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ABSTRACT
We develop an integrated probabilistic model to combine
protein physical interactions, genetic interactions, highly cor-
related gene expression network, protein complex data, and
domain structures of individual proteins to predict protein
functions. The model is an extension of our previous model
for protein function prediction based on Markovian random
field theory. The model is flexible in that other protein
pairwise relationship information and features of individual
proteins can be easily incorporated. Two features distin-
guish the integrated approach from other available methods
for protein function prediction. One is that the integrated
approach uses all available sources of information with dif-
ferent weights for different sources of data. It is a global
approach that takes the whole network into consideration.
The second feature is that the posterior probability that a
protein has the function of interest is assigned. The pos-
terior probability indicates how confident we are about as-
signing the function to the protein. We apply our integrated
approach to predict functions of yeast proteins based upon
MIPS protein function classifications and upon the interac-
tion networks based on MIPS physical and genetic interac-
tions, gene expression profiles, Tandem Affinity Purification
(TAP) protein complex data, and protein domain informa-
tion. We study the sensitivity and specificity of the inte-
grated approach using different sources of information by the
leave-one-out approach. In contrast to using MIPS physical
interactions only, the integrated approach combining all of
the information increases the sensitivity from 57% to 87%
when the specificity is set at 57%-an increase of 30%. It
should also be noted that enlarging the interaction network
greatly increases the number of proteins whose functions can
be predicted.
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1. INTRODUCTION
Protein function prediction is one of the most important

problems in the post-genome era. The classical method of
protein function prediction is to find homologies between a
protein and other proteins in protein databases using pro-
grams such as FASTA [34] and PSI-BLAST [1] and then
to predict functions based on sequence homologies. An-
other sequence-based approach is called the “Rosetta stone
method” where two proteins are inferred to have similar
functions if they are together in another genome [27]. By
comparing a number of sequenced genomes, the phyloge-
netic pattern (the presence and absence of the protein in
these sequenced genomes) of a protein can be determined.
It is believed that genes with similar phylogenetic patterns
are likely to share similar functions. Using this idea, the
functional links between genes can be predicted [28] based
on phylogenetic patterns.

Recent developments of high-throughput bio-techniques
have generated a variety of different sources of data that are
useful for the study of protein functions. Clustering analysis
of gene expression data can be used to predict functions of
unknown proteins based on the idea that co-expressed genes
are more likely to have similar functions [3, 11, 33]. Methods
have also been developed to predict protein functions based
on protein physical or genetic interactions using the idea of
guilt-by-association: the neighborhood-count method [12, 36]
and the chi-square method [18]. Protein complex data can be
used for protein function prediction based on the idea that
proteins in the same complex tend to have similar function.
For the variety of different interaction data and how they
relate to protein functions, see [29].



We developed a Markov random field (MRF) model for
protein function prediction using protein-protein interaction
data [6]. Two main features distinguish the MRF-based
methods from other guilt-by-association methods. One is
that the MRF model uses global information on the entire
interaction network instead of the local interaction network.
The second is that the MRF model gives the probability that
a protein has a function of interest instead of predicting
whether the protein has or does not have the function. This
probability indicates how confident we are about assigning
the function to the protein. The method was applied to
the prediction of protein function based on “cellular role”
using protein functions defined in Yeast Proteome Database
(YPD) [5]. The results showed that the MRF-based method
outperforms the two guilt-by-association methods.

Features of individual proteins have long been used for
protein function prediction. A feature here refers to an ob-
servation about a protein. It can be the presence or absence
of a motif signal, the protein’s isoelectric point, its absolute
mRNA expression level, or mutant phenotypes from exper-
iments about the sensitivity or resistance of disruption mu-
tants under various growth conditions. Features have been
used for protein function prediction [15, 16, 22, 39], and for
protein function prediction as pattern recognition problems
[4, 23, 24]. Drawid and Gerstein [9] developed a general
Bayesian approach to predicting protein localization based
on a large number of features of individual proteins.

