
Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Review of Priority Queues and Graph Searches

T. M. Murali

August 27, 29 2018

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Candidate Data Structures for Sorting

Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

Data structure must support three operations:

insertion of a number, �nding
minimum, and deleting minimum in O(log n) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Candidate Data Structures for Sorting

Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

Data structure must support three operations: insertion of a number, �nding
minimum, and deleting minimum in

O(log n) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Candidate Data Structures for Sorting

Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

Data structure must support three operations: insertion of a number, �nding
minimum, and deleting minimum in O(log n) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Priority Queue

Store a set S of elements, where each element v has a priority value key(v).

Smaller key values ≡ higher priorities.

Operations supported:
I �nd the element with smallest key
I remove the smallest element
I insert an element
I delete an element
I update the key of an element

Element deletion and key update require knowledge of the position of the
element in the priority queue.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Heaps

Combine bene�ts of both lists and sorted arrays.

Conceptually, a heap is a balanced binary tree.

Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

We can implement a heap in a pointer-based data structure.

Alternatively, assume maximum number N of elements is known in advance.

Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Heaps

Combine bene�ts of both lists and sorted arrays.

Conceptually, a heap is a balanced binary tree.

Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

We can implement a heap in a pointer-based data structure.

Alternatively, assume maximum number N of elements is known in advance.

Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Heaps

Combine bene�ts of both lists and sorted arrays.

Conceptually, a heap is a balanced binary tree.

Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

We can implement a heap in a pointer-based data structure.

Alternatively, assume maximum number N of elements is known in advance.

Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf?

If 2i > n, where n is the
current number of elements in the heap.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Heaps

Combine bene�ts of both lists and sorted arrays.

Conceptually, a heap is a balanced binary tree.

Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

We can implement a heap in a pointer-based data structure.

Alternatively, assume maximum number N of elements is known in advance.

Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of a Heap

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Inserting an Element: Heapify-up

1 Insert new element at index n + 1.

2 Fix heap order using Heapify-up(H, n + 1).

Proof of correctness: read pages 61�62 of your textbook.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Inserting an Element: Heapify-up

1 Insert new element at index n + 1.

2 Fix heap order using Heapify-up(H, n + 1).

Proof of correctness: read pages 61�62 of your textbook.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of Heapify-up

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running time of Heapify-up

Running time of Heapify-up(i)

is O(log i).
I Each invocation decreases the second argument by a factor of at least 2.
I After k invocations, argument is at most i/2k .
I Therefore i/2k ≥ 1, which implies that k ≤ log

2
i .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running time of Heapify-up

Running time of Heapify-up(i) is O(log i).
I Each invocation decreases the second argument by a factor of at least 2.
I After k invocations, argument is at most i/2k .
I Therefore i/2k ≥ 1, which implies that k ≤ log

2
i .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Deleting an Element: Heapify-down

Suppose H has n + 1 elements.

1 Delete element at H[i] by moving element at H[n + 1] to H[i].
2 If element at H[i] is too small, �x heap order using Heapify-up(H, i).
3 If element at H[i] is too large, �x heap order using Heapify-down(H, i).

Proof of correctness: read pages 63�64 of your textbook.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Deleting an Element: Heapify-down

Suppose H has n + 1 elements.

1 Delete element at H[i] by moving element at H[n + 1] to H[i].
2 If element at H[i] is too small, �x heap order using Heapify-up(H, i).
3 If element at H[i] is too large, �x heap order using Heapify-down(H, i).

Proof of correctness: read pages 63�64 of your textbook.T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of Heapify-down

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running time of Heapify-down

Every invocation of Heapify-down increases its second argument by a factor
of at least two.

After k invocations argument must be at least i2k ≤ n, which implies that
k ≤ log

2
n/i . Therefore running time is O(log

2
n/i).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running time of Heapify-down

Every invocation of Heapify-down increases its second argument by a factor
of at least two.

After k invocations argument must be at least

i2k ≤ n, which implies that
k ≤ log

2
n/i . Therefore running time is O(log

2
n/i).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running time of Heapify-down

Every invocation of Heapify-down increases its second argument by a factor
of at least two.

After k invocations argument must be at least i2k ≤ n, which implies that
k ≤ log

2
n/i . Therefore running time is O(log

2
n/i).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

The Oracle of Bacon

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

https://oracleofbacon.org/

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications:

computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Euler and Graphs

Devise a walk through the city that
crosses each of the seven bridges exactly once.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Euler and Graphs

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Euler and Graphs

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

De�nition of a Graph
Undirected graph G = (V ,E): set V of nodes and set E of edges, where
E ⊆ V × V .

