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Abstract

Assigning functions to novel proteins is one of the most
important problems in the post-genomic era. Several ap-
proaches have been applied to this problem, including ana-
lyzing gene expression patterns, phylogenetic profiles, pro-
tein fusions and protein-protein interactions. We develop a
novel approach that applies the theory of Markov random
fields to infer a protein’s functions using protein-protein in-
teraction data and the functional annotations of its interac-
tion protein partners. For each function of interest and a
protein, we predict the probability that the protein has that
function using Bayesian approaches. Unlike in other avail-
able approaches for protein annotation where a protein has
or does not have a function of interest, we give a probabil-
ity for having the function. This probability indicates how
confident we are about the prediction. We apply our method
to predict cellular functions (43 categories including a cat-
egory “others”) for yeast proteins defined in the Yeast Pro-
teome Database(YPD), using the protein-protein interac-
tion data from the Munich Information Center for Protein
Sequences (MIPS, http://mips.gsf.de). We show that our ap-
proach outperforms other available methods for function
prediction based on protein interaction data.

1. Introduction

With the completion of genome sequencing of several
model organisms, the functional annotation of the proteins
is of most importance. Up to February 15, 2002, the Yeast
Protein Database(YPD) [5] lists 6281 proteins with 3854
being annotated, assigned to some cellular roles, and 2427
being unannotated. A challenging task that lies ahead is
to find the functional roles of these unannotated proteins.
Several research groups have developed methods for func-
tional annotation. The classical way is to find homologies
between a protein and other proteins in protein databases
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using programs such as FASTA [24] and PSI-BLAST [1],
and then predict functions based on sequence homologies.
Another sequence-based approach is called the “Rosetta
stone method” where two proteins are inferred to interact
if they are together in another genome [20]. By comparing
a number of sequenced genomes, the phylogenetic pattern
(the presence and absence of the protein in these sequenced
genomes) of a protein can be determined. It’s believed that
genes with similar functions are likely to share similar phy-
logenetic patterns. Using this idea, the functional links be-
tween genes can be predicted [21] based on phylogenetic
patterns.

The development of high-throughput bio-techniques and
their applications in many areas of biology generated a large
amount of data that are useful for the study of protein func-
tions. Several attempts have been made to predict protein
functions using such data as gene expressions, mutant phe-
notype, and protein-protein interactions. Clustering analy-
sis of gene expression data can be used to predict functions
of unannotated proteins based on the idea that genes with
similar functions are likely to be co-expressed [3, 7, 23].
Moreover, functional predictions have been modeled as pat-
tern recognition problems based on sequence homologies
and structural information [16, 17] as well as phenotype
data [4].

Proteins play an important role in many biological func-
tions within a cell and many cellular processes and bio-
chemical events are ultimately achieved by a group of pro-
teins interacting with one another. Proteins collaborate or
interact with one another for a common purpose, and thus
it is possible to deduce functions of a protein through the
functions of its interaction partners. It should be noted that
the interaction partners for a protein may belong to different
functional categories. It is this complex network of within-
function and cross-function interactions that makes the
problem of functional assignments a difficult task. Meth-
ods based onχ2-statistics [12] and on frequencies of inter-
action partners having certain functions of interest [8, 27]
have been applied to assign functions to unannotated pro-
teins. However, these methods lack a systematic mathemat-



ical model. In this paper, we propose a mathematical model
for protein-protein interactions, and use Bayesian analysis
to assign functions to proteins.

We define a Gibbs distribution for the protein-protein in-
teraction network. With this Gibbs distribution, we develop
a Gibbs sampler to estimate the posterior probabilities that
an unannotated protein has certain functions of interest.

2. Method

We first describe the basic ideas of our approach. The
protein-protein interaction network describes a neighbor-
hood structure among the proteins. If two proteins inter-
act, they are neighbors of each others. For an unannotated
protein, the functions of its neighbors can tell us something
about the function of the unannotated protein. For a given
function, if most of the neighbors of a protein have the func-
tion, we are more likely to believe that the protein have the
function. We want to associate each unannotated protein
with a confidence (probability) or believe about the fact that
the protein has the function.