However, no methods are available for predicting protein
functions combining all of the different sources of informa-
tion. In this paper, we extend the MRF-based method to
create an integrated approach that includes other protein
pairwise relationships such as correlations of gene expres-
sion patterns, genetic interactions, and features of individ-
ual proteins such as domain information. The model is flex-
ible in that other protein pairwise relationship information
such as pairwise protein sequence similarities and features
of individual proteins can be easily incorporated. We ap-
ply our integrated approach to predict functions of yeast
proteins based upon MIPS protein functions and the in-
teraction networks based upon MIPS physical and genetic
interactions, gene expression profiles, Tandem Affinity Pu-
rification (TAP) protein complex data, and protein domain
information. We study the sensitivity and specificity of the
integrated approach using different sources of information
by the leave-one-out approach. In contrast to using MIPS
physical interactions only, the integrated approach combin-
ing all of the information increases the sensitivity from 57%
to 87% when the specificity is set at 57%-an increase of
30%. It should also be noted that enlarging the interac-
tion network greatly increases the number of proteins whose
functions can be predicted.

The paper is organized as follows. In the Method section,
we first briefly describe the MRF model developed in [6],
then the integrated MRF model, and finally the computa-
tional methods. In the Results section, we apply the inte-
grated approach to predict protein functions using a variety
of different information. Finally, we discuss the implications
and limitations of our integrated approach.

2. METHOD
To make this paper self-contained, we will briefly describe

the MRF model based on protein physical interactions [6].
In this model, given a function of interest, the objective is

to predict the probability that an unknown protein has the
function, using the protein physical interaction network and
the functions of the known proteins.

Suppose a proteome has N proteins P1, · · · , PN . Some
proteins have already been studied and have known func-
tions, while others have unknown functions. Following the
tradition, we will refer to proteins having known functions
as known proteins and to proteins with unknown functions
as unknown proteins throughout the paper. Let P1, · · · , Pn

be the unknown proteins, Pn+1, · · · , Pn+m be the known
proteins, and N = n + m.

Throughout this paper, we will fix a function of interest.
Let Xi = 1 if the i-th protein has the function and Xi = 0
otherwise. Let X = (X1, · · · , Xn+m) be the configuration of
the functional labelling, where X1 = λ1, · · · , Xn = λn are
unknown and Xn+1 = µ1, · · · , Xn+m = µm are known. We
infer the function of the unknown proteins using the protein
interaction network obtained from biological experiments.

We first give the prior probability distribution of X based
on the interaction network-the Gibbs distribution [25]. In
the following, Xi will be the random variable and xi will be
its observed value. Without considering the interaction net-
work, the probability of a configuration of X is proportional
to

NY
i=1

πxi(1− π)1−xi =

�
π

1− π

�N1

(1− π)N , (1)

where N1 =
PN

i=1 xi and π is the probability of a protein
having the function of interest.

Next, we consider the protein physical interaction net-
work. The probability of the interactions in the network
conditional on the functional labelling is proportional to

exp(β1N10 + γ1N11 + κ1N00), (2)

where Nll′ is the number of (l, l′)-interacting pairs in S and

N11 =
X

(i,j)∈S

xixj

= #{(1 ↔ 1) pairs in S},
N10 =

X
(i,j)∈S

(1− xi)xj + (1− xj)xi

= #{(1 ↔ 0) pairs in S},
N00 =

X
(i,j)∈S

(1− xi)(1− xj)

= #{(0 ↔ 0) pairs in S},

(3)

where S is the set of all the physical interaction pairs under
consideration.

Therefore, the total probability of the network based on
the functional labelling of the proteins and the interactions
is proportional to exp(−U(x)), where

U(x) = −αN1 − β1N10 − γ1N11 − κ1N00

= −α

NX
i=1

xi − β1

X
(i,j)∈S

(1− xi)xj + (1− xj)xi

− γ1

X
(i,j)∈S

xixj − κ1

X
(i,j)∈S

(1− xi)(1− xj),

(4)

where α = log( π
1−π

). Under the above model, one parameter
is redundant, and we can set κ1 = 1.



Using the above MRF model, we developed a Gibbs sam-
pling scheme to estimate the posterior distribution of (X1,
· · · , Xn) conditional on Xn+1 = µ1, · · · , Xn+m = µm. The
posterior probability distribution of Xi can be obtained by
summing over all of the possible configurations of Xj , j 6=
i, 1 ≤ j ≤ n.

2.1 The general MRF model
The MRF model and the Bayesian approach described

above can be extended to include all protein pairwise re-
lationships and features of individual proteins for protein
function prediction.

