.203 0.680 0.203
IPA nmax = 10 213 0.723 0.198 0.739 0.198
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5 PathLinker’s Reconstruction of the Wnt Signaling

Pathway

Here, we discuss PathLinker’s reconstruction of the Wnt signaling pathway (Figure 3(b)).

Differences between NetPath and KEGG. In the canonical branch of Wnt signal-
ing, β-catenin activity is controlled by the destruction complex. The PathLinker net-
work included the core constituents of the β-catenin destruction complex (AXIN1, APC and
GSK3β), as well as the accessory proteins Dishevelled 1, 2, and 3 (DVL1, DVL2, DVL3) [22].
While proteins in the Fzd and Dvl families are present in NetPath, the interactions among
them are captured better in the KEGG database.

The KEGG database documents the Ca2+ branch of Wnt signaling, which occurs in a
β-catenin-independent fashion [23]. Even though the NetPath database does not include
this branch, PathLinker’s reconstruction (Figure 3(b)) included paths from Frizzled re-
ceptors to phospholipase C proteins (PLCB1, PLCB2, PLCB3, PLCB4) and protein kinase
C (PRKCA). In the presence of Wnt, Frizzled receptors activate phospholipase C proteins,
resulting in increased intracellular concentrations of Ca2+, the production of diacylglycerol,
and the subsequent activation of protein kinase C [24]. However, the reconstruction did not
include the Ca2+-sensitive protein phosphatase calcineurin PPP3CC, CHP1, CHP2) family
of proteins or their activation of the NFAT family of transcriptional regulators [24].

Proteins not in NetPath or KEGG. The PathLinker network included 16 proteins
not previously known to be in the NetPath or KEGG representations of the Wnt path-
way (Figure 3(b)). Ten of these proteins (MAPK1, MAPK3, EGFR, NOTCH1, SMAD2,
SMAD3, SMAD7, PIK3CA, PIK3R1, and SRC) have been shown to crosstalk with the
Wnt signaling pathway. Through a feedback loop, MAPK1 and MAPK3 phosphorylate
GSK3β and activates the Wnt signaling pathway, thereby stabilizing β-catenin and acti-
vating Raf-1, which in turn activates MAPK1 and MAPK3 [25]. WNT1 and WNT5 have
been shown to transactivate EGFR in mammary epithelial cells [26]. Through its interac-
tion with the NOTCH1 intracellular domain, Dishevelled links the Wnt and Notch signaling
pathways [27]. The SMAD proteins (SMAD2, SMAD3, and SMAD7), β-catenin, and LEF
form a transcriptional complex in the nucleus [28]. Finally, PIK3CA and PIK3R1 are mem-
bers of the PI3K/Akt signaling pathways. Though this pathway and the Wnt pathway
share a key protein (GSK3β), the extent of crosstalk between the two pathways has been
disputed [29, 30]. The SRC kinase catalyzes several signal transduction pathways, and is
known to phosphorylate β-catenin [31].

Two G-protein coupled receptors in the PathLinker reconstruction (GNAQ and GNAO1)
have been shown to be involved in β-catenin signaling in Drosophila and murine models, re-
spectively [32, 33]. Two other proteins identified by PathLinker, UBA52 and RPS27A,
both encode for ubiquitin. The reconstruction may have included them because ubiqui-
tination is a common post-translational protein modification. A third protein, FLNA, is
a cytoskeletal scaffold for other membrane-bound proteins [34]. It is unknown if FLNA
specifically scaffolds Wnt/β-catenin signaling proteins.

CFTR was the highest ranked of all proteins not previously known to be in Wnt pathway
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in the NetPath or KEGG databases. PathLinker indicated that CFTR acted as a signal
transducer from Ryk, a receptor tyrosine kinase involved in Wnt signaling and organismal
development [35–38], to Dab2, a known negative regulator of β-catenin signaling [39, 40]. As
Wnt signaling is associated with several types of cellular differentiation and specification, the
closing of membrane channels to facilitate morphological changes is biologically relevant [41].

