
Mergesort Recurrence Relations Closest Pair of Points

Divide and Conquer Algorithms

T. M. Murali

September 19 and 24, 2018

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Divide and Conquer

Break up a problem into several parts.

Solve each part recursively.

Solve base cases by brute force.

Efficiently combine solutions for sub-problems into final solution.

Common use:
I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Divide and Conquer

Break up a problem into several parts.

Solve each part recursively.

Solve base cases by brute force.

Efficiently combine solutions for sub-problems into final solution.

Common use:
I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Mergesort

Sort

INSTANCE: Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Mergesort is a divide-and-conquer algorithm for sorting.
1 Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2 Recursively sort A.
3 Recursively sort B.
4 Merge the sorted lists A and B into a single sorted list.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Merging Two Sorted Lists

Merge two sorted lists A = a1, a2, . . . , ak and B = b1, b2, . . . bl .

Maintain a current pointer for each list.
Initialise each pointer to the front of the list.
While both lists are nonempty:

Let ai and bj be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
Advance the current pointer in the list that the smaller element belonged to.

EndWhile
Append the rest of the non-empty list to the output.

Running time of this algorithm is O(k + l).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Merging Two Sorted Lists

Merge two sorted lists A = a1, a2, . . . , ak and B = b1, b2, . . . bl .

Maintain a current pointer for each list.
Initialise each pointer to the front of the list.
While both lists are nonempty:

Let ai and bj be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
Advance the current pointer in the list that the smaller element belonged to.

EndWhile
Append the rest of the non-empty list to the output.

Running time of this algorithm is O(k + l).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Analysing Mergesort
1 Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2 Recursively sort A.
3 Recursively sort B.
4 Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

Assume n is a power of 2.
Define T (n) ≡ Worst-case running time for n elements, for every n ≥ 1.

T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

Three basic ways of solving this recurrence relation:
1 “Unroll” the recurrence (somewhat informal method).
2 Guess a solution and substitute into recurrence to check.
3 Guess solution in O() form and substitute into recurrence to determine the

constants.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Analysing Mergesort
1 Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2 Recursively sort A.
3 Recursively sort B.
4 Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

Assume n is a power of 2.
Define T (n) ≡ Worst-case running time for n elements, for every n ≥ 1.

T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

Three basic ways of solving this recurrence relation:
1 “Unroll” the recurrence (somewhat informal method).
2 Guess a solution and substitute into recurrence to check.
3 Guess solution in O() form and substitute into recurrence to determine the

constants.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Analysing Mergesort
1 Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2 Recursively sort A.
3 Recursively sort B.
4 Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

Assume n is a power of 2.
Define T (n) ≡ Worst-case running time for n elements, for every n ≥ 1.

T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

Three basic ways of solving this recurrence relation:
1 “Unroll” the recurrence (somewhat informal method).
2 Guess a solution and substitute into recurrence to check.
3 Guess solution in O() form and substitute into recurrence to determine the

constants.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Analysing Mergesort
1 Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2 Recursively sort A.
3 Recursively sort B.
4 Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

Assume n is a power of 2.
Define T (n) ≡ Worst-case running time for n elements, for every n ≥ 1.

T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

Three basic ways of solving this recurrence relation:
1 “Unroll” the recurrence (somewhat informal method).
2 Guess a solution and substitute into recurrence to check.
3 Guess solution in O() form and substitute into recurrence to determine the

constants.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Analysing Mergesort
1 Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2 Recursively sort A.
3 Recursively sort B.
4 Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

Assume n is a power of 2.
Define T (n) ≡ Worst-case running time for n elements, for every n ≥ 1.

T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

Three basic ways of solving this recurrence relation:
1 “Unroll” the recurrence (somewhat informal method).
2 Guess a solution and substitute into recurrence to check.
3 Guess solution in O() form and substitute into recurrence to determine the

constants.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Unrolling the recurrence

Recursion tree has log n levels.

Total work done at each level is cn.

Running time of the algorithm is cn log n.

Use this method only to get an idea of the solution.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Unrolling the recurrence

Recursion tree has log n levels.

Total work done at each level is cn.