2.1.1 Using protein complex data to assign prior prob-
abilities

Mass spectrometry has been used to identify protein com-
plexes [13, 19]. Researchers have used a set of proteins as
baits to prey other proteins in the same complexes, followed
by tandem mass spectrometry experiments to identify each
protein in the complexes. Proteins in a complex do not nec-
essarily physically interact with each other, although they
are more likely to physically interact than random protein
pairs. A direct physical interaction map cannot be estab-
lished through the protein complex data. It is generally
believed that proteins within a complex are more likely to
have the same function. For a given function of interest and
an unknown protein Pi in a protein complex, we give a prior
probability that the protein has the function by

Pr(Xi = 1 |Complex)

=
#{Proteins having the function within the complex}

#{Known proteins within the complex} .

(5)
A protein may belong to different protein complexes. For

example, in TAP protein complex data [13], protein “RPN10”
was observed to appear in six protein complexes. For each
protein complex, we compute the prior probability that the
unknown protein has the function of interest and use the
maximum of these prior probabilities as the true prior prob-
ability that the protein has the function. The basic idea
behind this choice is that proteins in a large complex are
more likely to have different functions than proteins in a
small complex.

For those proteins that belong to at least one of the iden-
tified protein complexes, we can use the above approach to
give a prior probability that the protein has the function
of interest. For other proteins, we use the fraction of pro-
teins in the entire proteome having the function as the prior.
Then, without any information on protein pairwise relation-
ship, the probability of a configuration of X is proportional
to

P{labelling} ∝
NY

i=1

(πi)
xi(1− πi)

1−xi , (6)

where πi is the prior probability that the i-th protein has the
function of interest. The main difference between this equa-
tion and equation 1 is that πi can be different for different
proteins.

2.1.2 The MRF model including multiple sources of
pairwise relationship

It is generally believed that co-expressed genes generally
have similar functions. We built a co-expressed network

by connecting protein pairs if the correlation coefficient of
the expression profiles of the proteins was greater than a
certain threshold, say 0.8. Another data source is genetic
interactions obtained through mutation analysis. Based on
genetic interaction data, we can build a genetic interaction
network by connecting proteins if they genetically interact
with one another.

Generally speaking, suppose that we have L sources of
protein pairwise relationship that may be useful for protein
function prediction, and a network that can be built based
on each source of data, denoted as Net1, Net2, · · · , NetL,
respectively. The entire network we consider is the union of
all the networks denoted as S.

Based on the l-th network, similar to equation 2, our belief
for the functional labelling of all the proteins is proportional
to

P{Netl | labelling} ∝ exp(βlN
(l)
10 + γ1N

(l)
11 + κ1N

(l)
00 ),

where (N
(l)
10 , N

(l)
11 , N

(l)
00 ) are defined in a manner similar to

equation 3, with S replaced by the l-th network.
Multiplying over all the networks, our belief for the func-

tional labelling of all the proteins is proportional to

P{networks | labelling} ∝
LY

l=1

exp(βlN
(l)
10 + γ1N

(l)
11 + κ1N

(l)
00 )

= exp

LX
l=1

�
βlN

(l)
10 + γlN

(l)
11 + κlN

(l)
00

�
.

(7)
Our total belief for the functional labelling of all the proteins
is proportional to the multiplication of equations 6 and 7.

Then an MRF over all the functional labelling is defined
by

P{labelling, networks} = exp(−U(x))/Z(θ), (8)

where

U(x) = −
n+mX
i=1

xiαi −
LX

l=1

�
βlN

(l)
10 + γlN

(l)
11 + κlN

(l)
00

�
, (9)

where αi = log( πi
1−πi

) and is given based on protein complex

data, θ indicates the vector of parameters, and Z(θ) is the
summation of exp(−U(x)) over all the functional labelling.
Under the above model, all the parameters (κ1, κ2, · · · , κL)
are redundant and are set to 1 in the rest of the paper. In the
terminology of MRF, U(x) is called the potential function.

The MRF model defined in equation 8 gives the prior
distribution for the functional labelling using information
from protein complexes as well as from different sources of
pairwise relationship.

2.1.3 Using domain information
The function of a protein is determined by its structure.

Therefore, the structure or the amino acid sequence of a
protein can be very useful for predicting protein functions.
However, it is impossible to directly use the amino acid se-
quence data for protein function prediction because very
large number of parameters are needed. Instead, protein
features extracted from sequence data should be used. As a
first step toward showing the proof of principles, we simply
use the domain information of the proteins: the presence or
the absence of a set of domains.



