
Homework 3

CS 5114 (Fall)

Assigned on Wednesday, September 19, 2018.
Submit PDF solutions on Canvas

by the beginning of class on Wednesday, September 26, 2018.

Instructions:

• The Graduate Honor Code applies this to homework. In particular, you are not allowed to consult any
sources other than your textbook, the slides on the course web page, your own class notes, and the
instructor. Do not use a search engine.

• Do not forget to typeset your solutions. Every mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n2 and not as “nˆ2”. You can use the LATEX
version of the homework problems to start entering your solutions.

• Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your de-
scription is not ambiguous. Explain your algorithm in words. A step-wise description is fine. However,
if you submit detailed code or pseudo-code without an explanation, we will not grade your solutions.

• Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

• Do not describe your algorithms only for a specific example you may have worked out.

• You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

• Describe an analysis of your algorithm and state and prove the running time. You will only get partial
credit if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

• In general for a graph problem, you may assume that the graph is stored in an adjacency list and that
the input size is m + n, where n is the number of nodes and m is the number of edges in the graph.
Therefore, a linear time graph algorithm will run in O(m + n) time.
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Problem 1 (15 points) Solve the recurrence T (n) = T (b
√
nc) + 1. In words, the T (n) is the running time

of an algorithm that creates one sub-problem of the size equal to the square root of n, solves this
sub-problem recursively, and spends one more unit of time. You can assume that T (1) = T (2) = 1 and
that n > 2 in the recurrence relation. Remember to prove your solution by induction, even if you use
the “unrolling” method to guess a solution.

Problem 2 (30 points) Let G = (V,E) be an undirected connected graph and let c : E → R+ be a function
specifying the costs of the edges, i.e., every edge has a positive cost. Assume that no two edges have
the same cost. Given a set S ⊂ V , where S contains at least one element and is not equal to V , let eS
denote the edge in E defined by applying the cut property to S, i.e.,

eS = arg mine∈cut(S)ce.

In this definition, the function “arg min” is just like “min” but returns the argument (in this case the
edge) that achieves the minimum. Let F be set of all such edges, i.e., F = {eS , S ⊂ V, S 6= ∅}. In
the definition of F , S ranges over all subsets of V other than the empty set and V itself. Answer the
following questions, providing proofs for all but the first question.

(i) (5 points) How many distinct cuts does G have? We will use the same definition as in class: a
cut is a set of edges whose removal disconnects G into two non-empty connected components.
Two cuts are distinct if they do not contain exactly the same set of edges. For this question, just
provide an upper bound.

(ii) (8 points) Consider the graph induced by the set of edges in F , i.e., the graph G′ = (V, F ). Is G′

connected?

(iii) (7 points) Does G′ contain a cycle?

(iv) (5 points) How many edges does F contain?

(v) (5 points) What conclusion can you draw from your answers to the previous statements?

Problem 3 (20 points) Consider the version of Dijkstra’s algorithm shown below written by someone with
access to a priority queue data structure that supports only the Insert and ExtractMin operations.
Due to this constraint, the difference between this version and the one discussed in class is that instead
of the ChangeKey(Q, x, d′(x)) operation in Step 8, this version simply inserts the pair (x, d′(x)) into
Q. The danger with this algorithm is that a node x may occur several times in Q with different values
of d′(x). Answer the following questions.

1. (6 points) When the algorithm inserts a pair (x, d1) into Q, suppose the pair (x, d2) is already in
Q. What is the relationship between d1 and d2?

2. (8 points) Using this relationship, how will you fix this algorithm? You just have to describe your
correction in words, e.g., by saying “I will add the following command after Step X: . . . ” You do
not have to prove the correctness of your algorithm.

3. (6 points) What is the running time of this algorithm? Just state the bound in terms of the
number of nodes n and the number of edges m in G.

Algorithm 1 Dijkstra’s Algorithm(G, l, s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v, d′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d′(v)
5: for every node x ∈ V − S such that (v, x) is an edge in G do
6: if d(v) + l(v, x) < d′(x) then
7: d′(x) = d(v) + l(v, x)
8: Insert(Q, x, d′(x))
9: end if

10: end for
11: end while
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Problem 4 (35 points) You return home for the weekend all agog with the exciting new ideas you have
discovered in the algorithms class. You tell your evil twin about the Minimum Spanning Tree (MST)
problem and the clever algorithms for computing it. Your sibling pooh poohs your new-found wis-
dom and proposes the following simple algorithm on to compute the MST of an undirected graph G,
assuming that no two edges have the same cost.

1. Maintain a set T of edges. Initially T is empty.

2. Process the edges of E in any order.

3. For each edge e ∈ E,

(a) Add e to T .

(b) If T contains a cycle, delete e from T .

Something seems fishy. Could this algorithm really compute the MST? Show up your sibling by fixing
the algorithm so that T is indeed the MST at the end and prove that the modified algorithm computes
the MST of G. Notes: (a) The algorithm is not the same as Kruskal’s algorithm since it processes the
edges in any order. In contrast Kruskal’s algorithm processes the edges in increasing order of cost.
(b) In your fix, you decide not to sort the edges by cost or use any data structure such as the priority
queue to sort the edges by cost. (c) We are interested only in proving the correctness of this algorithm.
We are not interested in its running time. Most of the points are for a clear and complete proof of
correctness.
Hint: I am providing an elaborate hint here. Your proof of correctness should show that at the end
of the algorithm, T is an MST. Therefore, you have to prove all three points implied by the phrase
“Minimum Spanning Tree.” Prove each of these statements:

(a) T does not contain a cycle. This proof should be easy.

(b) T is spanning, i.e., connects all vertices in G. This part can be challenging. Consider an
arbitrary subset S of V . It is enough to prove that at the end of the algorithm, T contains at
least one edge in cut(S).1 As the modified algorithm progresses, what can you show about that
edges in cut(S) that are also in T? Informally, I am suggesting that you imagine the algorithm is
running in the background while you focus your attention on the edges in cut(S). The algorithm
will process these edges in some order. Think about this order to show that at the end of the
algorithm, T contains at least one edge in cut(S).

(c) T is an MST. If you have proven the first two parts, then you know that T is a spanning tree.
How many edges can it contain? If you modified the algorithm correctly, then what can you say
about the edges that you did not include in T? Remember that the algorithm has processed every
edge in G. Now combine what know so far with what you proved in part (v) of Problem 2.

1For every subset S, if T contains at least one edge in cut(S), then T is connected. You may assume this fact.

3