For a given interaction network, how confident are we
about the functional annotations of all the proteins? For an
interaction pair, we are more likely to believe the interaction
if both proteins have the function, followed by both proteins
not having the function, and then only one protein having
the function. ¿From the annotated proteins, we can also esti-
mate how likely a protein have the function. From the above
assumptions, we can assign a believe to each configuration
of functional assignment—a believe network. That immedi-
ately leads us to the general theory of Markov random field.
The problems are how to assign different weights to the pa-
rameters and how to estimate the probabilities based on the
network.

Suppose a genome hasN proteinsP1, · · · , PN andM
functional categoriesF1, · · · , FM . Some proteins have al-
ready been studied and annotated and others are unanno-
tated. LetP1, · · · , Pn be the unannotated proteins and
Pn+1, · · · , Pn+m be the annotated proteins,N = n + m.
Through biological experiments, we also know the interac-
tion status of the protein pairs which form a protein interac-
tion network. Our objective is to assign functions to all the
unannotated proteins based on functions of the annotated
proteins and the protein interaction network.

A protein may have several different functions reflected
in YPD [5]. In YPD, a single protein can have up to
seven different functions. For interacting protein pairs with
multiple functions, we do not know which combinations
of the functions contribute to the interaction. To sim-
plify the problem, we study each functional category sep-
arately. For a function of interest, letXi = 1 if the i-
th protein has the function and0 otherwise. LetX =
(X1, · · · , Xn+m) be the configuration of the functional la-

belings, whereX1 = λ1, · · · , Xn = λn are unknown, and
Xn+1 = µ1, · · · , Xn+m = µm are annotated. We infer
the function of the unannotated proteins using the protein
interaction network.

Several protein-protein interaction databases for yeast
are available including data based on the yeast two-hybrid
systems [14, 15, 29], the mass spectrometric analysis of pro-
tein complexes [9, 13], and physical interactions (MIPS)
[22]. We can also use the predicted protein-protein inter-
actions based on an analytical approach [6]. In this paper,
we use the protein interaction data in MIPS.

Let Oij be the variable for the observed interaction re-
sult for proteinsPi andPj : Oij = 1 if the interaction is
observed andOij = 0 otherwise. Then the data we used is
Oij = oij , i, j = 1, · · · , N , where

oij =

{
1 if Pi andPj are observed to interact

0 otherwise.

We only consider the interacting pairs. All the proteins
together with the interaction information form a network,
with proteins as nodes and interactions between proteins as
edges. LetS be the collection of all the interacting pairs

S = {Pi < − > Pj : oij = 1, i, j = 1, · · · , N}

For each proteinPi, we define its neighbor, Nei(i), as the
set of proteins directly interacting withPi. Let πj be the
fraction of all proteins having functionFj . In summary, we
have the following notations:

• Pi: the i-th protein,i = 1, 2, · · · , N ,

• Nei(i): neighbors of proteinPi, that is, the set of pro-
teins interacting with proteinPi,

• Fj : the j-th function category,j = 1, 2, · · · , M , and

• πj : the fraction of all proteins having functionFj .

2.1. Available Methods

Several investigators developed methods to infer pro-
tein functions based on protein interaction network.
Schwikowski et al. [27] proposed to infer the functions
of an unannotated protein based on the frequencies of its
neighbors having certain functions. They assignk functions
to the unannotated protein with thek largest frequencies in
its neighbors. This approach will be referred as theneigh-
boring counting method. This approach does not consider
the frequency of the proteins having a function among all
the proteins. If a function is more common than other func-
tions among all the proteins, the probability that an unan-
notated protein has this function should be higher than the



probability that it has other functions even if the protein
does not have interaction partners.

Hishigaki et al. [12] developed another method to in-
fer protein functions based onχ2-statistics. For a protein
Pi, let ni(j) be the number of proteins interacting withPi

and having functionFj . Let ei(j) = #Nei(i) × πj be the
expected number of proteins in Nei(i) having functionFj ,
where#Nei(i) is the number of proteins in Nei(i). Define

Si(j) =
(ni(j)− ei(j))2

ei(j)
.

