Dynamic Programming

T. M. Murali

September 26, October 1, 3, 8, 2018

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

_Interval|Scheduling _ Weighted Interval Scheduling _ Segmented Least Squares RNA Secondary Structure _ Sequence Alignment _ Shortest Paths
Algorithm Design Techniques

@ Goal: design efficient (polynomial-time) algorithms.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

_Interval|Scheduling _ Weighted Interval Scheduling _ Segmented Least Squares RNA Secondary Structure _ Sequence Alignment _ Shortest Paths
Algorithm Design Techniques

@ Goal: design efficient (polynomial-time) algorithms.

Q Greedy
» Pro: natural approach to algorithm design.
» Con: many greedy approaches to a problem. Only some may work.
» Con: many problems for which no greedy approach is known.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

_Interval|Scheduling _ Weighted Interval Scheduling _ Segmented Least Squares RNA Secondary Structure _ Sequence Alignment _ Shortest Paths
Algorithm Design Techniques

@ Goal: design efficient (polynomial-time) algorithms.
Q Greedy

» Pro: natural approach to algorithm design.
» Con: many greedy approaches to a problem. Only some may work.
» Con: many problems for which no greedy approach is known.

© Divide and conquer
» Pro: simple to develop algorithm skeleton.

» Con: conquer step can be very hard to implement efficiently.
» Con: usually reduces time for a problem known to be solvable in polynomial

time.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

Interval S

cheduling ghted Interval Scheduling Segmented Least RNA Secondary Structure Sequence Alignment Shortest Paths

Algorithm Design Techniques

@ Goal: design efficient (polynomial-time) algorithms.
Q Greedy

» Pro: natural approach to algorithm design.
» Con: many greedy approaches to a problem. Only some may work.
» Con: many problems for which no greedy approach is known.

© Divide and conquer

» Pro: simple to develop algorithm skeleton.

» Con: conquer step can be very hard to implement efficiently.

» Con: usually reduces time for a problem known to be solvable in polynomial
time.

@ Dynamic programming

» More powerful than greedy and divide-and-conquer strategies.

» Implicitly explore space of all possible solutions.

» Solve multiple sub-problems and build up correct solutions to larger and larger
sub-problems.

» Careful analysis needed to ensure number of sub-problems solved is polynomial
in the size of the input.

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

_Interval|Scheduling _ Weighted Interval Scheduling _ Segmented Least Squares RNA Secondary Structure _ Sequence Alignment _ Shortest Paths
History of Dynamic Programming

@ Bellman pioneered the systematic study of dynamic programming in the
1950s.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

_Interval|Scheduling _ Weighted Interval Scheduling _ Segmented Least Squares RNA Secondary Structure _ Sequence Alignment _ Shortest Paths
History of Dynamic Programming

@ Bellman pioneered the systematic study of dynamic programming in the
1950s.

@ The Secretary of Defense at that time was hostile to mathematical research.

@ Bellman sought an impressive name to avoid confrontation.

> “it's impossible to use dynamic in a pejorative sense”
> ‘“something not even a Congressman could object to” (Bellman, R. E., Eye of
the Hurricane, An Autobiography).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

_Interval|Scheduling _ Weighted Interval Scheduling _ Segmented Least Squares RNA Secondary Structure _ Sequence Alignment _ Shortest Paths
Applications of Dynamic Programming

Computational biology: Smith-Waterman algorithm for sequence alignment.

Operations research: Bellman-Ford algorithm for shortest path routing in
networks.

Control theory: Viterbi algorithm for hidden Markov models.

