Final Examination

CS 5114 (Fall 2018)

Assigned: December 4, 2018.
Due: submit PDF file containing your solutions on Canvas by 4pm on December 12, 2018.

Instructions

1.

The Graduate Honor Code applies to this exam. In particular, you are not allowed to consult any
sources other than your textbook, the slides on the course web page, your own class notes, and the
instructor. Do not use a search engine.

You may consult the textbook, your notes, the course web site, or solutions to earlier homework
assignments to solve the problems in the examination. Of course, I am available to answer your
questions.

Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your de-
scription is not ambiguous. Explain your algorithm in words. A step-wise description is fine. However,
if you submit detailed code or pseudo-code without an explanation, we will not grade your solutions.

. For every algorithm you describe, prove its correctness, and state and prove the running time of the

algorithm. I am looking for clear descriptions of algorithms and for the most efficient algorithms and
analysis that you can come up with. Except for one problem, I am not specifying the desired running
time for each algorithm. I will give partial credit to non-optimal algorithms, as long as they are correct.

If you prove that a problem is AP-Complete, remember to state the size of the certificate, how long it
takes to check that the certificate is correct, and what the running time of the transformation is. All
you need to show is that the transformation can be performed in polynomial time. Your transformation
need not be the most efficient possible.

Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince me that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

You must prepare your solutions digitally, i.e., do not hand-write your solutions. I prefer that you use
ETEX to prepare your solutions. However, I will not penalise you if you use a different system. To use
KTEX, you may find it convenient to download the IATEX source file for this document from the link
on the course web site. At the end of each problem are three commented lines that look like this:

% \solution{
%
%}

You can uncomment these lines and type in your solution within the curly braces.

Good luck!

CS 5114 (Fall 2018): Final Examination

Problem 1 (24 points) Let us start with some quickies. For each statement below, say whether it is true
or false or fill in the blanks. You do not need to provide a rationale for your solution.

1. If A and B are problems such that A € NP and B <p A, then B € N'P.

2. In a directed graph, every edge has a positive integer weight that is bounded by the quantity w.
The graph has n nodes and m edges. We can compute the shortest path between any two nodes
in this graph in O(w(n 4+ m)) time.

3. In a directed graph, let d(x,y) denote the length of the shortest path between nodes x and y. If
e = (u,v) is an edge on a shortest path from s to ¢, then d(s,t) = d(s,u) + d(u,t) — I(e), where
I(e) is the length of the edge e. Here, we are using the standard definition of the length of a path
as the sum of the lengths of the edges in it.

4. If f is a maximum flow in a flow network and e is an edge such that the f(e) = ¢(e), then e is an
edge that crosses a minimum s-¢ cut.

5. If P = NP and problem X is N"P-Hard, then there is a polynomial time algorithm to solve X.

6. In the proof for BIPARTITE MATCHING <p NETWORK FLOW, we created a flow network. The
Ford-Fulkerson algorithm and the scaling algorithm run in the same time (asymptotically) on this
flow network.

7. Every edge in a flow network has a capacity of one. The value of the maximum flow in this
network is the from s to ¢. (Fill in the blanks with a phrase.)

8. The place to be with good bread on campusis - ___ ____.

Problem 2 (6 points) In class, we developed an algorithm that when given an undirected, unweighted graph
G with n nodes and an integer k, checks if G' has a vertex cover of size k or less in O(k2¥n) time.
Note that this time is polynomial in n (but exponential in k). Since we reduced INDEPENDENT SET to
VERTEX COVER in class, we also have an algorithm that can check if a graph G has an independent
set of size at least | (for some integer [> 0) in time polynomial in n. Is this statement true or false?
Give a brief explanation for your answer.

Problem 3 (10 points) Consider the following problem: given an undirected, unweighted graph G = (V, E)
and a positive integer k, compute a spanning tree of G such that every node in the tree has degree
< k, if such a tree exists. Extreme values of k are easy to handle. For example, if £k = 1, then such
a tree exists if and only G contains one edge (otherwise, the tree must have at least one vertex of
degree two or more), Similarly, if & > n — 1, then any spanning tree of G will suffice. For a general
(arbitrary) value of k, either develop a polynomial time algorithm for this problem or show that it is
NP-Complete.

Problem 4 (15 points) Given a directed graph G = (V, E, 1), where | : E — R™ specifies a positive length
for each edge in G, a source node s, and a sink node ¢, develop an algorithm to compute an integral
flow! f such that the value v(f) = 1 and the quantity Y . l(e)f(e) is as small as possible. You can
assume that there are no capacity constraints, i.e., each edge has unlimited capacity, but the flow along
each edge cannot be negative. Hint: This is a “trick question” since it disguises another well-known
problem in terms of flows.

Problem 5 (20 points) Consider the proof that HAMILTONIAN CYCLE <p TRAVELLING SALESMAN that
we developed to prove that the second problem is NP-Complete. We started with an undirected,
unweighted graph G = (V, E) that was an input to the HAMILTONIAN CYCLE problem. We created an
input for TRAVELLING SALESMAN as follows: for every node i € V', we created a city ¢;, and for every
pair of cities v; and v;, we defined d(v;,v;) =1 if (¢,7) is an edge in E and d(v;,v;) = 2 if (4,7) is not
an edge in E. Consider the following modification: in the second case, i.e., (4,) is not an edge in E,
we set d(v;,v;) = ¢, where ¢ is a constant > 2. Let us denote this input to TRAVELLING SALESMAN as
I(G,c). Answer the following questions.

LA flow f is intgeral if f(e) is an integer for every edge e in E.

CS 5114 (Fall 2018): Final Examination

(a) (3 points) If G contains a Hamiltonian cycle, what is the length of the shortest travelling salesman
tour in I(G,¢)?

(b) (3 points) If G does not contain a Hamiltonian cycle, what is the length of the shortest travelling
salesman tour in I(G, ¢)?

(¢) (9 points) Suppose there is an a-approximation algorithm for the TRAVELLING SALESMAN problem
that runs in polynomial time, i.e., for every input to this problem, this algorithm computes a
travelling salesman tour whose cost is at most « times the cost of the optimal tour. Determine a
value of ¢ so that you can use this approximation algorithm to distinguish unambiguously between
the two cases: G has a Hamiltonian cycle and G does not have a Hamiltonian cycle. Explain your
approach.

(d) (5 points) What can you conclude from these arguments?

Problem 6 (25 points) You are given a directed, node-weighted graph G = (V, E,w) where w : V — R is
a weighting function that maps every node in V' to a real number. We say that an edge (u,v) is good
if w(v) < w(u), i.e., if the weight of the head of the edge is less than the weight of the tail of the edge.
Further, we say that a path is good if every edge in that path in good. Given two nodes s and ¢ in V,
develop an algorithm to compute the number of good s-t paths in G. Note that your algorithm should
(implicitly) consider all good paths that start at s and end at ¢ (not just the shortest paths) and it
should return how many such paths there are. I am only interesting in computing this number exactly
and correctly. Hint: The number of s-t paths may be exponential in the number of nodes in G. Hence,
if you tried to develop an algorithm that explicitly computes every good s-t path, then it will have an
exponential running time. It may be helpful if you draw some examples and work out the answers for
these examples by hand.