Several investigators have shown that protein domains are
an informative feature for protein function prediction [17,
37]. For a given domain set D1, D2, · · · , DM , the domain
structure of each protein Pi, di = (di1, di2, · · · , diM ) can
be defined, where dim = 1 if the i-th protein Pi contains
domain Dm and dim = 0 otherwise. Let p1m ( p0m) be the
conditional probability of dm = 1 given that a protein has
(does not have) the function of interest. For simplicity, we
assume that all the domains independently contribute to the
functions of proteins.

For a given domain structure d = (d1, d2, · · · , dM ), we let

P1(d) =

MY
m=1

pdm
1m(1− p1m)1−dm ,

P0(d) =

MY
m=1

pdm
0m(1− p0m)1−dm .

Then we are able to calculate the probability of the domain
features of all the proteins given the functional labelling.

P{domain features | labelling} =
Y

i:Xi=1

P1(di)×
Y

i:Xi=0

P0(di).

(10)
Multiplying equations (8, 10), we have the following prob-

ability model

P{labelling, networks, domain features} =

P{labelling, networks} × P{domain features | labelling}.

The problem is how to estimate the posterior distribution
of the functions of the unknown proteins given the features
of all the proteins, the different sources of protein pairwise
relationship, and the annotations of the known proteins.

2.2 Computational Issues
To implement the above procedure for protein function

prediction, we need to estimate the parameters involved in
the model. A maximum likelihood estimation procedure for
estimating the parameters is impractical due to the high
dependency among the functions of the proteins introduced
by the interaction networks. In this paper, we consider the
following estimation procedures. We estimate πi in equation
5 by the functions of the known proteins. Similarly, we
estimate p1m and p0m using the domain features of known
proteins as follows.

p1m

=
#proteins having the function and containing domain Dm

#proteins having the function
,

p0m

=
# proteins not having the function and containing domain Dm

# proteins not having the function
,

We use a pseudo-likelihood approach to estimate βl, γl, 1 ≤
l ≤ L [25]. Based on the above general model, we have

Pr(Xi = 1 |D, X[−i], θ)

=
eαi+

PL
l=1(βl−1)M

(i)
0 (l)+(γl−βl)M

(i)
1 (l)

1 + eαi+
PL

l=1(βl−1)M
(i)
0 (l)+(γl−βl)M

(i)
1 (l)

,
(11)

or, equivalently,

log
Pr(Xi = 1 |D, X[−i], θ)

1− Pr(Xi = 1 |D, X[−i], θ)

=αi +

LX
l=1

(βl − 1)M
(i)
0 (l) + (γl − βl)M

(i)
1 (l),

(12)

where D is the domain information for all the proteins,

X[−i] = (X1, · · · , Xi−1, Xi+1, · · · , Xn+m), αi = log πiP1(di)
(1−πi)P0(di)

,

M
(i)
0 (l) and M

(i)
1 (l) are the numbers of neighbors of protein

Pi labelled with 0 and 1 according to the l-th network, re-
spectively.

We used the network consisting of the known proteins to
estimate those parameters by an S-plus routine [41] using
equation 12.

Once all the parameters have been defined, we use a Gibbs
sampler to estimate the posterior probability distribution
of (X1, · · · , · · · , Xn). The algorithm can be described as
follows:

1. Randomly set the value of missing data Xi = λi, i =
1, · · · , n with probability πi.

2. For each protein Pi, update the value of Xi using
Equation 11.

3. Repeat step 2 T times until all the posterior probabil-
ities Pr(Xi |D, X[−i], θ) are stabilized.

In Gibbs sampling, the “burn-in period” and the “lag pe-
riod” need to be specified [26]. The burn-in period is the
time it takes the Markovian process to become stabilized,
and the simulation results in the burn-in period are dis-
carded to reduce or eliminate the effect of initial values.
After the burn-in period, the probability that an unknown
protein has a particular function is estimated by averaging
the simulation results in steps of the lag-period to reduce or
eliminate the dependence of the Markovian process. In this
study, the burn-in period and the lag period are 100 and 10,
respectively. The total number of simulations is 2000.