Running time of the algorithm is cn log n.

Use this method only to get an idea of the solution.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.

Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.

Therefore,
T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.

(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.

Therefore,
T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.

Therefore,
T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.
Therefore,

T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.
Therefore,

T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.
Therefore,

T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.
Therefore,

T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?

Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Substituting a Solution into the Recurrence
Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
Use induction to check if the solution satisfies the recurrence relation.
Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
(Strong) Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n.
Therefore,

T (n/2) ≤ (cn/2) log(n/2).

Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

Why is T (n) ≤ kn2 a “loose” bound?
Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Partial Substitution

Guess that the solution is kn log n (logarithm to the base 2).

Substitute guess into the recurrence relation to check what value of k will
satisfy the recurrence relation.

k ≥ c will work.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Partial Substitution

Guess that the solution is kn log n (logarithm to the base 2).

Substitute guess into the recurrence relation to check what value of k will
satisfy the recurrence relation.

k ≥ c will work.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Proof for All Values of n

We assumed n is a power of 2.

How do we generalise the proof?

Basic axiom: T (n) ≤ T (n + 1), for all n: worst case running time increases
as input size increases.

Let m be the smallest power of 2 larger than n.

T (n) ≤ T (m) = O(m logm) = O(n log n), because m ≤ 2n.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Proof for All Values of n

We assumed n is a power of 2.

How do we generalise the proof?

Basic axiom: T (n) ≤ T (n + 1), for all n: worst case running time increases
as input size increases.

Let m be the smallest power of 2 larger than n.

T (n) ≤ T (m) = O(m logm)

= O(n log n), because m ≤ 2n.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Proof for All Values of n

We assumed n is a power of 2.

How do we generalise the proof?

Basic axiom: T (n) ≤ T (n + 1), for all n: worst case running time increases
as input size increases.

Let m be the smallest power of 2 larger than n.

T (n) ≤ T (m) = O(m logm) = O(n log n), because m ≤ 2n.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Other Recurrence Relations

Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct
cases: q = 1 and q > 2.

Divide into two sub-problems of size n/2 and merge in O(n2) time.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = qT (n/2) + cn, q = 1

Each invocation reduces the problem size by a factor of 2 ⇒ there are log n
levels in the recursion tree.
At level i of the tree, the problem size is n/2i and the work done is cn/2i .
Therefore, the total work done is

i=log n∑
i=0

cn

2i
= O(n).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = qT (n/2) + cn, q = 1

Each invocation reduces the problem size by a factor of 2 ⇒ there are log n
levels in the recursion tree.
At level i of the tree, the problem size is n/2i and the work done is cn/2i .
Therefore, the total work done is

i=log n∑
i=0

cn

2i
= O(n).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = qT (n/2) + cn, q > 2

There are log n levels in the recursion tree.
At level i of the tree, there are qi sub-problems, each of size n/2i .
The total work done at level i is qicn/2i . Therefore, the total work done is

T (n) ≤
i=log2 n∑

i=0

qi
cn

2i
≤ cn

i=log2 n∑
i=0

(q
2

)i
= O

(
cn
(q

2

)log2 n )
= O

(
cn
(q

2

)(logq/2 n)(log2 q/2))
= O(cn nlog2 q/2) = O(nlog2 q).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = qT (n/2) + cn, q > 2

There are log n levels in the recursion tree.
At level i of the tree, there are qi sub-problems, each of size n/2i .
The total work done at level i is qicn/2i . Therefore, the total work done is

T (n) ≤
i=log2 n∑

i=0

qi
cn

2i
≤

cn

i=log2 n∑
i=0

(q
2

)i
= O

(
cn
(q

2

)log2 n )
= O

(
cn
(q

2

)(logq/2 n)(log2 q/2))
= O(cn nlog2 q/2) = O(nlog2 q).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = qT (n/2) + cn, q > 2

There are log n levels in the recursion tree.
At level i of the tree, there are qi sub-problems, each of size n/2i .
The total work done at level i is qicn/2i . Therefore, the total work done is

T (n) ≤
i=log2 n∑

i=0

qi
cn

2i
≤ cn

i=log2 n∑
i=0

(q
2

)i
= O

(
cn
(q

2

)log2 n )
= O

(
cn
(q

2

)(logq/2 n)(log2 q/2))
= O(cn nlog2 q/2) = O(nlog2 q).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = 2T (n/2) + cn2

Total work done is
i=log n∑
i=0

2i
(cn

2i

)2
≤

O(n2).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

T (n) = 2T (n/2) + cn2

Total work done is
i=log n∑
i=0

2i
(cn

2i

)2
≤ O(n2).