6 A∗-augmented Yen’s Algorithm

We briefly describe Yen’s algorithm using Dijkstra’s algorithm as a subroutine, and then
explain how we achieve a considerable speedup in practice by augmenting Yen’s with the A∗

heuristic.

Yen’s Algorithm. Given a directed graph G = (V,E) with n vertices, m edges and two
vertices s and t in V , Yen’s algorithm finds the k shortest loopless paths from s to t in
O(kn(m+ n log n)) time using Dijkstra’s algorithm as a shortest path subroutine [1].

Let the ith shortest s-t path in G be πi and let the jth vertex in that path be πi,j.
Yen’s algorithm operates on the principle that each new shortest path πi can be generated
from some previous shortest path πi′ , i

′ < i, by assuming that πi deviates from πi′ after
some vertex πi′,j′ . Yen’s algorithm computes this path by executing a shortest path search
from πi′,j′ to t on a graph G′, which is constructed by removing from G all the vertices in
{πi′,1, πi′,2, . . . , πi′,j′−1} in addition to any outgoing edges from πi′,j′ , which are in a previously
found path. This construction guarantees that the path found in G′ represents a new,
loopless s-t path. Over all possible deviation vertices πi′,j′ , this process results in O(kn)
calls to Dijkstra’s algorithm to compute shortest paths. Thus, these calls yield the stated
O(kn(m+ n log n)) time complexity for Yen’s algorithm.

Integrating with A∗. The running time of PathLinker is dominated by the use of
Yen’s algorithm to calculate the k shortest loopless paths in a network. We improve the
performance of Yen’s algorithm in practice with a simple modification: rather than using
Dijkstra’s algorithm as the shortest path subroutine, we use the A∗ algorithm. Given a
heuristic function h : v → R for v ∈ V that is an estimate of the shortest path distance
from v to t, A∗ is a “best first search” algorithm that computes an optimal solution to the
shortest path problem while attempting to search a much smaller subset of the graph than
Dijkstra’s algorithm [2].

Let dG(v) be the distance from v to t in graph G. The heuristic h is admissible if and
only if h(v) ≤ dG(v), for all v ∈ V . The tighter the lower bound, the better A∗ will perform.
If the heuristic satisfies the additional property that h(u)− h(v) ≤ w(u, v), for all u, v ∈ V ,
where w(u, v) > 0 is the weight of the edge from u to v, it is said to be monotone. Given an
admissible, monotone heuristic function, A∗ is guaranteed to return the shortest paths from
s to all nodes in G. The A∗ heuristic used by PathLinker is the distance from the target
in the original graph, i.e., h(v) = dG(v). Each call to the shortest path subroutine in Yen’s
algorithm will be on some subgraph G′ ⊆ G. Since all edge weights are non-negative, the
distance of a vertex v to t in the original graph G is a lower bound for the distance of v to
t in all subgraphs G′. Since dG(v) ≤ dG′(v), h is admissible. Furthermore, h is monotone.

17



Dijkstra’s algorithm keys the priority queue for exploring nodes by c(v), the shortest path
length to v from s considering only nodes that have been explored so far. We implement A∗

as a modification of Dijkstra’s algorithm, where we key the priority queue by c(v) + h(v),
rather than just by c(v).

While this optimization does not affect the asymptotic running time for Yen’s algorithm,
it yields considerable speed ups in practice, running 11 to 41 times faster than the tradi-
tional implementation of Yen’s algorithm on the pathways (Supplementary Figure S8). This
improvement facilitated the computation of the top 20, 000 paths in the interactome.
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Figure S8: Comparison of the running time of A∗-augmented Yen’s algorithm (red bars) to
a standard implementation of Yen’s algorithm (blue bars). (a) The running time for each
NetPath pathway (k = 20, 000). The number above each blue bar is the speed up afforded
by the improved algorithm for the corresponding pathway. (b) The total running time over
all NetPath pathways for k = 1, 000, k = 5, 000, and k = 20, 000.