For a fixedk, they assign an unannotated protein withk
functions having the topk χ2-statistics. Although this ap-
proach takes the frequency of the proteins having a function
into consideration,ni(j) is generally small and the applica-
bility of the χ2-statistics is questionable.

The above approaches have been extended tol-
neighbors, where two proteins arel-neighbors of each other
if they are separated by at mostl− 1 proteins through inter-
actions [27, 12]. Both methods treated all thel-neighbors
equally in their analysis. To infer the functions of protein
Pi, it is obvious that proteins far away fromPi contribute
less information than those close neighbors. Less weight
should be placed on proteins far away from proteinPi than
the close neighbors. However it is not clear how to choose
the correct weight in the above two approaches.

Here we develop a novel approach to infer the function
of unannotated proteins based on the theory of Markov ran-
dom fields (MRF) [18]. This approach overcomes all the
above problems by considering the entire interaction net-
work. Our approach considers the frequency of proteins
having the function of interest as well as all the neighbors
with less weight placed on far away neighbors than close
neighbors. We calculate the probability that an unannotated
protein has a function of interest. This probability indicates
how confident we are about the assignment.

2.2. The new approach based on Markov random
fields

Considering a function of interest, we want to assign
this function to unannotated proteins. Letxi = 1 if the
i-th protein has the function and 0 otherwise. LetX =
(X1, X2, · · · , XN ) be the functional annotation for all the
proteins. We first give the prior probability distribution of
X based on the interaction network, theGibbs distribution
[18]. In the followingXi will be the random variable and
xi will be its observed value. Conditional on the functional
annotations of the annotated proteins, we calculate the pos-
terior probability of the functional annotations of the unan-
notated proteins.

Let π be the probability of a protein having the function
of interest. Without considering the interaction network, the

probability of a configuration ofX is proportional to

N∏

i=1

πxi(1− π)1−xi =
(

π

1− π

)N1

(1− π)N ,

whereN1 =
∑N

i=1 xi.
Next let us consider the interaction network. Studies

have shown that the probability that a pair of interacting
proteins have the same function is higher than the proba-
bility that they have different functions [27]. Therefore the
probability of the network conditional on the functional la-
belings is proportional to

exp(βN01 + γN11 + N00),

whereNll′ is the number of(l, l′)-interacting pairs inS, and

N11 =
∑

(i,j)∈S

xixj

= #{(1 ↔ 1) pairs in S},
N10 =

∑

(i,j)∈S

(1− xi)xj + (1− xj)xi

= #{(1 ↔ 0) pairs in S},
N00 =

∑

(i,j)∈S

(1− xi)(1− xj)

= #{(0 ↔ 0) pairs in S}.
Therefore, the total probability of the functional labeling

is proportional toexp(−U(x)), where

U(X) = −αN1 − βN10 − γN11 −N00

= −α

N∑

i=1

xi − β
∑

(i,j)∈S

xixj

− γ
∑

(i,j)∈S

(1− xi)xj + (1− xj)xi

−
∑

(i,j)∈S

(1− xi)(1− xj).

(1)

whereα = log( π
1−π ).

In the terminology of MRF,U(X) is referred as thepo-
tential function. This potential function defines a global
Gibbs distributionof the entire network,

Pr(X | θ) =
1

Z(θ)
exp(−U(x)), (2)

whereθ = (α, β, γ) are parameters andZ(θ) is a normal-
ized constant which is calculated by summing over all the
configurations,

Z(θ) =
∑

x

exp(−U(x)).



Z(θ) is called the partition function in the general theory of
MRF.

The Gibbs distribution defined in Equation 2 gives the
prior distribution of the functional labeling for all the pro-
teins in the protein interaction network. The data we
have are the functional labeling of the annotated proteins,
(Xn+1 = µ1, · · · , Xn+m = µm). The objective of the
study is to find the posterior distribution of(X1, · · · , Xn)
given the data using Bayesian approach,

Pr(X1, · · · , Xn |Xn+1 = µ1, · · · , Xn+m = µm).

The posterior probability distribution ofXi can be obtained
from the above equation by summing over all the possible
configurations ofXj , j 6= i, 1 ≤ j ≤ n.