Computer science (theory, graphics, Al, ...): Unix diff command for
comparing two files.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

ndary Structure S

September 26, October 1

Interval Scheduling

Comedy

The Notebook Shadowhunters

(2004) How Are Thou Fallen
[new]

This Is 40 The Internship

(2012) (2013)

The Situation Room With
Wolf Blitzer

Erin Burnett OutFront

Anderson Cooper 360

[new] [new]
Forensic Forensic Forensic Forensic
Files s Files Files
Partnersin | Within a Elephant A Bag of
Tracks Evidence
The Wedding Ringer South Park South Park
15) Butters' aisins
Bottom Bitch
Cops Cops Cops Cops Cops Cops
Fort Worth | Fort Worth, Street Eve in the
Chattanooga, Crimes Sky
es Special
Moines: Edition
Coast to
Coast
EST 6:00PM 6:30 PM 7:00PM 7:30 PM 8:00PM 8:30PM
Family Guy ~Family Guy Family Guy Family Guy = Family Guy Amerlc«n
Roasted | Fighting Take My Pll/rng Them Papa Has
uy ish Wwite Rolin'Son The Life
Aquatic with
Steve Smith
SportsCenter With College Basketball
hael and Jemele Louisville at Syracuse
Around the | Pardon the Women's College Basketball
Interruption Texas at Fiorida State
[new] [nEw]

My Best Friend's Wedding

Valentine's Day
(1997 (2010

Source Code Underworld: Evolution

Beyond
Last Action Hero

Anderson Cooper 360

How It Really Happened
Prince, The End

Archer Archer
The Figgis The Handoff
Agency
Cops Cops
Crying Over Atlanta
Spilled Milk
9:00PM 9:30 PM

American Family Guy
Dad Guy Robot

layley
Smith, Seal
Team Six

College Basketball
West Virginia at Kansas

Women's College Basketball
South Carolina at Connecticut

Shadowhunters The 700 Club
How Are Thou Fallen

The Internship

(2013)
CNN Tonight With Don CNN Tonight With Don
Lemon Lemon
[new] [new]

How It Really Happened
The OJ Simpson Case: Other Killer Theories

South Park Somh Plrk The Daily At Midnight

Cartman S w With With Chris

Finds Love Cra/g Kyle Kinane;
Wellelam & Tom Lennon;
Phillip Milana Vayntrub
Picardi
[nEw]

Cops Cops Cops Cops

One, Two, Trouble in Texas

Tree Paradise

1000PM 1030PM 11oopM 1130PY D |

Family Guy Family Guy Conan

Peter, Chiis | Peter's David Oyelowo; Louie
&Biian Sister Anderson; Angel Olsen
[new]
SportsCenter
College Women's
Basketball | College
Georgia at
A Florida

Project Runway: Junior
Race (o the Finale

My Soul to Take

September 26, October 1

3, 8, 2018

Programming

Interval Scheduling

2
FREEFRM
FX
2
X
N
23
NN

LN

HLN

°
2

Comedy

Esen
2
EsPNz

b
Lifetime

S

The Notebook Shadownunters Shadownunters The 700 Club
on4) How Aro Thou Fallen Last Acton Hero How e Thou Falen
e icv]
This1s.40 e ntermship The ntermship
eor2) o) o
o
Wolr Biizer = s i Lemon Lemon
mn mn
Forensic | Forensic | Foronsic Forensic Primetime Justice With
Fies o Files Files Ashlaigh Banficld Price, Tho End Tho 0J Simpsan Case: Othor Kiler Tearios
Patoersin Witina | Ephant ABegol
Cine " Hair Tacks Evidonco
The Wedding Ringer SounPak SouhPak Avcher Archer SouthPark | SouthPark TheDaly | AMidnight
eors) suters Raisins TheFiggis TheHandoff Carnan Tweekx ShowWith With Chris
oo Bich Agency Fndslove | Ciag Eline Kinane:
Weleroi & | Tom Lonnon
Py Miana Vayrob
Picardt
]
Cops Cops Cops Cops ops | Cops Cops Cops Cops Cop cops
Fort o For o, sieet ey g Over Al One. T, Touein Texas
Chatanooge, Cimes Sky Spied ik i Faadis
Des ot
Moines: Eton
Coast
Est so0PM P 00pM 30eM sooem sa0em so0pm P w0Pm 1030em awcoem 1vsoe| b |
Family Guy | Family Guy | Family Guy _FamilyGuy Family Guy | American American Family Guy | Family Guy | Family Guy Conan
ing | TakoMy Piing Thom PopaHasa Dad Dad GuyRobor PatorChis | Potors . David Oyolowo: Lotie
i wiio oty Rolln'Son | ThoLie Hayioy ‘Anderson; Angel Oison
Aquatic with | Smit Seal
Stove Smith | Toam Six =1
SportsCenter witn Cotlege Basketbail College Basketbail Sportscenter
Wichaeland Jemele Lousue i Syracuse West Vrgiia ot Kansas
mE [} ma
Around the Pardon the v College | Women's
Hom Imerruption | Texas at Florid Stae South Caroina at Comesticut Basketball | College
= =] Pannat
Valenting's Day Project Runwiay: Junior