I Elements of E are unordered pairs.
I Edge (u, v) is incident on u, v ; u and v are neighbours of each other.
I Exactly one edge between any pair of nodes.
I G contains no self loops, i.e., no edges of the form (u, u).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

De�nition of a Graph
Directed graph G = (V ,E): set V of nodes and set E of edges, where
E ⊆ V × V .

I Elements of E are ordered pairs.
I e = (u, v): u is the tail of the edge e, v is its head; e is directed from u to v .
I A pair of nodes may be connected by two directed edges: (u, v) and (v , u).
I G contains no self loops.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the �rst k − 1 nodes are distinct, and v1 = vk .

Similar de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

s-t Connectivity

1

2 3

4 5 6

7

8

9

10

11

12

13

s-t Connectivity

INSTANCE: An undirected graph G = (V ,E) and two nodes s, t ∈ V .

QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .

Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

s-t Connectivity

1

2 3

4 5 6

7

8

9

10

11

12

13

s-t Connectivity

INSTANCE: An undirected graph G = (V ,E) and two nodes s, t ∈ V .

QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .

Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

s-t Connectivity

1

2 3

4 5 6

7

8

9

10

11

12

13

s-t Connectivity

INSTANCE: An undirected graph G = (V ,E) and two nodes s, t ∈ V .

QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .

Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Computing Connected Components

�Explore� G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Issues in Computing Connected Components

1

2 3

4 5 6

7

8

9

10

11

12

13

Why does the algorithm terminate?

Each iteration adds a new node to R.

Does the algorithm truly compute connected component of G containing s?

What is the running time of the algorithm?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Issues in Computing Connected Components

1

2 3

4 5 6

7

8

9

10

11

12

13

Why does the algorithm terminate? Each iteration adds a new node to R.

Does the algorithm truly compute connected component of G containing s?

What is the running time of the algorithm?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .
I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .
I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P:

u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .
I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.

I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .
I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

How many while loops does the algorithm execute? At most n.

The running time is O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

Implement the while loop by examining each edge in E . Running time of
each loop is

O(m).

How many while loops does the algorithm execute? At most n.

The running time is O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

How many while loops does the algorithm execute?

At most n.

The running time is O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

How many while loops does the algorithm execute? At most n.

The running time is

O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

How many while loops does the algorithm execute? At most n.

The running time is O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

How many while loops does the algorithm execute? At most n.

The running time is O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going �outward� in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going �outward� in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going �outward� in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going �outward� in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going �outward� in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.

Claim: For each j ≥ 1, layer Lj consists of all nodes

exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.

Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof

by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.

Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.

Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.

Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.

Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree?

It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.

Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

BFS Trees

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

Non-tree edge: an edge of G that does not belong to the BFS tree T .

Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.

Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.

Still unresolved: an e�cient implementation of BFS.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

BFS Trees

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

Non-tree edge: an edge of G that does not belong to the BFS tree T .

Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.

Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.

Still unresolved: an e�cient implementation of BFS.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

BFS Trees

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

Non-tree edge: an edge of G that does not belong to the BFS tree T .

Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.

Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.

Still unresolved: an e�cient implementation of BFS.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse �rst edge out (to node
v), traverse �rst edge out of v , . . . , reach a dead-end, backtrack,

1 Mark all nodes as �Unexplored�.

2 Invoke DFS(s).

Depth-�rst search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse �rst edge out (to node
v), traverse �rst edge out of v , . . . , reach a dead-end, backtrack,

1 Mark all nodes as �Unexplored�.

2 Invoke DFS(s).

Depth-�rst search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse �rst edge out (to node
v), traverse �rst edge out of v , . . . , reach a dead-end, backtrack,

1 Mark all nodes as �Unexplored�.

2 Invoke DFS(s).

Depth-�rst search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

1

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

1

2

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

1

2

5

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

6

1

2

5

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36

1

2

5

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36

1

2

5

7

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36

1

2

5

7

8

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36 4

1

2

5

7

8

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

BFS vs. DFS

1

2 3

6

4 5 7 8
36 4

1

2

5

7

8

Both visit the same set of nodes but in a di�erent order.
Both traverse all the edges in the connected component but in a di�erent
order.
BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
Non-tree edges

BFS within the same level or between adjacent levels.

