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1 Introduction

Traditional analysis of biological sequences has depended on various types of sequence
alignment, as exemplified by BLAST [1, 2]. Over the years, a number of analysis methods
have been developed that are called alignment-free because they do not depend on tradi-
tional sequence alignment. Many such methods depend on examining the k-mers in one or
more biological sequences; a k-mer is a substring of a biological sequence — DNA, RNA,
or amino acid — of length exactly k. For reasonable values of k, it is possible to catalog all
the k-mers that exist in a biological sequence and then to use the catalog for comparison
or other analysis purposes.

A sample application is the comparison of two genomes for similarity. Yi and Jin [56]
develop a method called co-phylog for comparing many genomes based on k-mers and con-
structing a phylogenetic tree for the genomes; co-phylog software is available. Nordström
et al. [34] develop the k-mer based algorithm NIKS (needle in the k-stack) for genome
comparison; NIKS is available from SourceForge. Haubold [15] provides a useful review
of methods for alignment-free genome comparison, including Table 1, a compendium of
existing methods.

One method that was originally developed for comparing documents is MinHash [8, 9].
More recently, MinHash has been employed by many tools for biological sequence compar-
ison, starting with Mash [37]. The idea is to use hashing and the k-mers of a sequence to
generate a signature or sketch for the sequence that can be used to compare sequences. A
recent tool that employs MinHash to compare biological sequences is sourmash [41].

2 Qualifier Instructions

For the written part of the CBB qualifying exam, you are to do the following steps.

1. Read the following papers for background purposes: [8, 9, 15, 37, 41].

2. Make sure you understand the concepts and issues discussed in Section 1.
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3. Choose at least five alignment-free tools for biological sequence analysis that address
a particular problem, such as metagenomics, genome comparison, or virus identifi-
cation. Each paper should be explained in one or more references that you identify.
You may find some useful references in the bibliography or through a search of Web
of Science.

4. Study your five or more references in depth and examine related Web sites and code.

5. Write a six to eight page document, including bibliography, as a record of what you
have done in terms of papers read and approaches investigated. As one section of
your document, discuss MinHash [8, 9] and its implementation [37]. Explain the
mathematical and computational ideas behind the application of MinHash to both
text documents and biological sequences. Next, give a precise definition of your
biological sequence analysis task. Make sure to compare your five or more approaches
carefully and logically. Be critical about the suitability of each approach to your task.
Finally, think creatively about any additional approaches that might be used for this
task, and explain how you would go about implementing those approaches.

6. Generate a PDF of your document and submit it as the written part of your exam.
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