Applications of Minimum Spanning Trees

T. M. Murali

September 19, 2018
Minimum Spanning Trees

- We motivated MSTs through the problem of finding a low-cost network connecting a set of nodes.
- MSTs are useful in a number of seemingly disparate applications.
- We will consider two problems: minimum bottleneck graphs (problem 9 in Chapter 4) and clustering (Chapter 4.7).
Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion: compute a spanning tree in which the most expensive edge is as cheap as possible.
Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion: compute a spanning tree in which the most expensive edge is as cheap as possible.
- In an undirected graph $G(V, E)$, let (V, T) be a spanning tree. The bottleneck edge in T is the edge with largest cost in T.

INSTANCE:
An undirected graph $G(V, E)$ and a function $c: E \rightarrow \mathbb{R}^+$

SOLUTION:
A set $T \subseteq E$ of edges such that (V, T) is a spanning tree and there is no spanning tree in G with a cheaper bottleneck edge.
The MST minimises the total cost of a spanning network.

Consider another network design criterion: compute a spanning tree in which the most expensive edge is as cheap as possible.

In an undirected graph $G(V, E)$, let (V, T) be a spanning tree. The bottleneck edge in T is the edge with largest cost in T.

Minimum Bottleneck Spanning Tree (MBST)

INSTANCE: An undirected graph $G(V, E)$ and a function $c : E \to \mathbb{R}^+$

SOLUTION: A set $T \subseteq E$ of edges such that (V, T) is a spanning tree and there is no spanning tree in G with a cheaper bottleneck edge.
Two Questions on MBSTs

1. Assume edge costs are distinct.
2. Is every MBST tree an MST?
3. Is every MST an MBST?

Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.

Every edge in T' is cheaper than e.

Adding e to T' creates a cycle consisting only of edges in T' and e.

Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.
Two Questions on MBSTs

1. Assume edge costs are distinct.

2. Is every MBST tree an MST? No. It is easy to create a counterexample.

3. Is every MST an MBST? Yes. Use the cycle property.
 - Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 - Every edge in T' is cheaper than e.
 - Adding e to T' creates a cycle consisting only of edges in T' and e.
 - Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.
Motivation for Clustering

- Given a set of objects and distances between them.
- Objects can be images, web pages, people, species . . .
- Distance function: increasing distance corresponds to decreasing similarity.
- Goal: group objects into clusters, where each cluster is a set of similar objects.
Example of Clustering
Example of Clustering
Example of Clustering
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$ if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$.
- Given a positive integer k, a \textit{k-clustering} of U is a partition of U into k non-empty subsets or “clusters” C_1, C_2, \ldots, C_k.
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$.
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or “clusters” C_1, C_2, \ldots, C_k.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$\text{spacing}(C_1, C_2, \ldots C_k) = \min_{1 \leq i, j \leq k} \min_{i \neq j, p \in C_i, q \in C_j} d(p, q)$$
Formalising the Clustering Problem

- Let \(U \) be the set of \(n \) objects labelled \(p_1, p_2, \ldots, p_n \).
- For every pair \(p_i \) and \(p_j \), we have a distance \(d(p_i, p_j) \).
- We require \(d(p_i, p_i) = 0 \), \(d(p_i, p_j) > 0 \), if \(i \neq j \), and \(d(p_i, p_j) = d(p_j, p_i) \).
- Given a positive integer \(k \), a \textit{k-clustering} of \(U \) is a partition of \(U \) into \(k \) non-empty subsets or “clusters” \(C_1, C_2, \ldots, C_k \).
- The \textit{spacing} of a clustering is the smallest distance between objects in two different subsets:

\[
\text{spacing}(C_1, C_2, \ldots, C_k) = \min_{1 \leq i, j \leq k \atop i \neq j, p \in C_i, q \in C_j} d(p, q)
\]

\textbf{Clustering of Maximum Spacing}

\textbf{INSTANCE:} A set \(U \) of objects, a distance function \(d : U \times U \rightarrow \mathbb{R}^+ \), and a positive integer \(k \)

\textbf{SOLUTION:} A \(k \)-clustering of \(U \) whose spacing is the largest over all possible \(k \)-clusterings.
Example of Clustering
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let C be a set of n clusters, with each object in U in its own cluster.

