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Abstract. Publicly-available data sets provide detailed and large-scale
information on multiple types of molecular interaction networks in a
number of model organisms. These multi-modal universal networks cap-
ture a static view of cellular state. An important challenge in systems
biology is obtaining a dynamic perspective on these networks by inte-
grating them with gene expression measurements taken under multiple
conditions.
We present a top-down computational approach to identify building
blocks of molecular interaction networks by

(i) integrating gene expression measurements for a particular disease
state (e.g., leukaemia) or experimental condition (e.g., treatment
with growth serum) with molecular interactions to reveal an active
network, which is the network of interactions active in the cell in
that disease state or condition and

(ii) systematically combining active networks computed for different
experimental conditions using set-theoretic formulae to reveal net-
work legos, which are modules of coherently interacting genes and
gene products in the wiring diagram.

We propose efficient methods to compute active networks, systematically
mine candidate legos, assess the statistical significance of these candi-
dates, arrange them in a directed acyclic graph (DAG), and exploit the
structure of the DAG to identify true network legos. We describe meth-
ods to assess the stability of our computations to changes in the input
and to recover active networks by composing network legos.
We analyse two human datasets using our method. A comparison of three
leukaemias demonstrates how a biologist can use our system to identify
specific differences between these diseases. A larger-scale analysis of 13
distinct stresses illustrates our ability to compute the building blocks of
the interaction networks activated in response to these stresses.

1 Introduction

Rapid advances in high-throughput and large-scale biological experiments are in-
spiring the study of properties of sets of molecules that act in concert [13], how
these sets interact with each other, and how these interactions change dynami-
cally in response to perturbations. Such groups of molecules have been dubbed
various names such as gene modules [5, 30, 34], module networks [31] and gene



sets [35]. One of the fundamental challenges of systems biology is to automati-
cally compute such modules and the relationships between them by integrating
multiple types of data and discovering patterns of coordinated activity contained
in these data sets.

In this paper, we present a top-down computational approach that identifies
building blocks of cellular networks by

(i) integrating gene expression measurements for a particular disease state
(e.g., leukaemia) or experimental condition (e.g., treatment with growth
serum) with molecular interactions to reveal an active network, which is the
network of interactions active in the cell in that disease state or condition
and

(ii) systematically combining active networks computed for different exper-
imental conditions using set-theoretic formulae to reveal network legos,
which are modules of coherently interacting genes and gene products in
the wiring diagram. These network legos are potential building blocks of
the wiring diagram, since we can express each active network as a compo-
sition of network legos.

We illustrate the essence of our method using an example. Armstrong et al. [2]
demonstrated that lymphoblastic leukaemias involving translocations in the MLL
gene constitute a disease different from conventional acute lymphoblastic (ALL)
and acute myelogenous leukaemia (AML). The authors based their analysis on
the comparison of gene expression profiles from individuals diagnosed with ALL,
AML, and MLL. We reasoned that the networks of molecular interactions acti-
vated in these diseases may also show distinct differences. First, we computed
networks of molecular interactions activated in each leukaemia, as described in
Section 3.2. Next, we systematically combined these active networks in multiple
ways into network legos using graph intersections and graph differences, using
the method presented in Section 3.3. Our system generated all the possible 19
(33 − 23) combinations involving the ALL, AML, and MLL active networks and
their complements and connected them in the directed acyclic graph (DAG) dis-
played in Figure 1. In this DAG, each node represents a single combination, e.g.,
the leftmost node on the top row represents the MLL active network while the
leftmost node in the middle row represents the interactions activated in AML
but not in MLL (the “formula” AML∩ !MLL). A solid blue edge directed from
a child to a parent indicates that the formula for the child (e. g., MLL) appears
as a part of the formula for the parent (e.g., MLL∩ !AML), while a green edge
indicates that the child’s formula (e.g., MLL) appears negated in the parent’s
formula (e.g., AML∩ !MLL). The DAG is a concise representation of all the for-
mulae we compute and the subset relationships between the formulae. We did
not consider complementation-only formulae such as !ALL∩ !AML since the re-
sulting networks are unlikely to be biologically useful. In Section 4.1, we describe
how function and pathway enrichment of these networks suggests differences and
similarities between ALL, AML, and MLL. For instance, Figure 1 displays an ex-
ample of the enrichment of the interactions in the KIT pathway in the computed



network legos. Interactions in this pathway are significantly enriched only in for-
mulae that involve the AML active network; the most significant enrichment
(3.5× 10−7) occurs in the formula AML ∩ !ALL ∩ !MLL.
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10: 2 c, 568 i
MLL
!ALL

