Analysis of Algorithms

T. M. Murali

August 22, 2018

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

Goal

Develop algorithms that provably run quickly and use low amounts of space.

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n. as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input.

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input. Values in the input do not matter, except for specific algorithms.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.

• Brute force algorithm: Check every possible solution.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- Try all possible n! permutations of the numbers.
- For each permutation, check if it is sorted.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- Try all possible n! permutations of the numbers.
- ► For each permutation, check if it is sorted.
- Running time is nn!. Unacceptable in practice!

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- ► Try all possible n! permutations of the numbers.
- ► For each permutation, check if it is sorted.
- Running time is nn!. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- ► Try all possible n! permutations of the numbers.
- ► For each permutation, check if it is sorted.
- Running time is nn! Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order?

- ► Try all possible n! permutations of the numbers.
- ► For each permutation, check if it is sorted.
- Running time is nn!. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition

An algorithm is efficient if it has a polynomial running time.

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting:

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - "Roughly" hides potentially large constants, e.g., running time of merge sort may in reality be 100n log₂ n.

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - "Roughly" hides potentially large constants, e.g., running time of merge sort may in reality be $100n\log_2 n$.
- How can make statements such as the following, in order to compare the running times of different algorithms?
 - ► $100 n \log_2 n \le n^2$ ► $10000 n \le n^2$

 - $> 5n^2 4n > 1000n \log n$

"
$$10000n \le n^2$$
"

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if for all n, $f(n) \le g(n)$.

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exists constant c>0 such that for all n , $f(n) \leq c g(n)$.

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c>0 and $n_0\geq 0$ such that for all $n\geq n_0$, $f(n)\leq c g(n)$.

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c>0 and $n_0\geq 0$ such that for all $n\geq n_0$, $f(n)\leq c g(n)$.

$100n\log_2 n$ and n^2

$100n\log_2 n$ and n^2

$100n\log_2 n$ and n^2

T. M. Murali August 22, 2018 Analysis of Algorithms

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if for all n, we have $f(n) \geq g(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exists constant c > 0such that for all *n* , we have $f(n) \geq cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

• Mathematical functions:

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$.

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g.,

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
- Problems: The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
- Problems: The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.

Tight Bound

Definition

Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n)is $\Omega(g(n))$

Tight Bound

Definition

Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n)is $\Omega(g(n))$

- In all these definitions, c and n_0 are constants independent of n.
- Abuse of notation: say $g(n) = O(f(n)), g(n) = \Omega(f(n)), g(n) = \Theta(f(n)).$

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
 - If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
 - If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$,

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
- If f = O(g), then f + g =

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
- If f = O(g), then $f + g = \Theta(g)$.

•
$$f(n) = pn^2 + qn + r$$
 is

• $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i =$

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i = O(n^d)$, if d > 0 is an integer constant and $a_d > 0$.
 - \triangleright $O(n^d)$ is the definition of polynomial time.

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i = O(n^d)$, if d > 0 is an integer constant and $a_d > 0$.
 - ▶ $O(n^d)$ is the definition of polynomial time.
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i = O(n^d)$, if d > 0 is an integer constant and $a_d > 0$.
 - \triangleright $O(n^d)$ is the definition of polynomial time.
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants a, b > 1.
- For every constant x > 0, $\log n = O(n^x)$.

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i = O(n^d)$, if d > 0 is an integer constant and $a_d > 0$.
 - \triangleright $O(n^d)$ is the definition of polynomial time.
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants a, b > 1.
- For every constant x > 0, $\log n = O(n^x)$.
- For every constant r > 1 and every constant d > 0, $n^d = O(r^n)$.

T. M. Murali August 22, 2018 Analysis of Algorithms

• Running time is at most a constant factor times the size of the input.

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list.

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list.
 "Median-of-medians" algorithm.
- Sub-linear time.

Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list.
 "Median-of-medians" algorithm.
- Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.

$O(n \log n)$ Time

• Any algorithm where the costliest step is sorting.

Quadratic Time

• Enumerate all pairs of elements.

Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest.

Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest. Surprising fact: will solve this problem in $O(n \log n)$ time later in the semester.

- Does a graph have a *clique* of size *k*, where *k* is a constant, i.e. there are *k* nodes such that every pair is connected by an edge?
- Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes, report it.

- Does a graph have a *clique* of size *k*, where *k* is a constant, i.e. there are *k* nodes such that every pair is connected by an edge?
- Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes, report it.
- Running time is $O(k^2\binom{n}{k}) = O(n^k)$.

Beyond Polynomial Time

• What is the largest size of a clique in a graph with *n* nodes?

- What is the largest size of a clique in a graph with *n* nodes?
- Algorithm: For each $1 \le i \le n$, check if the graph has a clique of size i. Output largest clique found.

T. M. Murali August 22, 2018 Analysis of Algorithms

Beyond Polynomial Time

- What is the largest size of a clique in a graph with n nodes?
- Algorithm: For each 1 < i < n, check if the graph has a clique of size i. Output largest clique found.
- What is the running time?

Beyond Polynomial Time

- What is the largest size of a clique in a graph with *n* nodes?
- Algorithm: For each $1 \le i \le n$, check if the graph has a clique of size i. Output largest clique found.
- What is the running time? $O(n^22^n)$.