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Computational Geometry

Algorithms for geometric objects: points, lines, segments, triangles, spheres,
polyhedra, ldots.

Started in 1975 by Shamos and Hoey.

Problems studied have applications in a vast number of fields: ecology,
molecular biology, statistics, computational finance, computer graphics,
computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.

At first glance, it seems any algorithm must take Ω(n2) time.

Shamos and Hoey figured out an ingenious O(n log n) divide and conquer
algorithm.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Computational Geometry

Algorithms for geometric objects: points, lines, segments, triangles, spheres,
polyhedra, ldots.

Started in 1975 by Shamos and Hoey.

Problems studied have applications in a vast number of fields: ecology,
molecular biology, statistics, computational finance, computer graphics,
computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.

At first glance, it seems any algorithm must take Ω(n2) time.

Shamos and Hoey figured out an ingenious O(n log n) divide and conquer
algorithm.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Computational Geometry

Algorithms for geometric objects: points, lines, segments, triangles, spheres,
polyhedra, ldots.

Started in 1975 by Shamos and Hoey.

Problems studied have applications in a vast number of fields: ecology,
molecular biology, statistics, computational finance, computer graphics,
computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.

At first glance, it seems any algorithm must take Ω(n2) time.

Shamos and Hoey figured out an ingenious O(n log n) divide and conquer
algorithm.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For a
specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting:

closest pair must be closest of
1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just one!

Generalize the second idea to 2D.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For a
specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just one!

Generalize the second idea to 2D.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For a
specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?
I Sort: closest pair must be adjacent in the sorted order.

I Divide and conquer after sorting: closest pair must be closest of
1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just one!

Generalize the second idea to 2D.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For a
specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?
I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just one!

Generalize the second idea to 2D.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For a
specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?
I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider? Just one!

Generalize the second idea to 2D.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For a
specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?
I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider? Just one!

Generalize the second idea to 2D.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Algorithm Skeleton
1 Divide P into two sets Q and R of n/2 points such that each point in Q has

x-coordinate less than any point in R.
2 Recursively compute closest pair in Q and in R, respectively.

3 Let δQ be the distance computed for Q, δR be the distance computed for R,
and δ = min(δQ , δR).

4 Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ and
d(q, r) is the smallest possible.

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Algorithm Skeleton
1 Divide P into two sets Q and R of n/2 points such that each point in Q has

x-coordinate less than any point in R.
2 Recursively compute closest pair in Q and in R, respectively.
3 Let δQ be the distance computed for Q, δR be the distance computed for R,

and δ = min(δQ , δR).

4 Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ and
d(q, r) is the smallest possible.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Algorithm Skeleton
1 Divide P into two sets Q and R of n/2 points such that each point in Q has

x-coordinate less than any point in R.
2 Recursively compute closest pair in Q and in R, respectively.
3 Let δQ be the distance computed for Q, δR be the distance computed for R,

and δ = min(δQ , δR).
4 Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ and

d(q, r) is the smallest possible.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof Sketch

Prove by induction: Let (s, t) be the closest pair.
(i) both are in Q: computed correctly by recursive call.
(ii) both are in R: computed correctly by recursive call.
(iii) one is in Q and the other is in R: computed correctly in O(n) time by the

procedure we will discuss.

Strategy: Pairs of points for which we do not compute the distance between
cannot be the closest pair.

Overall running time is O(n log n).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Conquer Step

Line L passes through right-most point in Q.

Let S be the set of points within distance δ of L. (In image, δ = δR .)

Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if q, r ∈ S .

Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Conquer Step

Line L passes through right-most point in Q.

Let S be the set of points within distance δ of L. (In image, δ = δR .)

Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if q, r ∈ S .

Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Conquer Step

Line L passes through right-most point in Q.

Let S be the set of points within distance δ of L. (In image, δ = δR .)

Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if q, r ∈ S .

Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Packing Argument
Intuition: “too many” points in S that are closer than δ to each other ⇒
there must be a pair in Q or in R that are less than δ apart.

Let Sy denote the set of points in S sorted by increasing y -coordinate and let
sy denote the y -coordinate of a point s ∈ S .

Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most 15
indices apart in Sy .

Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or more
indices after s in Sy , then s ′y − sy ≥ δ.

Use the claim in the algorithm: For every
point s ∈ Sy , compute distances only to the
next 15 points in Sy .

Other pairs of points cannot be candidates
for the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Packing Argument
Intuition: “too many” points in S that are closer than δ to each other ⇒
there must be a pair in Q or in R that are less than δ apart.

Let Sy denote the set of points in S sorted by increasing y -coordinate and let
sy denote the y -coordinate of a point s ∈ S .

Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most 15
indices apart in Sy .

Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or more
indices after s in Sy , then s ′y − sy ≥ δ.

Use the claim in the algorithm: For every
point s ∈ Sy , compute distances only to the
next 15 points in Sy .

Other pairs of points cannot be candidates
for the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Packing Argument
Intuition: “too many” points in S that are closer than δ to each other ⇒
there must be a pair in Q or in R that are less than δ apart.

Let Sy denote the set of points in S sorted by increasing y -coordinate and let
sy denote the y -coordinate of a point s ∈ S .

Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most 15
indices apart in Sy .

Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or more
indices after s in Sy , then s ′y − sy ≥ δ.

Use the claim in the algorithm: For every
point s ∈ Sy , compute distances only to the
next 15 points in Sy .

Other pairs of points cannot be candidates
for the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Packing Argument
Intuition: “too many” points in S that are closer than δ to each other ⇒
there must be a pair in Q or in R that are less than δ apart.

Let Sy denote the set of points in S sorted by increasing y -coordinate and let
sy denote the y -coordinate of a point s ∈ S .

Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most 15
indices apart in Sy .

Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or more
indices after s in Sy , then s ′y − sy ≥ δ.

Use the claim in the algorithm: For every
point s ∈ Sy , compute distances only to the
next 15 points in Sy .

Other pairs of points cannot be candidates
for the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Packing Argument
Intuition: “too many” points in S that are closer than δ to each other ⇒
there must be a pair in Q or in R that are less than δ apart.

Let Sy denote the set of points in S sorted by increasing y -coordinate and let
sy denote the y -coordinate of a point s ∈ S .

Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most 15
indices apart in Sy .

Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or more
indices after s in Sy , then s ′y − sy ≥ δ.

Use the claim in the algorithm: For every
point s ∈ Sy , compute distances only to the
next 15 points in Sy .

Other pairs of points cannot be candidates
for the closest pair.

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that s ′

appears 16 or more indices after s in Sy ,
then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the packing
below s has a y -coordinate at least δ more
than sy .

We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that s ′

appears 16 or more indices after s in Sy ,
then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the packing
below s has a y -coordinate at least δ more
than sy .

We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that s ′

appears 16 or more indices after s in Sy ,
then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the packing
below s has a y -coordinate at least δ more
than sy .

We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that s ′

appears 16 or more indices after s in Sy ,
then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the packing
below s has a y -coordinate at least δ more
than sy .

We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that s ′

appears 16 or more indices after s in Sy ,
then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the packing
below s has a y -coordinate at least δ more
than sy .

We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that s ′

appears 16 or more indices after s in Sy ,
then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the packing
below s has a y -coordinate at least δ more
than sy .

We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Final Algorithm

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Final Algorithm

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms



Mergesort Recurrence Relations Closest Pair of Points

Closest Pair: Final Algorithm

T. M. Murali September 19 and 24, 2018 Divide and Conquer Algorithms


	Mergesort
	Recurrence Relations
	Closest Pair of Points