3: 2 c, 108 i
ALL
AML
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Fig. 1. The lattice connecting combinations of ALL, AML, and MLL active networks.
Each node contains an index, the number of ‘c’onditions, the number of ‘i’nteractions
and the active networks participating in the formula, with ’ !’ indicating complementa-
tion. Colours indicate differential enrichment of the interactions in the KIT pathway in
the computed combinations. Darker colours denote more significant enrichment values.

Given a wiring diagram and the transcriptional measurements for a particular
condition, we use the gene expression data to induce edge weights in the wiring
diagram. We find dense subgraphs [8] in this weighted graph to compute the
active network for that condition. Given the active networks for a number of
different conditions, we first represent the active networks in an appropriately-
defined binary matrix and compute closed itemsets [1, 40] in the matrix. Each
itemset simultaneously represents a set-theoretic combination of particular active
networks and a subgraph of the wiring diagram; we call such a subgraph a
“network block”. We exploit the subset structure between blocks to arrange
them in a DAG. When the number of active networks is large, we may compute
a very large number of highly-similar blocks. Not all these blocks are likely to be
network legos. We assess the statistical significance of each block by simulation
and identify those that are maximally significant, i.e., more significant than any
descendant or an ancestor in the DAG. We deem these blocks to be network
legos.

We develop two measures to assess the quality of the network legos we com-
pute. Stability measures to what degree we can recompute the same legos when
we remove each active network in turn from the input. Recoverability measures
to what extent we recoup the original active networks when we combine network
legos. These two notions test two different aspects of network lego computa-
tion. Considering active networks to be the inputs and network legos to be the
outputs, stability measures how much the outputs change when we perturb the
inputs by removing one of the inputs at a time. In contrast, recoverability asks
whether we can reclaim the inputs by combining the outputs; thus recoverability
is a measure of how well the network legos serve as building blocks. To assess



the biological content of network legos, we measure the functional enrichment
of the genes and interactions that belong to a network lego. For each function,
we track its degree of enrichment in the DAG to visually highlight differences
among the active networks, as displayed in Figure 1.

In addition to the ALL-AML-MLL analysis, we apply our approach to a
collection of 178 arrays measuring the gene expression responses of HeLa cells
and primary human lung fibroblasts to cell cycle arrest, heat shock, endoplasmic
reticulum stress, oxidative stress, and crowding [21]. Overall, the dataset contains
13 distinct stresses over the two cell types. Our method computes 143 network
legos. In this paper, we focus on a structural analysis of the network legos.
We carefully examine the compositions of these network legos to demonstrate
that they are true building blocks of the active networks for these 13 stresses.
We demonstrate that our algorithm to construct network legos is stable: when
we remove each active network and recompute network legos, we are able to
recompute most network legos at least 95% fidelity. We also demonstrate that we
can recover active networks with almost perfect accuracy by composing network
legos. Further analysis of the network legos reveals that the active networks
corresponding to cell cycle arrest contain interactions that are quite distinct
from the network of interactions activated by the other stresses. When we remove
the two cell cycle arrest data sets, we compute only 15 network legos. Of the
11 remaining active networks, we recover five with complete accuracy and one
with 99.9% accuracy. We recover the other five active networks with accuracies
ranging from 71% to 92%. Taken together, these statistics indicate that the
network legos we detect are indeed building blocks of the networks activated in
response to the stresses studied by Murray et al. [21].