3. RESULTS

3.1 Sources of data
We applied the above integrated approach to predict func-

tions of unknown proteins in Yeast. First, we used 6278
genes from the SGD database [10]. Second, we used the
Protein Families Database of Alignments and HMMs (Pfam
domain) to define the domain structures of all the proteins.
The SwissPfam (Ver7.5) defines the mapping between pro-
teins’ SWISS-PROT/TrEMBL accession numbers and Pfam
domains. The final mapping between SGD proteins and
their Pfam domains was built by their SWISS-PROT/TrEMBL
accession numbers. Third, we used the functional classi-
fication catalogue based on the Munich Information Cen-
ter for Protein Sequences (MIPS) to define functions [30].
The MIPS functional classification catalogue is hierarchi-
cal, and, for simplicity, we used only the level-one classifi-
cation. There are 18 level-one functional classes, including
“classification not yet clear-cut” and “unclassified proteins”
which were merged as a single class “unknown”. The follow-
ing functional classes contained small numbers of proteins



and were thus merged into one class: “cellular communica-
tion/signal transduction mechanism” (59), “protein activity
regulation” (13), “protein with binding function or cofactor
requirement (structural or catalytic)” (4), and “transposable
elements, viral and plasmid proteins” (116). We thus had
13 known functional classes and one “unknown” in our anal-
ysis. Fourth, we used three sources of protein pairwise rela-
tionship, including MIPS physical interactions, TAP protein
complexes, and the cell cycle gene expression data of [38].
The MIPS physical interaction data contain 2,448 interac-
tion pairs (excluding 120 pairs of self-interactions) involving
1,877 proteins extracted from the literatures It is generally
believed that this data set is more reliable than other pair-
wise protein-protein interaction data [7, 29, 31]. The TAP
protein complex data contain 232 complexes involving 1,088
known and 237 unknown proteins with respect to MIPS
function classification [13]. The cell cycle gene expression
data [38] contains expressions of 6,086 genes with 77 data
points (2 cln3, 2 clb, 18 alpha, 24 cdc15, 17 cdc28 and 14
elut).

We studied the sensitivity and the specificity of the in-
tegrated approach using different combinations of protein
pairwise relationship and domain information of individual
proteins using the leave-one-out approach. The sensitivity
(or specificity) is defined as the fraction of overlaps between
the known functions and predicted functions over all of the
known (or predicted) functions.

3.2 Combining different sources of pairwise
relationship

We used the MIPS physical interaction data as the ba-
sis for comparison because it contains the largest number of
interactions. We then added the MIPS genetic interaction
data and the network defined by highly co-expressed protein
pairs (correlation coefficient ≥ 0.8) to the MIPS physical
interaction data. Figure 1 shows the relationship between
sensitivity and specificity of the integrated approach using
(1) physical and genetic interactions, (2) physical interac-
tions and gene expressions, and (3) physical interactions,
genetic interactions, and gene expressions. In contrast to
using physical interactions only, the genetic interactions can
substantially increase the performance of the method (Fig-
ure 1a). It should be noted, however, that although the
prediction method based on MIPS genetic interaction data
seems to outperform that using the combined physical and
genetic interactions in some cases, the number of proteins
that can be predicted based on genetic interactions alone is
much smaller than that of the combined physical and ge-
netic data (See Table 1). Figure 1b shows that adding gene
expression data to the physical interaction data does not
significantly increase the performance of the method based
only on physical interactions. Figure 1c shows that the per-
formance of the integrated approach that combines the three
sources of pairwise relationship is similar to that combining
MIPS physical and genetic interactions. The above obser-
vations also hold when we use different thresholds for the
correlation coefficients of gene expression profiles for defin-
ing the network (data not shown).

3.3 Combining physical interactions with pro-
tein complexes and domain information

We added the protein complex data and the domain infor-
mation onto the MIPS physical interaction data in the inte-

grated approach. Figure 2 shows the relationship between
the sensitivity and specificity of the integrated approach us-
ing (1) the MIPS physical interactions and the TAP protein
complexes, (2) the MIPS physical interactions and the do-
main information, and (3) the MIPS physical interactions,
the TAP protein complexes, and the domain information.
There were 1,008 known and 237 unknown proteins in the
TAP complex data, and the prior probabilities for those pro-
teins could be estimated as described in the method section.
For other proteins, we used the fraction of proteins having
the function among all of the proteins as the prior. For the
prediction by domain only, we simply computed the poste-
rior probability Pr(X = 1 |D) without other information as
predictions. Figure 2 shows that both the protein complex
data and the domain information can significantly improve
the performance of the methods.