Process pairs of objects in increasing order of distance.

- Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
- If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.

Stop when there are k clusters in C.

Same as Kruskal’s algorithm but do not add last $k - 1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

1. Let C be a set of n clusters, with each object in U in its own cluster.
2. Process pairs of objects in increasing order of distance.
 - Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
3. Stop when there are k clusters in C.

Same as Kruskal's algorithm but do not add last $k-1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let C be a set of n clusters, with each object in U in its own cluster.

1. Process pairs of objects in increasing order of distance.
2. Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
3. If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.

Stop when there are k clusters in C.

Same as Kruskal's algorithm but do not add last $k-1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.
Algorithm for Clustering of Maximum Spacing

- Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of n clusters, with each object in U in its own cluster.
- Process pairs of objects in increasing order of distance.
 - Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- Stop when there are k clusters in C.

Same as Kruskal’s algorithm but do not add last $k-1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.
Let \(C \) be a set of \(n \) clusters, with each object in \(U \) in its own cluster.
Process pairs of objects in increasing order of distance.
- Let \((p, q)\) be the next pair with \(p \in C_p \) and \(q \in C_q \).
 - If \(C_p \neq C_q \), add new cluster \(C_p \cup C_q \) to \(C \), delete \(C_p \) and \(C_q \) from \(C \).
Stop when there are \(k \) clusters in \(C \).
Same as Kruskal’s algorithm but do not add last \(k - 1 \) edges in MST.
What is the spacing of the Algorithm’s Clustering?

- Let C be the clustering produced by the algorithm.
- What is $\text{spacing}(C)$?
What is the spacing of the Algorithm’s Clustering?

- Let C be the clustering produced by the algorithm.
- What is $\text{spacing}(C)$? It is the cost of the $(k - 1)$st most expensive edge in the MST. Let this cost be d^*.
Why Does the Algorithm Compute the Optimal Clustering?

- Let C' be any other clustering.
- We will prove that $\text{spacing}(C') \leq d^*$.
Let C' be any other clustering.

We will prove that $\text{spacing}(C') \leq d^*$.
\textbf{spacing}(C') \leq d^*: \text{ Intuition}
\(\text{spacing}(C') \leq d^*: \) Intuition
spacing(C') $\leq d^*$: Intuition
\textbf{spacing}(C') \leq d^*: \text{ Intuition}
Minimum Bottleneck Spanning Trees Clustering

\[\text{spacing}(C') \leq d^* \]

- There must be two objects \(p_i \) and \(p_j \) in \(U \) in the same cluster \(C_r \) in \(C \) but in different clusters in \(C' \):
\(\text{spacing}(C') \leq d^*\)

There must be two objects \(p_i\) and \(p_j\) in \(U\) in the same cluster \(C_r\) in \(C\) but in different clusters in \(C'\): \(\text{spacing}(C') \leq d(p_i, p_j)\).
There must be two objects p_i and p_j in U in the same cluster C_r in C but in different clusters in C': $\text{spacing}(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$. Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

\[
\text{spacing}(C') \leq d^*
\]
There must be two objects p_i and p_j in U in the same cluster C_r in C but in different clusters in C': $\text{spacing}(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.

Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

All edges in the path Q connecting p_i and p_j in the MST have length $\leq d^*$.

In particular, there is an object $p \in C'_s$ and an object $p' \not\in C'_s$ such that p and p' are adjacent in Q.

$d(p, p') \leq d^* \Rightarrow \text{spacing}(C') \leq d(p, p') \leq d^*$.

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any other clustering can be no larger than that of the clustering found by the single-linkage algorithm.