To achieve this objective, we useGibbs sampler[19], a
computational technique generally used in Bayesian statis-
tics.

2.3. The Gibbs Sampler

To introduce the Gibbs sampler, we note that

Pr(Xi = 1 |X[−i], θ)

=
Pr((Xi = 1, X[−i]) | θ)

Pr((Xi = 1, X[−i]) | θ) + Pr((Xi = 0, X[−i]) | θ)

=
eα+(β−1)M

(i)
0 +(γ−β)M

(i)
1

1 + eα+(β−1)M
(i)
0 +(γ−β)M

(i)
1

,

(3)

where X[−i] = (X1, · · · , Xi−1, Xi+1, · · · , Xn+m), and

M
(i)
0 = #{j ∈ Nei(i) : Xj = 0}, M

(i)
1 = #{j ∈ Nei(i) :

Xj = 1}. M
(i)
0 andM

(i)
1 are the numbers of interaction

partners of proteinPi labeled with0 and 1, respectively.
Equation 3 can be derived from Equation 2.

Equation 3 defines the local dependency of the network.
When all the functions of the interaction partners of a pro-
tein are given, it can be used to derive the probability that
the protein has the function, which is the basis of the Gibbs
Sampler.

Assume that the parametersθ = (α, β, γ) are given. For
a given proteinPi, conditional on the functional labeling of
all the other proteins, we can use the conditional probabil-
ity Pr(Xi |X[−i], θ) in Equation 3 to generate samples to
update the functional labeling of proteinPi. Repeating this
procedure many times will generate samples for the func-
tional labeling of all the unannotated proteins. This is the
Gibbs sampler strategy and is used as a core algorithm in
this paper.

2.4. Parameter Estimation

In practice, we do not know the parametersθ =
(α, β, γ). Here we propose a method to estimate the pa-
rameters based on the functions of the annotated proteins.

Consider the subnetwork of all the annotated proteins. i.e,

S′ = {Pi < − > Pj : oij = 1, i, j = n+1, · · · , n+m}.

We estimate the parameters based on this subnetwork.
It’s difficult to use the maximum likelihood estimation

(MLE) directly since the partition functionZ(θ) in Equa-
tion 2 is also a function of parameters. Here we use the
quasi-likelihood approach that has been used in image anal-
ysis [18]. From Equation 3, we have

log
Pr(Xi = 1|X[−i], θ)

1.0− Pr(Xi = 1|X[−i], θ)

=α + (β − 1)M (i)
0 + (γ − β)M (i)

1 ,

(4)

whereM i
0 andM

(i)
1 are the numbers of interaction partners

for proteinPi labeled with0 or 1, respectively.
The quasi-likelihood estimation method is to estimate

the parameters based on standard linear logistic model treat-
ing the observations as independent. It is known that the
functional labeling of the proteins in the network are not in-
dependent and thus the quasi-likelihood approach is not a
MLE approach. In image analysis, it has been shown that
the quasi-likelihood approach gives reasonably good results
in practice [18].

2.5. Bayesian analysis

For a function of interest, first we estimate the probabil-
ity, π, that a protein has the function (without the informa-
tion on interaction network) by the fraction of all the pro-
teins having that function.

Secondly, we estimate the parametersθ = (α, β, γ) us-
ing the quasi-likelihood approach based on linear logistic
regression that is outlined above.

With the above parameters, we have the following algo-
rithm.

1. Randomly set the value of missing dataXi = λi, i =
1, · · · , n with probabilityπ.

2. For each proteinPi, update the value ofXi using
Equation 3.

3. Repeat step 2T times until all the posterior probabili-
ties Pr(Xi |X[−i]) are stabilized.

In Gibbs sampling, we need to specify the “burn-in-
period” and the “lag-period”. The burn-in-period is the time
we wait until the Markovian process is stablized and the
simulation results in the burn-in period are discarded to re-
duce or eliminate the effect of intial values. After the burn-
in-period, we approximate the probability that an unanno-
tated protein has the function by averaging the simulations



results in steps of the lag-period to reduce or eliminate the
dependence of the Markovian process. In this study, the
burn-in-period and the lag-period are 100 and 10, respec-
tively. The total number of simulations is 2000. We repeat
this process for every functional category and the probabil-
ity that an unannotated protein has the function is estimated.

