Divide and Conquer Algorithms

T. M. Murali

September 19 and 24, 2018

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - Partition problem into two equal sub-problems of size n/2.
 - Solve each part recursively.
 - Combine the two solutions in O(n) time.
 - Resulting running time is $O(n \log n)$.

Mergesort

Sort

INSTANCE: Nonempty list $L = x_1, x_2, \ldots, x_n$ of integers.

SOLUTION: A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $y_i \leq y_{i+1}$, for all $1 \leq i < n$.

- Mergesort is a divide-and-conquer algorithm for sorting.
 - **O** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$ respectively.
 - 2 Recursively sort A.
 - \bigcirc Recursively sort B.
 - Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

• Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.

Maintain a *current* pointer for each list. Initialise each pointer to the front of the list. While both lists are nonempty:

> Let a_i and b_j be the elements pointed to by the *current* pointers. Append the smaller of the two to the output list.

Advance the current pointer in the list that the smaller element belonged to.

EndWhile

Append the rest of the non-empty list to the output.

Merging Two Sorted Lists

• Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.

Maintain a *current* pointer for each list. Initialise each pointer to the front of the list. While both lists are nonempty:

Let a_i and b_j be the elements pointed to by the *current* pointers.

Append the smaller of the two to the output list.

Advance the current pointer in the list that the smaller element belonged to.

 ${\sf EndWhile}$

Append the rest of the non-empty list to the output.

• Running time of this algorithm is O(k + l).

- **()** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- **2** Recursively sort *A*.
- Recursively sort B.
- Merge the sorted lists A and B into a single sorted list.

- Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort B.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists +

Time to merge two sorted lists.

- **9** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Secursively sort *B*.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements \leq

Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists $+ % \left({{{\rm{T}}_{{\rm{s}}}} \right)$

Time to merge two sorted lists.

- Assume *n* is a power of 2.
- Define $T(n) \equiv$ Worst-case running time for *n* elements, for every $n \ge 1$.

- **9** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort B.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements \leq

Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists $+ % \left({{{\rm{T}}_{{\rm{s}}}} \right)$

Time to merge two sorted lists.

- Assume *n* is a power of 2.
- Define $T(n) \equiv$ Worst-case running time for *n* elements, for every $n \ge 1$.

$$T(n) \leq 2T(n/2) + cn, n > 2$$

$$T(2) \leq c$$

- **()** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Secursively sort *B*.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements \leq

Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists $+ % \left({{{\rm{T}}_{{\rm{s}}}} \right)$

Time to merge two sorted lists.

- Assume *n* is a power of 2.
- Define $T(n) \equiv$ Worst-case running time for *n* elements, for every $n \ge 1$.

 $T(n) \leq 2T(n/2) + cn, n > 2$ $T(2) \leq c$

- Three basic ways of solving this recurrence relation:
 - Unroll "the recurrence (somewhat informal method).
 - **②** Guess a solution and substitute into recurrence to check.
 - **③** Guess solution in O() form and substitute into recurrence to determine the constants.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

- Recursion tree has log *n* levels.
- Total work done at each level is *cn*.
- Running time of the algorithm is *cn* log *n*.
- Use this method only to get an idea of the solution.

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all m < n. Therefore,

 $T(n/2) \leq (cn/2)\log(n/2).$

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all m < n. Therefore,

 $T(n/2) \leq (cn/2)\log(n/2).$

• Inductive step: Prove $T(n) \leq cn \log n$.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore,

 $T(n/2) \leq (cn/2)\log(n/2).$

• Inductive step: Prove $T(n) \leq cn \log n$.

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$

$$= cn\log\left(\frac{n}{2}\right) + cn$$

$$= cn\log n - cn + cn$$

$$= cn\log n.$$

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore,

 $T(n/2) \leq (cn/2)\log(n/2).$

• Inductive step: Prove $T(n) \leq cn \log n$.

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$

$$= cn\log\left(\frac{n}{2}\right) + cn$$

$$= cn\log n - cn + cn$$

$$= cn\log n.$$

• Why is $T(n) \le kn^2$ a "loose" bound?

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all m < n. Therefore,

 $T(n/2) \leq (cn/2)\log(n/2).$

• Inductive step: Prove $T(n) \leq cn \log n$.

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$

$$= cn\log\left(\frac{n}{2}\right) + cn$$

$$= cn\log n - cn + cn$$

$$= cn\log n.$$
• Why is $T(n) \leq kn^2$ a "loose" bound?

• Why doesn't an attempt to prove $T(n) \le kn$, for some k > 0 work?

Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.

Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $k \ge c$ will work.

Proof for All Values of *n*

- We assumed *n* is a power of 2.
- How do we generalise the proof?

Proof for All Values of *n*

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- Basic axiom: T(n) ≤ T(n + 1), for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m)$

Proof for All Values of n

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- Basic axiom: T(n) ≤ T(n + 1), for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m) = O(n \log n)$, because $m \leq 2n$.

Other Recurrence Relations

- Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct cases: q = 1 and q > 2.
- Divide into two sub-problems of size n/2 and merge in $O(n^2)$ time.