My Bost Friond's Wedding
(1907)

Source Code Underworld: Evolution

(2010)

Underworld: Rise of the Lycans

@ Input: Start and end time of each movie.
@ Constraint: Only one TV = cannot watch two overlapping movies at the

same time.

Race to the Finalo

My Soul to Take

@ Goal: Compute the largest number of movies we can watch.

September 26, October 1, 3, 8, 2018

Interval Scheduling

Interval Scheduling

INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s(/), f(i)),1 < i < n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

@ Two jobs are compatible if they do not overlap.

@ This problem models the situation where you have a resource, a set of fixed
jobs, and you want to schedule as many jobs as possible.

@ For any input set of jobs, algorithm must provably compute the largest set of
compatible jobs.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

o Key question: in what order should we process the jobs?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

o Key question: in what order should we process the jobs?

Earliest start time Increasing order of start time s(/).

Earliest finish time Increasing order of finish time f(/).

Shortest interval Increasing order of length f (i) — s(i).

Fewest conflicts Increasing order of the number of conflicting jobs. How fast
can you compute the number of conflicting jobs for each job?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling

Greedy ldeas that Do Not Work

— — — —

(@)
P
(b)
| — | —
— | —
(0

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling

Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty

While R is not yet empty
Choose a request ieR that has the smallest finishing time

Add request i to A
Delete all requests from R that are not compatible with request i

EndWhile
Return the set A as the set of accepted requests

Dynamic Programming

September 26, October 1, 3, 8, 2018

T. M. Murali

Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

@ Claim: A is a compatible set of jobs.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

@ Claim: A is a compatible set of jobs. Proof follows by construction, i.e., the
algorithm computes a compatible set of jobs.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?

> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Interval Scheduling eighted Interva

cheduling Segmented Least Squares RNA Secondar

tructure Sequence rnment Shortest Paths

Ideas for Analysmg the EFT Algorlthm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?

> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.

@ Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

» What does “better” mean?
» How do we measure progress of the algorithm?

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Interval Scheduling Weighted Interval Sched

Structure Sequence Alignment Shortest Paths

Ideas for Analysmg the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?
> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
@ Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?
» What does “better” mean?
» How do we measure progress of the algorithm?
@ Basic idea of proof:
» We can sort jobs in any solution in increasing order of their finishing time.

» Finishing time of job number r selected by A < finishing time of job number r
selected by any other algorithm.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].
Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.
Claim: For all indices r < k, f(i,) < f(ji)-

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

" i ?

Jr1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

" i ?

Jr1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

o Claim: m = k.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

" i ?

Jr1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

o Claim: m = k.

@ Claim: The greedy algorithm returns an optimal set A.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Implementing the EFT Algorithm

@ Reorder jobs so that they are in increasing order of finish time.
@ Store starting time of jobs in an array S.
Q k=1
@ While k < |S],
@ Output job k.
@ Let finish time of job k be f.
@ lterate over S from index k onwards to find the first index i such that S[i] > f.
Q k=i

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Implementing the EFT Algorithm

@ Reorder jobs so that they are in increasing order of finish time.
@ Store starting time of jobs in an array S.
Q k=1
@ While k < |S],
@ Output job k.
@ Let finish time of job k be f.

@ lterate over S from index k onwards to find the first index i such that S[i] > f.
Q k=i

@ Must be careful to iterate over S such that we never scan same index more
than once.