There are two ways in which a biologist can use our system. In the first,
our system allows the systematic comparison of responses to a small number of
different conditions, diseases, or perturbations tested in the same lab. The ALL-
AML-MLL comparison we presented earlier and discuss further in Section 4.1 is
such an application. In the second, a biologist can analyse a specific condition
of interest in the context of a large compendium of other conditions, compute
the building blocks of the networks activated in these conditions, and ask how
the building blocks compose the active network for the specific condition of
interest to the biologist. In Section 4.2, we analyse 13 distinct stresses imparted
to human cells to illustrate this application. In this respect, our work is similar to
the approach developed by Tanay et al. [38]. They integrate a diverse collection
of datasets into a bipartite graph representing connections between genes and
gene properties. Their modules are statistically-significant biclusters [37] in this
graph. They represent a target gene expression dataset as a bipartite graph
and compute which already-computed modules respond in the target data set.
Our approach differs from theirs in two respects. First, we represent differences
and similarities between multiple conditions explicitly as a set theoretic formula
involving the interaction network activated in each condition. Two, when we
analyse a large compendium of gene expression data sets, we exploit the subset



structure between these formulae to detect network legos, statistically-significant
building blocks of these active networks.

The success of our approach stems from a number of factors. First, unlike
other approaches that simultaneously integrate multiple gene expression data
sets in the context of the network scaffold [5, 22], we compute individual active
networks for each data set and associate the active network with the correspond-
ing disease or perturbation. This approach allows us to explicitly compare and
contrast different conditions. Second, we treat interactions (rather than genes or
proteins) as the elementary objects of our analysis. Therefore, different network
legos may share genes, allowing for the situation when a gene participates in
multiple biological processes and is activated differently in these processes. Fi-
nally, we develop a simple but effective recursive method to assess the statistical
significance of a network lego and to weed out sub-networks that masquerade
as building blocks but contain true network legos. Taken together, formulae and
network legos provide a dynamic and multi-dimensional view of cell circuitry
obtained by integrating molecular interaction networks, gene expression data,
and descriptions of experimental conditions.

2 Previous Work

A number of approaches, recently surveyed by Joyce and Palsson [17], have been
developed to integrate diverse types of biological data and “mine” these datasets
to find groups of molecules (usually genes and/or proteins) that act in concert
to perform a specific biological task. Integrating information on available molec-
ular interactions such as protein-protein, protein-DNA, protein-metabolite, and
genetic interactions yields a multi-modal wiring diagram [32]. However, such a
network typically provides a static view of the underlying cellular circuitry. A
number of techniques attempt to obtain a dynamic view of cell state by overlay-
ing measurements of molecular profiles (usually in the form of gene expression
data) obtained under multiple conditions on the wiring diagram [10, 12, 15, 17,
20]. For instance, Han et al. [12] categorised hubs in S. cerevisiae protein inter-
action networks into “party” hubs, which interact with most of their partners
simultaneously, and “date” hubs, which bind their different partners at different
times or locations. Luscombe et al. [20] characterise topological changes in the
structure of the S. cerevisiae transcriptional regulatory network under different
conditions. The SAMBA algorithm [36] integrates a wide variety of data types
in S. cerevisiae to identify gene modules with statistically significant correlated
behaviour across diverse data sources. The bioPIXIE system [22] probabilisti-
cally integrates diverse genome-wide datasets and computes pathway-specific
networks that include query genes input by a biologist.

Other methods have computed gene modules by focusing solely on gene ex-
pression data collected across multiple cellular conditions; they analyse large
compendia of such data to reveal similarities and differences between multiple
cellular conditions [30] or between organisms [7, 34], predict functional anno-
tations [14, 18], reconstruct regulatory networks [41] and networks activated in



diseases [6], zero in on biomarkers for diseases [25, 26], and identify the gene
products and associated pathways that a drug compound targets [10].

3 Algorithms

We describe the main computational ingredients of our approach in stages. We
first define some useful terminology. Next, we present our method to integrate a
cellular wiring diagram with the gene expression data for a single condition to
compute the active network for that condition. Third, we describe how we com-
bine active networks for different conditions to form blocks. Fourth, we discuss
how we compute the statistical significance of blocks, arrange them in a DAG,
and exploit the DAG to identify network legos, which are the most statistically-
significant blocks in the DAG. Finally, we present our methods to measure the
stability of network legos and assess how well we can recover active networks
from the network legos.