DFS connect ancestors to descendants.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

BFS vs. DFS

1

2 3

6

4 5 7 8
36 4

1

2

5

7

8

Both visit the same set of nodes but in a di�erent order.
Both traverse all the edges in the connected component but in a di�erent
order.
BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
Non-tree edges

BFS within the same level or between adjacent levels.
DFS connect ancestors to descendants.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of DFS Trees

36 4

1

2

5

7

8

Observation: All nodes marked as �Explored� between the start of DFS(u)
and its end are descendants of u in the DFS tree T .

Claim: Let x and y be nodes in a DFS tree T such that (x , y) is an edge of
G but not of T . Then one of x or y is an ancestor of the other in T . Read
proof on page 86 of your textbook.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Properties of DFS Trees

36 4

1

2

5

7

8

Observation: All nodes marked as �Explored� between the start of DFS(u)
and its end are descendants of u in the DFS tree T .

Claim: Let x and y be nodes in a DFS tree T such that (x , y) is an edge of
G but not of T . Then one of x or y is an ancestor of the other in T . Read
proof on page 86 of your textbook.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is

Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in

O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in

Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is

O(n +
∑

v∈G nv) = O(n + m), which is optimal for every graph.
I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) =

O(n + m), which is optimal for every graph.
I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in

O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in

Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 i� the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Data Structures for Implementation

�Implementation� of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably e�cient times.

Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

I BFS: store visited nodes in a queue (�rst-in, �rst-out).
I DFS: store visited nodes in a stack (last-in, �rst-out)

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Data Structures for Implementation

�Implementation� of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably e�cient times.

Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

I BFS: store visited nodes in a queue (�rst-in, �rst-out).
I DFS: store visited nodes in a stack (last-in, �rst-out)

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

1

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

1

2 3

4 5 6

7

8

3

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

3 21

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

23 5

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

23 5 7

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

23 5 7 8

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

52 7 8 4

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

75 8 4 6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

87 4 6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

48 6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

64

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.
Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, lu), where lu is the index of the layer containing u.
Claim: More formally: If BFS(s) pops (v , lv) from L immediately after it
pops (u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is a node popped from L?

Exactly once.

Time used by for loop for a node u: O(nu) time.

Total time for all for loops:
∑

u∈G O(nu) = O(m) time.

Maintaining layer information: O(1) time per node.

Total time is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is a node popped from L? Exactly once.

Time used by for loop for a node u: O(nu) time.

Total time for all for loops:
∑

u∈G O(nu) = O(m) time.

Maintaining layer information: O(1) time per node.

Total time is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is a node popped from L? Exactly once.

Time used by for loop for a node u:

O(nu) time.

Total time for all for loops:
∑

u∈G O(nu) = O(m) time.

Maintaining layer information: O(1) time per node.

Total time is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is a node popped from L? Exactly once.

Time used by for loop for a node u: O(nu) time.

Total time for all for loops:
∑

u∈G O(nu) = O(m) time.

Maintaining layer information: O(1) time per node.

Total time is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is a node popped from L? Exactly once.

Time used by for loop for a node u: O(nu) time.

Total time for all for loops:
∑

u∈G O(nu) = O(m) time.

Maintaining layer information:

O(1) time per node.

Total time is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is a node popped from L? Exactly once.

Time used by for loop for a node u: O(nu) time.

Total time for all for loops:
∑

u∈G O(nu) = O(m) time.

Maintaining layer information: O(1) time per node.

Total time is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Recursive DFS to Stack-Based DFS

Procedure has �tail recursion�: recursive call is the last step.

Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Recursive DFS to Stack-Based DFS

Procedure has �tail recursion�: recursive call is the last step.

Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysing DFS

How many times is a node's adjacency list scanned?

Exactly once.

The total amount of time to process edges incident on node u's is O(nu).

The total running time of the algorithm is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysing DFS

How many times is a node's adjacency list scanned? Exactly once.

The total amount of time to process edges incident on node u's is O(nu).

The total running time of the algorithm is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysing DFS

How many times is a node's adjacency list scanned? Exactly once.

The total amount of time to process edges incident on node u's is

O(nu).

The total running time of the algorithm is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysing DFS

How many times is a node's adjacency list scanned? Exactly once.

The total amount of time to process edges incident on node u's is O(nu).

The total running time of the algorithm is

O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

Priority Queues Graph De�nitions Graph Traversal BFS DFS Implementations

Analysing DFS

How many times is a node's adjacency list scanned? Exactly once.

The total amount of time to process edges incident on node u's is O(nu).

The total running time of the algorithm is O(n +m).

T. M. Murali August 27, 29 2018 Review of Priority Queues and Graph Searches

	Priority Queues
	Graph Definitions
	Graph Traversal
	BFS
	DFS
	Implementations