@ Running time is O(nlog n), dominated by sorting.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s;,f;),1 < i < n} of start and finish times
of n jobs and a weight v; > 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that } ;s v; is
maximised.
Index
1 . Value = 1
Value = 3
2 f i
Value = 1
3 : i
>

Figure 6.1 A simple instance of weighted interval scheduling.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s;,f;),1 < i < n} of start and finish times
of n jobs and a weight v; > 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that } ;s v; is
maximised.
Index
1 . Value = 1
Value = 3
2 f i
Value = 1
3 : i
>

Figure 6.1 A simple instance of weighted interval scheduling.

@ Greedy algorithm can produce arbitrarily bad results for this problem.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

©
=1
=]
«
o
o
-
3
2
]
2
53
o
©
~
3
=

Septem

Detour: a Binomial ldentity

2
=i
<

3
£

5}
%)
T

<4
£
ic
-
£
=
i
E

Detour: a Binomial ldentity

@ Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Detour: a Binomial ldentity

@ Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

(-0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Detour: a Binomial ldentity

@ Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

(-0

@ Proof: either we include the nth element in a subset or not ...

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Approach
@ Sort jobs in increasing order of finish time and relabel: ff < < ... <f,.
@ Job i comes before job j if i < j.
@ p(j) is the largest index i < j such that job i is compatible with job j.
p(j) = 0 if there is no such job i.
@ All jobs that come before job p(j) are also compatible with job ;.
Index

1 |—U1=2| p() =0

2 ol p@ =0

3 l—v3=4| pB3) =1

4 | o7, p@) = 0

5 T2, p() = 3

6 }U—6:1| p(6) =3

@ We will develop optimal algorithm from obvious statements about the
problem.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sub-problems

Index
v =2
1] — p(1) =0
v, =4
2 k | p2) =0
v; =4
3 B pB3) =1
vy =7
4 k { p4) =0
vsg =2
5 | E— p(s) =3
v =1
6 — p6) =3

@ Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O.

Case 2: job nisin O.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sub-problems

Index
" T
2 ' v =4
3 R Bl
4 I Uy = 7:
5 = 2
6 solggg?farlym_J NOth}u%Fi)othal_H v = 1 H

these jobs

p(1) =
p@2) =0
p@B3) =
p@4) =0
p(S) =

p(6) =

o Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs

{1,2,...,n—1}.
Case 2: job nisin O.

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Weighted Interval Scheduling

Sub-problems

Index Rest of optimal
T solution from
1 h_ these jobs ;1) = ¢
v, =4
2 k | p2) =0
v =4
3 — pB3) =1
vy =7 ‘
4 I | p@) =0
vs = 2
5 — p(5) =3
Cannot be in J In optimal ve =1
6 optimal solution solution | p(6) =3
 E———

o Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs
{1,2,...,n—1}.
Case 2: job nisin O.
* O cannot use incompatible jobs {p(n) +1,p(n) +2,...,n—1}.
* Remaining jobs in O must be the optimal solution for jobs {1,2,..., p(n)}.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sub-problems

Index Index Rest of optimal
)) solution from

11— 1) =0 1 1 these jobs 1y - o

v, =4 v, =4
2 | E—— pR)=0 2 | —— p2) =0
v; =4 v; =4
3 —_ pB3) =1 3] pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
vs =2 vs =2
Gptimal e =3 s =] pe) -3
ptima Not in optimal ve = 1 Cannot be in J In optimal ve = 1
6 Solutlon_from'} Solution o 1 —2 =L) -3 6 optimal solution solution ———— p© =3

these jobs

@ Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs
{1,2,.. n—= 1}
Case 2: job nisin O.
* (O cannot use incompatible jobs {p(n) +1,p(n) +2,...,n—1}.
* Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.

@ O must be the best of these two choices!

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sub-problems

Index Index Rest of optimal
)) solution from

11— 1) =0 1 1 these jobs 1y - o

v, =4 v, =4
2 | E—— pR)=0 2 | —— pR)=0
v; =4 v; =4
3 —_ pB3) =1 3] pB) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
vs =2 vs =2
Gptimal e =3 s =] pe) -3
ptima Not in optimal ve = 1 Cannot be in__J In optimal ve = 1
6 Solutlon_from—J Solution o 1 —2 =L) -3 6 optimal solution solution ———— p© =3

these jobs

@ Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs
{1,2,...,n—1}.
Case 2: job nisin O.
* (O cannot use incompatible jobs {p(n) +1,p(n) +2,...,n—1}.
* Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.
@ O must be the best of these two choices!