T(n) = qT(n/2) + cn, q = 1

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

- Each invocation reduces the problem size by a factor of 2 ⇒ there are log *n* levels in the recursion tree.
- At level *i* of the tree, the problem size is $n/2^i$ and the work done is $cn/2^i$.
- Therefore, the total work done is

$$\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = O(n).$$

T(n) = qT(n/2) + cn, q > 2

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

T(n) = qT(n/2) + cn, q > 2

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

- There are log *n* levels in the recursion tree.
- At level *i* of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level *i* is $q^i cn/2^i$. Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq$$

T(n) = qT(n/2) + cn, q > 2

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

- There are log *n* levels in the recursion tree.
- At level *i* of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level *i* is $q^i cn/2^i$. Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq cn \sum_{i=0}^{i=\log_2 n} \left(\frac{q}{2}\right)^i$$

= $O\left(cn\left(\frac{q}{2}\right)^{\log_2 n}\right) = O\left(cn\left(\frac{q}{2}\right)^{(\log_{q/2} n)(\log_2 q/2)}\right)$
= $O(cn n^{\log_2 q/2}) = O(n^{\log_2 q}).$

$T(n) = 2T(n/2) + cn^2$

• Total work done is

$$\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i}\right)^2 \leq$$

$T(n) = 2T(n/2) + cn^2$

• Total work done is

$$\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i}\right)^2 \leq O(n^2).$$

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

- At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

- Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- Use d(p_i, p_j) to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute d(p_i, p_j) in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.

- Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- Use d(p_i, p_j) to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute d(p_i, p_j) in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?

- Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- Use d(p_i, p_j) to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute d(p_i, p_j) in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.

- Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- Use d(p_i, p_j) to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute d(p_i, p_j) in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 - **(**) closest pair in left half: distance δ_l .
 - 2 closest pair in right half: distance δ_r .
 - O closest among pairs that span the left and right halves and are at most min(δ_l, δ_r) apart. How many such pairs do we need to consider?

- Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- Use d(p_i, p_j) to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute d(p_i, p_j) in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 - **(**) closest pair in left half: distance δ_l .
 - 2 closest pair in right half: distance δ_r .
 - **(3)** closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider? Just one!

- Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- Use d(p_i, p_j) to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute d(p_i, p_j) in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 - **(**) closest pair in left half: distance δ_l .
 - 2 closest pair in right half: distance δ_r .
 - **(3)** closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.

Closest Pair: Algorithm Skeleton

- Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- **2** Recursively compute closest pair in Q and in R, respectively.

Closest Pair: Algorithm Skeleton

- Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- **\bigcirc** Recursively compute closest pair in Q and in R, respectively.
- Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and δ = min(δ_Q, δ_R).

Closest Pair: Algorithm Skeleton

- Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- **2** Recursively compute closest pair in Q and in R, respectively.
- Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and δ = min(δ_Q, δ_R).
- Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and d(q, r) is the smallest possible.

Closest Pair: Proof Sketch

- Prove by induction: Let (s, t) be the closest pair.
 - **)** both are in Q: computed correctly by recursive call.
 - both are in R: computed correctly by recursive call.
 - one is in Q and the other is in R: computed correctly in O(n) time by the procedure we will discuss.
- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.
- Overall running time is $O(n \log n)$.

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_{R}$.)

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.
- Corollary: If $t \in Q S$ or $u \in R S$, then (t, u) cannot be the closest pair.

• Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y .

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y .
- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y .
- Converse of the claim: If there exist s, s' ∈ S such that s' appears 16 or more indices after s in S_y, then s'_y − s_y ≥ δ.
- Use the claim in the algorithm: For every point s ∈ S_y, compute distances only to the next 15 points in S_y.
- Other pairs of points cannot be candidates for the closest pair.

• Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y - s_y \ge \delta$.

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_y .

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_y .
- We get a count of 12 or more indices (textbook says 16).

Closest Pair: Final Algorithm

```
Closest-Pair(P)
  Construct P_x and P_y (O(n log n) time)
  (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)
Closest-Pair-Rec(P_x, P_y)
  If |P| \leq 3 then
    find closest pair by measuring all pairwise distances
  Endif
  Construct Q_x, Q_y, R_x, R_y (O(n) time)
  (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_v, Q_v)
  (r_{0}^{*}, r_{1}^{*}) = \text{Closest-Pair-Rec}(R_{v}, R_{v})
  \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
  x^* = maximum x-coordinate of a point in set Q
  L = \{(x, y) : x = x^*\}
  S = points in P within distance \delta of L.
  Construct S. (O(n) time)
  For each point s \in S_v, compute distance from s
      to each of next 15 points in S_v
      Let s, s' be pair achieving minimum of these distances
      (O(n) \text{ time})
  If d(s,s') < \delta then
      Return (s.s')
  Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
      Return (q_0^*,q_1^*)
  Else
      Return (r_0^*, r_1^*)
  Endif
```

Closest Pair: Final Algorithm

```
Closest-Pair(P)
  Construct P_x and P_y (O(n \log n) time)
  (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)
Closest-Pair-Rec(P_x, P_y)
  If |P| \leq 3 then
     find closest pair by measuring all pairwise distances
  Endif
  Construct Q_x, Q_y, R_x, R_y (O(n) time)
  (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)
  (r_0^*, r_1^*) = Closest-Pair-Rec(R_x, R_y)
  \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
  x^* = maximum x-coordinate of a point in set Q
         \left( \left( x - x \right) \right) + \left( x - x \right) =
```

Closest Pair: Final Algorithm

```
x^* = maximum x-coordinate of a point in set Q
```

```
L = \{(x, y) : x = x^*\}
```

```
S = points in P within distance \delta of L.
```

```
Construct S_y (O(n) time)
For each point s \in S_y, compute distance from s
to each of next 15 points in S_y
Let s, s' be pair achieving minimum of these distances
(O(n) time)
```

```
If d(s,s') < \delta then

Return (s,s')

Else if d(q_0^*,q_1^*) < d(r_0^*,r_1^*) then

Return (q_0^*,q_1^*)

Else

Return (r_0^*,r_1^*)
```

P., 32 £