7 Experimental Methods

Efficacy of siRNA silencing. Cells were routinely passaged and cultured as described in
Clark et al. [68] in DMEM containing 10% fetal bovine serum and 1% penicillin/streptomycin
at 37 ◦C in the presence of 5% CO2. Invitrogen silencer select validated siRNAs (Dab2:
s3896, Ryk: s12390, CFTR: s2945) were dissolved in 500 µL of provided water resulting in
a final concentration of 10 mM and stored in 30 µL aliquots at -20 ◦C. Efficacy of siRNA
silencing was determined by western blot in a dose dependent manner. Approximately
200,000 HEK293 were plated in 24 well plates and allowed to adhere for 24 h in 1 mL complete
media. Cells were washed twice with room temperature (22 ◦C) dPBS and incubated with
900 µL of complete media. A siRNA-RNAiMax solution was prepared as described by the
manufacturer. Briefly, 3 µL of RNAiMax and 0-4 µL of respective siRNA (10 mM stock
concentration) were added to separate tubes of 50 µL of DMEM and allowed to incubate
for 15 min. Solutions were subsequently pooled, mixed by gentle pipetting, and allowed to
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incubate at room temperature for 30 min. Complexed siRNA solution (100 µL) was added
to each well and incubated for 48 h. Cells were washed twice with room temp dPBS and
harvested in 100 µL NP-40 buffer containing protease inhibitor and flash frozen in liquid
nitrogen. 25 µL of 5x Loading dye was added to each sample, mixed and heated to 80 ◦C
for 5 min.

Western blots. Processed samples were run via SDS-PAGE on a 7.5% polyacrylamide gel
of 1.5 mM thickness. Samples were transferred for 1.5 h at a constant 300 mA onto hybond-
C extra membranes. Membranes were kept submerged in 20 mL of PBS-T (Sigma P3813
+ 0.1% Tween20) + 3% BSA for 1 h at room temperature. Appropriate primary antibody
was spiked in (Table S7) and membranes were stored overnight at 4 ◦C on an orbital shaker.
Membranes were washed thrice with 20 mL of PBS-T for 10 min while shaking. Membranes
were probed with appropriate secondary antibody (Table S7) for 1 h at room temperature
while shaking. Membranes were washed twice with 20 mL of PBS-T for 10 min shaking
and stored in 20 mL PBS for no more than 10 min. Membranes were exposed to 8 mL of
chemiluminescence substrate (SuperSignalTM West Pico Chemiluminescent Substrate 34080)
for 5 min in the dark and subsequently imaged in a Chem-Doc XRS+ workstation using
Image Lab Software. Images were recorded over 10 min every 10 s.

Table S7: Antibodies used and paired for this study. Abbreviation: Horseradish Peroxidase
(HRP).

Antigen Antibody Source Dilution Vendor Catalog #

CFTR Primary Rabbit Polyclonal IgG 1:2,000 Santa Cruz sc-10747
Secondary Goat Anti-Rabbit Polyclonal IgG-HRP 1:10,000 GE Healthcare RPN4301

Dab2 Primary Rabbit Polyclonal IgG 1:2,000 Santa Cruz sc-13982
Secondary Goat Anti-Rabbit Polyclonal IgG-HRP 1:10,000 GE Healthcare RPN4301

Ryk Primary Rabbit Polyclonal IgG 1:2,000 abcam ab135670
Secondary Goat Anti-Rabbit Polyclonal IgG-HRP 1:10,000 GE Healthcare RPN4301

β-catenin Primary Mouse Monoclonal IgG1 1:10,000 Santa Cruz sc-7963
Secondary Goat Anti-Mouse Polyclonal IgG-HRP 1:10,000 R&D Systems HAF007

GAPDH Primary Goat Polyclonal IgG 1:20,000 R&D Systems AF5718
Secondary Rabbit Anti-Goat Polyclonal IgG HRP 1:10,000 R&D Systems HAF017