3. Results

We apply our approach to infer the functions of unan-
notated proteins in Yeast. We use the functional annota-
tions from YPD. In YPD, proteins are assigned functions
based on three criteria: “cellular role”, “subcellular local-
ization”, and “biochemical function”. Up to February 15,
2002, YPD includes 6281 proteins. In this paper, we will
consider functional annotation based on cellular role. The
results based on “subcellular localization” and “biochemi-
cal function” will be presented in the full paper. There are
43 functional categories based on cellular role including a
category termed “others” including all the proteins whose
function does not belong to the other 42 functional cate-
gories. The numbers of annotated and unannotated proteins
based on cellular roles for all the proteinss and proteins with
at least one to six interaction partners are given in Table 1.

For protein interactions, we use the MIPS physical in-
teraction data consisting of 2442 interaction pairs involving
1877 proteins. The average number of interaction partners
per protein is about 2.6. For unannotated proteins without
interaction partners, the probability of having a function of
interest equals the fraction of proteins having that function
among all the proteins.

3.1. Functional annotation based on cellular role

We apply our Bayesian method to predict protein func-
tions based on cellular roles. The parameters can be esti-
mated by the quasi-likelihood approach described above,
using the interaction network consisting of only the an-
notated proteins. The computation is done using SPLUS
[30]. The results are given in Table 2. Note thatα =
log(π/(1 − π)) with π being the fraction of proteins hav-
ing the function of interest.π is generally small and thusα
should be negative.β−1 is the contribution of an interaction
partner not having the function to the log-odds of having the
function for the protein of interest. Thus,β − 1 should be
negative.γ − β is the contribution of an interaction partner
having the function to the log-odds of having the function
for the protein of interest. Thus,γ − β should be posi-
tive. Except for functional categories4 (“Cell adhesion”),
20 (“Mitochondrial transcription”), and40 (“Septation”),
all the other functional categories satisfy the above condi-
tions. We check the three exceptional cases and find that the
numbers of proteins having the corresponding functions are

very small,4, 4 and1 for “Cell adhesion”, “Mitochondrial
transcription”, and “Septation”, respectively. Therefore the
estimated parameters are not accurate. In the following, we
will ignore those three functional categories.

Although the main objective is to estimate the posterior
probability that a protein has a function of interest, we can
also assign functions to an unannotated protein if the poste-
rior probability is above a certain threshold.

The accuracy of the predictions is measured by the leave-
one-out method. The method randomly selects an annotated
protein and assumes it as unannotated. Then we predict its
functions by the above methods. We then compare the pre-
dictions with the annotations of the protein. We repeat the
leave-one-out experiment forK proteins,Pi, · · · , PK . Let
ni be the number of functions for proteinPi in YPD, mi

be the number ofpredictedfunctions for proteinPi, andki

be the overlap between the set of observed functions and
the set of predicted functions. The specificity (SP) and the
sensitivity (SN) can be defined as

SP =
∑K

i ki∑K
i mi

SN =
∑K

i ki∑K
i ni

(5)

Figure 1 shows the relationship between specificity and sen-
sitivity of our approach using different thresholds for pos-
terior probabilities. With the threshold equal to0.17, the
specificity and the sensitivity are roughly the same and
equal47.0%. It should be noted that the functional anno-
tations for the annotated proteins are not complete. If a pro-
tein has a function based on YPD, we have high confidence
for the assignment. On the other hand, if a protein does not
have a function based on YPD, the protein may have the
function but has not been experimentally verified. Thus we
might wish to lower the specificity to increase sensitivity by
lowering the threshold.

3.2. Comparison with other methods

For comparison, we implement the neighborhood-
counting method [27] and theχ2 method [12] for functional
annotation. We choose the top 1, 2, 3, 4 and 5 functions, re-
spectively, and assign these functions to each unannotated
protein. Figure 2 shows the relationship between sensi-
tivity and specificity for the three different methods dis-
cussed above: the Bayesian method, theχ2 method, and the
neighborhood-counting method. The figure indicates that
for any given specificity, the sensitivity of the the Bayesian
method is higher than the sensitivities of the neighborhood-
counting method and theχ2 method. Our new approach
outperforms the other two approaches for functional anno-
tation.



All ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6
proteins partner partners partners partners partners partners

Annotated 3854 1455 785 514 346 252 186
Unannotated 2427 422 131 45 15 12 7

Total 6281 1877 916 559 361 264 193

Table 1. The numbers of annotated and unannotated proteins for all the proteins and proteins with at
least one to six interaction partners.
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Figure 1. Specificity and sensitivity of
Bayesian predictions for different thresholds.

We further analyze the prediction results of the Bayesian
method by applying the leave-one-out measure on proteins
having at least one interaction partner, at least two interac-
tion partners, and so on. The corresponding relationship for
specificities and sensitivities are shown in Figure 3. As ex-
pected, for a given specificity, the sensitivity increases with
the number of interaction partners. The more interaction
partners a protein has, the more accurate our prediction is.

The Bayesian method is a global approach to estimate
the posterior probabilities of protein functions. Not only do
we use the annotation of direct interaction partners, this ap-
proach also use information from indirect interaction part-
ners. For example, consider the following interaction net-
work shown in Figure 4. Table 3 lists the functions of
the annotated proteins in this network. Using direct inter-
action partners, it is impossible to infer the functions for
protein YDR084C since its two direct interaction partners
YGL161C and YGL198W are both unannotated. How-
ever, from the indirect interaction partners, specifically, the
partners of YGL161C, which share the same function 43,
“versicular transport”, we can predict that YDR084C has
the “versicular transport” function with probability 0.8496.
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Figure 2. Sensitivity and specificity of predic-
tions for three different methods.

The situation is the same for protein YGL198W. Protein
YGL161C has four annotated interaction partners with the
“versicular transport” function and four unannotated in-
teraction partners. The estimated probability that protein
YGL161C has the function is approximately 1. Proteins
YDR100D and YPL246C have two and three interaction
partners with the “versicular transport” function, respec-
tively. The estimated probabilities for both proteins are
0.9956. These estimated probabilities indicate how confi-
dent we are about the assignment.

4. Discussions

We develop a novel approach for function prediction of
unannotated proteins based on the protein-protein interac-
tion network and the functional annotations of annotated
proteins. Unlike other available function predication meth-
ods where they predict whether a protein has a function or
not, we estimate the posterior probability that the protein
has the function of interest. The posterior probability indi-
cates how confident we are about assigning the function to
the protein. The distinction of the Bayesian approach we



Function α β − 1 γ − β Function α β − 1 γ − β
1 -3.9879 -0.3172 2.7341 2 -2.6456 -0.4714 1.8360
3 -2.8112 -0.1814 1.1745 4 -8.3204 0.2217 -3.4507
5 -2.5080 -0.1144 0.9728 6 -3.6809 -0.2022 1.9735
7 -2.5806 -0.1035 1.0481 8 -3.0467 -0.2827 1.6667
9 -3.7773 -0.0297 1.2879 10 -2.2585 -0.1909 0.8392
11 -4.0458 -0.1524 1.6594 12 -3.0164 -0.3258 2.1116
13 -4.0479 -0.0892 2.4368 14 -3.7228 -0.0231 1.1739
15 -2.7456 -0.3547 1.6954 16 -3.7361 -0.4455 3.2861
17 -3.0650 -0.1330 1.1784 18 -2.8717 -0.1497 1.3777
19 -4.1841 -0.4124 2.2684 20 -4.5592 -1.9361 -2.7715
21 -3.3293 -0.1135 1.8997 22 -3.9139 -0.2314 2.5797
23 -3.6166 -0.5120 3.1767 24 -4.5016 -0.1784 2.3734
25 -3.1298 -0.2882 1.4582 26 -5.5494 -0.1173 4.5037
27 -5.1278 -0.1519 3.9724 28 -1.7856 -0.4585 1.4175
29 -4.3443 -0.3402 2.8155 30 -4.8546 -0.0992 2.9012
31 -2.8442 -0.2882 1.6762 32 -2.4807 -0.9796 1.9139
33 -3.0611 -0.1834 1.7934 34 -2.5008 -0.5635 2.1662
35 -2.7185 -0.9655 2.4446 36 -2.7782 -0.2036 1.4811
37 -3.5689 -0.0903 1.3102 38 -3.8578 -0.1769 1.0905
39 -3.5124 -0.2164 2.1625 40 11.2029 0.0000 −
41 -3.3061 -0.1664 1.6291 42 -1.9998 -0.7523 1.6539
43 -2.7470 -0.6196 2.7236