3.1 Definitions

Our method takes as input (i) a cellular wiring diagram W representing known
physical and/or genetic interactions between genes or gene products in an or-
ganism and (ii) a compendium of transcriptional measurements in the same or-
ganism obtained under various conditions such as diseases (e.g., breast cancer),
stimuli (e.g., heat shock), or other perturbations (e.g., gene knock-out or over-
expression). We assume that each gene expression dataset in the compendium
contains measurements for multiple gene chips. For instance, a breast cancer
dataset might include data from multiple patients while a heat shock dataset
may measure gene expression at different time points.

Given a gene expression data set Dc for a condition c, we say that a gene
responds in c if the expression values of the gene in Dc vary by more than an
input threshold. Let g and h be two genes that respond in c and let e = (g, h)
be an interaction in W . We say that e is active in c if the expression profiles
of g and h in Dc are correlated to a statistically-significant extent. The active
network Ac in c is the sub-network of interactions in W that are active in c. We
describe the details of how we detect responding genes, active interactions, and
active networks in Section 3.2.

Let A denote the set of active networks for each of the conditions in the input
compendium. We define a block to be a triple (G,P,N ), where G is a subgraph
of W ; P and N are subsets of A; P 6= ∅; and P ∩N = ∅ such that

1. for each positive active network P ∈ P, G ⊆ P ,
2. for each negative active network N ∈ N , G ∩N = ∅,
3. G is maximal, i.e., adding an edge to G violates at least one of the first two

properties,
4. P is maximal, i.e., there is no P ∈ A− P such that G ⊆ P , and
5. N is maximal, i.e., there is no N ∈ A−N such that G ∩N = ∅.



Intuitively, we can form G by taking the intersection of all the active networks
in P and removing any edge that appears in any of the active networks in N .
In other words,

G =
( ⋂

P∈P
P

) ⋂ ( ⋂
N∈N

!N
)

=
( ⋂

P∈P
P

)
−

( ⋃
N∈N

N

)
,

where “∩” (respectively, “∪”) denotes the intersection (respectively, union) of the
edge sets of two graphs and “!” denotes the complementation (with respect to W )
of the edge set of a graph. We require that P contain at least one active network
so that G is not formed solely by the intersection of the networks in N ; such a
block is unlikely to be biologically interesting. We also require that P and N be
disjoint so that G is not the empty graph. Requiring P and N to be maximal
ensures that we include all the relevant active networks in the construction of G.
These criteria imply that it is enough to specify P andN to compute G uniquely;
we include G in the notation for a block for convenience and drop P and N when
they are understood from the context. We refer to

( ⋂
P∈P P

)
−

( ⋃
N∈N N

)
as

the formula for the block.
Let B be a set of blocks. Given two blocks (G1,P1,N1) and (G2,P2,N2) in B,

we say that G1 ≺ G2 if

(i) P1 ⊆ P2 and N1 ⊆ N2 or
(ii) P1 ⊆ N2 and N1 ⊆ P2.

We say that G1 < G2 if there is no block G3 ∈ B such that G1 ≺ G3 ≺ G2.
The operators < and ≺ represent partial orders between blocks, with ≺ being
the transitive closure of <. Given a set B of blocks, let DB denote the directed
acyclic graph representing the partial order <: each node in DB is a block in B
and an edge connects two blocks related by <. For a block G, let σG ∈ [0, 1]
denote the statistical significance of G. We describe a method to compute this
value in Section 3.4. We define a network lego to be a block (G,P,N ) ∈ B
such that σG < σH , for every H ∈ B where G ≺ H or H ≺ G. In other
words, (G,P,N ) is a network lego if it is more statistically significant that blocks
formed by combining any subset of P and N or by combining any superset of P
and N . In this sense, we claim that G is a building block of the active networks
in A.