3.4 Combing all the information for protein
function prediction

Finally, we combined all of the information, including the
MIPS physical interactions, the MIPS genetic interactions,
the gene expressions, the TAP protein complex data, and
the Pfam domain information. Figure 3 shows that for a
given specificity the sensitivity of the integrated approach
increases rapidly as more information is added. For example,
when only the MIPS physical interaction data were used, the
sensitivity and specificity were roughly the same when the
specificity was set at 57%. At this specificity, the sensitivity
of the integrated approach incorporating all of the informa-
tion reached 87%. When all the information was used, the
sensitivity and specificity were roughly the same at 76%.
Figure 3b shows that for a given specificity the sensitivity
increases as the number of interaction partners increases.

4. DISCUSSION
We developed an integrated probabilistic model to com-

bine the protein physical interactions, the genetic interac-
tions, the highly correlated gene expression network, the
protein complex data, and the domain structures of individ-
ual proteins to predict protein functions. We estimated the
posterior probability that the protein has the function of in-
terest given all of the available information. The posterior
probability indicates how confident we are about assigning
the function to the protein. The distinction of the Bayesian
approach we develop here is that it is a global approach tak-
ing into consideration all of the interaction network and the
functions of known proteins.

We applied our integrated approach to predict functions
of yeast proteins based upon MIPS protein function classi-
fications and upon the interaction networks based on MIPS
physical and genetic interactions, the gene expression pro-
files, the TAP protein complex data, and the protein domain
information from the Pfam database. We studied the sensi-
tivity and specificity of the integrated approach using differ-
ent sources of information by the leave-one-out approach. In
contrast to using MIPS physical interactions only, the inte-
grated approach combining all of the information increases
the sensitivity and specificity significantly, and at the same
time, it uses a much larger interaction network, greatly in-
creasing the number of proteins whose functions can be pre-
dicted. It should be noted that the probability model is
flexible enough to be able to incorporate other information.

There are several limitations to our approach. Both the



interaction network and the functional annotations of the
proteins are incomplete. The actual number of interacting
protein pairs might be much higher than what have been
obtained in MIPS.

Our method treats each function independently and sep-
arately. Generally, that fact that a protein has one function
does not prevent it from having other functions. Therefore,
our model determines each function for each protein without
a bias. However, there are correlations between functions.
The fact that a protein has a function A may increase the
chance of it having function B because functions A and B
are highly correlated. Incorporating these information into
a generalized model remains a challenging task. Our model
assumes that known proteins have complete functional an-
notations, and it predicts functions for unknown proteins
using this information. In reality, we know that these known
proteins may have other functions that have not been deter-
mined. As biologists continue to experimentally determine
the functions of proteins, the functional classifications of
proteins will be more and more complete.
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Data Phy Gen Exp Phy+Gen Phy+Exp Phy+Exp+Gen

Known 1429 823 373 1736 1655 1931
Unknown 455 17 210 463 622 630
Total 1884 840 583 2199 2277 2561

Table 1: The numbers of proteins having at least one partners in the different networks. Phy: MIPS physical
interaction, Gen: MIPS genetic interaction, Exp: highly co-expressed protein pairs.”
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Figure 1: The relationship between sensitivity and specificity for the integrated approach by combining a)
MIPS physical and genetic interactions, b) MIPS physical interactions and gene expressions, and c) MIPS
physical interactions, genetic interactions and gene expressions. In a) and b), the numbers in the bracket are
the numbers of proteins used in calculating the sensitivity and specificity.
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Figure 2: The relationship between sensitivity and specificity of the integrated approach by combining a)
MIPS physical interactions and TAP protein complexes, b) MIPS physical interactions and domains, and c)
MIPS physical interactions, TAP protein complexes and domains. In a) and b), the numbers in the bracket
are the numbers of proteins used in calculating the sensitivity and specificity.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
(a)

Specificity, %

S
en

si
tiv

ity
, %

MRF: Phy                       
MRF: Phy+Exp+Gen               
MRF: Phy+Complex+Domain        
MRF: Phy+Exp+Gen+Complex+Domain

30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100
(b)

Specificity, %

S
en

si
tiv

ity
, %

One partner (1825)  
Two partners (1221) 
Three partners (881)

Figure 3: Prediction of the integrated approach by combining MIPS physical interactions, TAP protein
complexes, Pfam domain, MIPS genetic Interaction and highly co-expressed gene pairs. a) The relationship
between sensitivity and specificity. b) The specificity and sensitivity of those proteins with different interac-
tion partners, the numbers in the bracket are the numbers of proteins used in calculating the sensitivity and
specificity.