Table 2. The estimated parameters α, β − 1, and γ − β using linear logistic regression for the 43
functional categories based on cellular role.

develop here is that it is a global approach taking all the
interaction network and the functions of annotated proteins
into consideration.

We apply our approach to the interaction network of
yeast proteins in MIPS and the protein function annota-
tions based on YPD. We study the sensitivity and specificity
of our method by the leave-one-out approach and compare
the results with theχ2 method and the neighbor-counting
method. We show that, for a given specificity, the sensi-
tivity of our new approach is higher than the sensitivities
of the other two approaches. Because not all the functions
have been identified even for the annotated proteins, we
may wish to sacrifice specificity to increase sensitivity. We
also apply our approach to proteins with at least two or more
interaction partners. As expected, for any given specificity,
the sensitivity increases with the number of interaction part-
ners.

There are several limitations of our approach. Both the
interaction network and the functional annotations of the
proteins are incomplete. The actual number of interacting
protein pairs might be much higher than what have obtained
in MIPS. For a conservative estimate, if we assume that
each protein interacts with on average five other proteins,
we would expect about6, 000×5/2 = 15, 000 interactions,

much higher than the 2442 interactions in MIPS. With the
advance of other high-throughput technologies for detecting
protein-protein interactions, our understanding of the pro-
tein interaction network will be more complete.

Our method treats each function independently and sep-
arately because it is known that a protein may be involved
in multiple functions. Generally, a protein having one func-
tion does not prevent it from having other functions. There-
fore, our model determines each function for each protein
without a bias. However, there are correlations between
functions. A protein having function A may increase the
chance of it having function B because functions A and B
are highly correlated, for example, functional category 36
(“RNA processing/modification”) and functional category
37 (“RNA splicing”). How to incorporate these information
into a generalized model remains a challenging task. Our
model assumes that annotated proteins have complete func-
tional annotations, and predicts functions for unannotated
proteins using these information. In reality, we know that
these annotated proteins may have other functions that have
not been determined. As biologists continue experimentally
determining the functions of proteins, the functional anno-
tations will be more and more complete.

Despite the limitations, we show that the results from our



VAM7 Subunit of the vacuolar SNARE complex involved in morphogenesis of the vacuole;
homologous to SNAP-25.

YHR105W Protein that may play a role in vesicular transport, has similarity to Grd19p,
bacterial helix-turn-helix regulator protein of the argR group, and human SNX1.

YIP1 Protein involved in vesicular transport, interacts with transport GTPases Ypt1p and Ypt31p
at the Golgi membrane.

BET1 Synaptobrevin (v-SNARE) homolog present on ER vesicles recycling from Golgi.
PEP12 Syntaxin homolog (t-SNARE) involved in Golgi to vacuole transport.
AKR2 Protein involved in constitutive endocytosis of Ste3p.
YIF1 Component of COPII vesicles, has similarity to NADH dehydrogenases.
KTR3 Alpha-1,2-mannosyltransferase of the KRE2 family.

Table 3. Functions of the annotated proteins in Figure 4.
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Figure 3. The relationship between sensitivity
and sensitivity for proteins with at least one,
two, and six interaction partners using the
Bayesian method. The corresponding num-
bers of proteins with one to six interaction
partners are given in table 1.

approach are reasonably good. The probabilities of protein
functions in Figure 4 show a very important and desirable
feature of our model: the impact of a protein’s function on
unannotated proteins decreases as these proteins are farther
away from the protein in the interaction network. This fea-
ture could not be obtained in local approaches such as the
neighborhood-counting method and theχ2 method.
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