3.2 Computing active networks

Given a gene expression dataset for a disease state or an experimental condi-
tion c, we use a variational filter to remove all genes whose expression profile
has a small dynamic range from the wiring diagram W . More specifically, we
log-transform and zero centre each gene’s expression values. We discard a gene
and all its interactions in the wiring diagram W if all the transformed expres-
sion values of the gene lie between −1 and 1 [30]. We deem the remaining genes
to have responded in the condition. To each interaction e = (g, h) remaining



in W , we assign a weight equal to the absolute value of the Pearson’s correla-
tion coefficient of the expression profiles of the genes g and h, reasoning that
this weight indicates how “active” the interaction is in the experimental condi-
tion. We discard edges whose weights are not statistically significant (based on
a permutation test) at the 0.01 level. Let Wc be the resulting weighted inter-
action network. To mitigate the effect of isolated interactions in Wc, we search
for pockets of concerted activity in Wc as follows. We define the density of a
graph to be the total weight of the edges in the graph divided by the number of
nodes in the graph. It is possible to find the subgraph of largest density using
linear programming or parametric network flows [8]. We use a simpler greedy
algorithm that finds a subgraph whose density is at least half the maximum den-
sity [8]. We repeatedly apply this approximation algorithm, remove the edges of
the subgraph it computes, and re-invoke the algorithm on the remaining graph
until the density of the remaining graph is less than the density of Wc. We deem
the union of the computed dense subgraphs to be the active network Ac for the
condition.

3.3 Computing blocks

We reduce the problem of computing blocks to the problem of computing closed
itemsets in a binary matrix [1, 40]. We construct a binary matrix M where each
column corresponds to an interaction in the wiring diagram W . The matrix M
contains two rows for each active network A ∈ A: the positive row corresponds
to the interactions in A and the negative row to the interactions in W − A. In
the positive row corresponding to A, we set a cell to be one if and only if the
corresponding interaction belongs to A; this cell is zero in the negative row for A.
Thus, M is a qualitative representation of which interactions are present in each
active network and which are present in its complement.

In a binary matrix such as B, an itemset (R,C) is a subset R of rows and
a subset C of columns such that the sub-matrix spanned by these rows and
columns only contains ones [1]. A closed itemset [40] is an itemset with the
property that each row (respectively, column) not in the itemset contains a zero
in at least one column (respectively, row) in the itemset. Therefore, it is not
possible to add a row or a column to the itemset without introducing a zero
into the corresponding sub-matrix. We can partition R into two subsets RP

and RN where RP (respectively, RN ) consists of all the positive (respectively,
negative) rows in R. There is a natural mapping from a closed itemset (R,C) to
a block (G,P,N ):

1. G is the subgraph of W induced by the interactions corresponding to the
columns in C;

2. P is the set of active networks corresponding to the rows in RP ; and
3. N is the set of active networks corresponding to the rows in RN .

We compute closed itemsets in B to satisfy the maximality requirements in the
definition of a block. We do not compute any itemsets where all rows correspond



to complements of active networks, since such itemsets are unlikely to be bio-
logically relevant (they correspond to blocks where P = ∅). To construct closed
itemsets, we use our implementation of the Apriori algorithm [1]. We have mod-
ified the original Apriori algorithm to construct closed itemsets. We convert
each itemset to the corresponding block and formula. Finally, we connect the
resulting set of blocks B in the DAG DB as per the partial order <.

3.4 Statistical significance of a block

To measure the statistical significance of a block, we construct an empirical
distribution of block sizes. We repeatedly select a subset of rows uniformly at
random from the binary matrix M , compute the columns common to these rows,
and convert the resulting itemset into a block. We ensure that the random subset
of rows does not contain an active network and its complement, since such a sub-
set will trivially result in an itemset with zero columns. Given a block (G,P,N )
computed in the real dataset, let m be the number of interactions in G. To
estimate the statistical significance σG of (G,P,N ), we only consider the distri-
bution formed by random blocks (H,P ′,N ′) where |P| = |P ′| and |N | = |N ′|.
We set σG to be the fraction of such blocks that have more than m interactions.
Since the number of interactions in a block will decrease with an increase in |P|
or in |N |, these constraints ensure that we compare G with appropriate random
blocks in order to estimate σG. We only retain blocks that are significant at the
0.01 level. We compute the DAG defined by these blocks. We perform two topo-
logical traversals of this DAG, one from the roots to the leaves and the other
from the leaves to the roots, to identify the maximally-significant blocks. The
resulting set of blocks are the network legos we desire to compute. Let L denote
the set of network legos.