Transient overexpression of Wnt proteins in siRNA silenced background. Cells
were silenced via lipofection as described above. The Wnt plasmid library (addgene Kit #
1000000022) [20], specifically secreted Wnt proteins lacking any engineered epitopes, were
utilized for the study. Approximately 24 h post RNAiMAx transfection, cells were washed
twice with room temp dPBS and incubated with 900 µL of complete media. Lipofectamine
LTX- plasmid solution was prepared as described by the manufacturer. Briefly, 4 µL of Lipo-
fectamine was added to a tube containing 50 µL of DMEM. 1 µL of plus solution and 100
ng of a given secreted Wnt, pM50 Super 8x TOPFlash (7 sequencing TCF/LEF promoter
binding sites fused to firefly luciferase) [21], and constitutive expression of Renilla luciferase
plasmid (pGL4.74[hRluc/TK], promega E6921) was added to a separate tube containing
50 µL of DMEM. Tubes were allowed to incubate for 15 min and the solutions were subse-
quently pooled, mixed by gentle pipetting, and allowed to incubate at room temp for 30 min.

19



The LTX -plasmid solution (100 µL) was added to each well and incubated for 30-36 h prior
to the luciferase reporter assay or determination of β-catenin levels via western blot.

Luciferase reporter assay. The dual glow luciferase reporter assay was conducted as
described by the manufacturer (Promega #E2940). Briefly, treated cells were washed once
with room temp dPBS, and incubated in 100 µL of dual glow buffer for 5 min at 37 ◦C.
Luminescence was determined via integration of 1000 ms top reading using a SpectraMax
M5. Subsequently, 100 µL of freshly prepared Stop and Glow buffer was added to each
well and incubated for 5 min at 37 ◦C. Renillia control luminescence was determined via
integration of 1000 ms top reading using a SpectraMax M5. Normalized luminescence was
determined by dividing the dual glow luminescence (firefly luciferase activity) by the Stop
and glow luminescence (Renilla luciferase activity).

Co-immunoprecipitation. HEK293 cells (106 cells) were transfected with sWnt and con-
trol plasmids and incubated as previously described for approximately 48 h. Cells were gently
washed 2x with room temp dPBS and re-suspended in 1 mL of Extraction Buffer in the pres-
ence of protease inhibitors (Roche #11697498001) and incubated on ice for 15 min. Antibody
coupling to Dynabeads (M-270 Epoxy) resin and co-immunoprecipitation via magnetic sep-
aration was followed as described by the manufacturer (Invitrogen #14321D). 1.5 mg of
antibody (150 µL) was transferred to a fresh tube and washed with 900 µL of Extraction
Buffer using magnetic separation. Cell lysate was added to washed beads and incubated for
45 min at 4 µC on a vertical rotator. Magnetic beads were washed three times with 200 µL
of Extraction Buffer. Beads were incubated with 200 µL of Last Wash Buffer for 5 min at
room temp on a vertical rotator. Beads were transferred to a clean tube and re-suspended
in 60 µL of Elution Buffer using magnetic separation. Samples (10 µL) were run on a 7.5%
SDS-PAGE gel and probed with appropriate antibody pairs (Supplementary Table S7).
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Figure S9: Quantification of western blot band Intensity. We applied the Bio-Rad Image Lab
software on SCN files obtained from the Bio-rad ChemiDoc-XRS+ system. We normalized
Band Intensity by GAPDH intensity and then against control No Wnt samples. We per-
formed qualifications and comparisons only for samples on a given scan. Black or gray colors
for individual bar graphs signify a normalized intensity less than or greater than the No Wnt
control, respectively. QNβ: Qualification of Normalized β-catenin intensity, “++”: ≥1.3-
fold, “+”: 1.3-fold>x≥1-fold, “-”: <1-fold. We compared QNβ values to qualifications of
the normalized relative luminescence (NRL), “VS”: very strong (≥30-fold),“S”: strong (30-
fold>X≥15-fold), “W”: weak (<15-fold).
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