3.5 Stability and recoverability analysis

It is clear that the set L of network legos we compute depend on the active
networks in A. To assess this dependence, we modify a method for suggested by
Segal et al. [30]. We remove each network N ∈ A in turn and recompute network
legos from the set A − {N}. Let LN denote the resulting set of network legos.
For each network lego L in L, we compute the most similar network lego L′

in LN using the set-similarity measure (|L∩L′|/|L∪L′|) and store this measure
as sL,N . Given a similarity threshold t, for each network lego L in L, we compute
the fraction of networks in A such that sL,N ≥ t. The higher this fraction is, the
more resilient L is to perturbations in the input.

If the network legos in L are true building blocks of the active networks in A
that they spring from, it should be possible to recover each active network in A
from the network legos in L. For each active network A, we define

LA = {(G,P,N ) ∈ L|A ∈ P},

the set of network legos in L where A does not appear negated in the network
lego. We compute the union of the network legos in LA and the fraction of A’s



edge set that appears in the union. The larger this fraction is, the more “recov-
erable” A is from the computed network legos.

4 Results

We applied the algorithm described in the previous section to human data sets.
We obtained a network of 31108 molecular interactions between 9243 human
gene products by integrating the interactions in the IDSERVE database [24], the
results of large scale yeast two-hybrid experiments [27, 33], and 20 immune and
cancer signalling pathways in the Netpath database (http://www.netpath.org).
The IDSERVE database includes human curated interactions from BIND [4],
HPRD [23], and Reactome [16], interactions predicted based on co-citations in
article abstracts, and interactions that transferred from lower eukaryotes based
on sequence similarity [19]. We derived functional annotations for the genes
in our network from the Gene Ontology (GO) [3] and from MSigDB [35]. In
addition, we annotated each Netpath interaction in our network with the name of
the pathway it belonged to. We used these annotations to compute the functional
enrichment of the nodes and edges in the network legos using the hypergeometric
distribution with FDR correction.

4.1 ALL, AML, and MLL

We continue the analysis of ALL, AML, and MLL that we started in Section 1.
Since the three leukaemias induce only 19 blocks, we did not compute the statis-
tical significance of the blocks. Instead, we treated every block as a network lego.
To assess the biological content of the results and to illustrate one type of anal-
ysis our approach facilitates, we computed functions enriched in the genes and
interactions in the networks corresponding to the 19 formulae. Figure 1 demon-
strates that the interactions in the KIT pathway are differentially enriched in
the 19 networks. The darker the colour of a node, the more statistically signif-
icant is the enrichment of this pathway in the corresponding network. We first
note that the only formulae enriched in this pathway are the ones that involve
AML (and not the complement of AML). The statistical significance is the low-
est (FDR-corrected p-value 3.5 × 10−7) for the formula AML ∩ !ALL ∩ !MLL,
indicating that this pathway may be activated in AML and not in ALL or in
MLL. Evidence in the literature supports this conclusion. The c-KIT receptor
is activated in almost all subtypes of AML [29]. Similarly, Schnittger et al. [28]
report that “mutations in codon D816 of the KIT gene represent a recurrent
genetic alteration in AML”. We note that gain-of-function mutations in c-Kit
have been observed in many human cancers [9]. Our analysis only suggests that
in the context of ALL, AML, and MLL, the KIT pathway may be activated only
in AML.



4.2 Human Stresses

We computed network legos by applying our methods to the human interaction
network and the gene expression responses of HeLa cells and primary human
lung fibroblasts to heat shock, endoplasmic reticulum stress, oxidative stress,
and crowding [21]. The dataset we analysed includes transcriptional measure-
ments obtained by Whitfield et al. [39] for studying cell cycle arrest by using
a double thymidine block or with a thymidine-nocodazole block. Overall, the
dataset contains 13 distinct stresses over the two cell types. The authors note
that each type of stress resulted in a distinct response and that there was no gen-
eral stress response unlike in the case of S. cerevisiae [11]. Therefore, this dataset
poses a challenge to our system. Can we find network legos that combine active
networks for multiple stresses? In this paper, we focus on the topological and
quantitative aspects of our results.

The number of genes in the 13 active networks we computed ranged from 165
(for crowding of WI38 cells) to 1148 (for the thymidine-nocodazole block) with
an average of 684 genes per active network. The number of interactions ranged
from 257 to 3667 with an average of 1874 interactions per active network. Theo-
retically, we can compute 1586131 (313− 213) blocks involving 13 distinct active
networks. Our method computed 444201 blocks, indicating that the remaining
combinations of active networks are not closed or yield blocks without any inter-
actions. We computed a null distribution of block sizes using a million random
samples. Of the 444201 blocks, 12386 blocks were statistically significant at the
0.01 level. We identified 143 network legos in the DAG induced by the relation <
on these blocks. We observed that all but one of the 143 network legos involved
at least six distinct active networks, indicating that these network legos are not
the result of combining a small number of active networks. The following table
displays the distribution of the number of legos involving k conditions, where
5 ≤ k ≤ 12. Interestingly, no network lego involved all 13 active networks.

#conditions 5 6 7 8 9 10 11 12
#legos 1 6 10 36 34 20 28 8

In light of the statement by Murray et al. [21] that each type of stress re-
sulted in a distinct response, it is important to ask whether most of our net-
work legos primarily involve complemented active networks. Over all network
legos (G,P,N ), we counted the total size of the positive active networks (those
in the sets P) and the total size of the negative active networks (those in the
sets N ). Interestingly, more than 40% of the active networks appeared in the
positive sets, indicating that the network legos we found were not primarily fo-
cussed on what made the stresses unique. Rather, a large fraction of the network
legos represented features common to multiple stresses. The active networks that
appeared most often in the positive form were the two treatments that resulted
in cell cycle arrest. Each participated in as many as 119 network legos. In most
of these network legos, almost all the other active networks appeared in comple-
mented form. The complements of the cell cycle arrest active networks did not
participate in any network legos. This observation indicates that the interactions



activated by cell cycle arrest are quite distinct from the network of interactions
activated by the other stresses.

We obtained very good stability and recovery results. Upon the removal of
each active network, we were able to recompute each network lego with at least
95% fidelity. We were also able to recover 11 active networks with 100% accuracy
by composing network legos. The two active networks we could not recover com-
pletely were the double thymidine network (97% recovery) and the thymidine-
nocodazole network (86% recovery). When we tested the recoverability of active
networks using the blocks at the roots of the DAG connecting statistically-
significant blocks, the recovery for these two active networks dropped to 85%
and 75% respectively. This result underscores the fact that identifying network
legos as those that are maximally statistically-significant in the DAG of blocks
is a useful concept.

Since the cell-cycle treatments resulted in active networks that were quite dis-
tinct from those for the other stresses, we repeated the analysis after removing
the double thymidine and thymidine-nocodazole active networks. The 11 remain-
ing active networks yielded only 77117 blocks (out of the 175099 possible). Of
these, 1629 blocks were statistically significant. These blocks yielded 15 network
legos. This much smaller set of network legos suggests that a number of the 143
network legos in the complete analysis were needed to capture unique aspects of
the cell cycle active networks. Each network lego involved at least seven active
networks. No network lego involved all 11 stresses. The ratio of total size of the
positive active networks and the negative active networks in the 15 network legos
was 1:2. As many as eight network legos had only one active network in P—the
fibroblast active network upon treatment with menadione—indicating that this
stress results in an active network that is quite unique compared to the other
10 active networks. Of the 11 active networks, we recovered five with complete
accuracy and one with 99.9% accuracy. We recovered the remaining with accu-
racies ranging from 71% to 92%. Taken together, these statistics indicate that
the network legos we detect are indeed building blocks of the networks activated
in response to the stresses studied by Murray et al. [21].

5 Discussion

We have presented a novel approach for combining gene expression data sets
with multi-modal interaction networks. This combination provides a dynamic
view of the interactions that are activated in the wiring diagram under differ-
ent conditions. We represent similarities and differences between the network
of interactions activated in response to different cell states both as a set theo-
retic formula involving cell states and as a network lego, a functional module
of co-expressed molecular interactions. A novel contribution of our work is the
DAG that relates all cell states (and the active networks corresponding to the
cell states). This DAG provides a high-level abstract view of the similarities and
differences between cell states.
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