@ Suggests finding optimal solution for sub-problems consisting of jobs
{1,2,...,j —1,j}, for all values of ;.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
— =3 solution from
11— p(1) =0 1 1 these jobs p(1) = 0
v, =4 v, = 4
2 —_— 27, pR2) =0 2 _ p@) =0
vy =4 vy =4
3 —_— pB3) =1 3 | — pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
Vs =2 vs =2
S | —] p(s) =3 5 | — p(s) =3
Optimal Not in optimal Ve = 1 Cannot be in__J In optimal ve = 1
6 sc;lhuetus%nigﬁ:sm—J Solution —-l»%l pe) =3 6 optimal solution solution '—"‘I pe) =3

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).

September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
— =3 solution from
11— p(1) =0 1 1 these jobs p(1) = 0
v, =4 v, = 4
2 —_— 27, pR2) =0 2 _ p@) =0
vy =4 vy =4
3 —_— pB3) =1 3 | — pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
Vs =2 vs =2
S | —] p(s) =3 5 | — p(s) =3
Optimal Not in optimal Ve = 1 Cannot be in__J In optimal ve = 1
6 S(;Ihuetls%niglgst Solution —'ln—éal pe) =3 6 optimal solution solution '—"‘I pe) =3

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [E—— pB3) =1 3 [— pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 vs =2
— pG) =3 5 — p(s) =3
Optimal Not i : e n J -
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"m‘J solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1l j ¢ O;:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [E—— pB3) =1 3 [— pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
— pG) =3 5 — p(s) =3
Optimal Noti , — in_ J :
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"mJ solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [E—— pB3) =1 3 [— pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
— pG) =3 5 — p(s) =3
Optimal Noti , — in_ J :
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"mJ solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [E—— pB3) =1 3 [— pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
— pG) =3 5 — p(s) =3
Optimal Noti , — in_ J :
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"mJ solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
T T solution from
1 _ p(1) =0 1 1 these jobs 4y = o
v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [E—— pB3) =1 3 [— pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
5 Sora — pG) =3 5 — p(s) =3
ptima J Not in optimal __, ve = 1 Cannot be in J In optimal v = 1
6 solution from solutllaon ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T T solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 —_— p@2) =0 2 _ p2) =0
vy =4 vy =4
3 [E—— pB) =1 3 [— pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
Vs =2 Vs =2
T ps) =3 5 —1 ps) =3
Optimal Not i : [- N
1 ot in optimal ve = 1 Cannot be in__J In optimal ve = 1

6 solution frumJ solution - 1 —2 "1 pe) -3 6 optimal solution solution '—6‘1 pe) =3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

@ When does job j belong to O;7

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
T T solution from
1 _ p(1) =0 1 1 these jobs 4y = o
v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 —_ pB3) =1 3 [— pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
5 Sr— | —] p@s) =3 5 | — p6) =3
ptima Not in optimal ve = 1 Cannot be in J In optimal v = 1
6 Szwetlsoeni;[fsm solution 0 —2"1| pe) - 3 6 optimal solution solution —] pe =3

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

@ When does job j belong to O;? If and only if v; + OPT(p(j)) > OPT(j — 1).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Recursive Algorithm

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

Compute—-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(i— 1)
Endif

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Recursive Algorithm

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

Compute—-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(i— 1)
Endif

@ Correctness of algorithm follows by induction (see textbook for proof).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
v3 =4
3 —_ pB3) =1
vy =7
4 p@) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
v3 =4
3 —_ pB3) =1
vy =7
4 p@) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

= max(vg + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
v3 =4
3 —_ pB3) =1
vy =7
4 p@) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

= max(vg + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
= max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) =

OPT(2) =

OPT(1) =

OPT(0)=0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) = max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1),0PT(2))
OPT(2) =

OPT(1) =

OPT(0)=0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) = max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1),0PT(2))
OPT(2) = max(v> + OPT(p(2)),OPT(1)) = max(4 + OPT(0), OPT(1))
OPT(1) =

OPT(0)=0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) = max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1),0PT(2))
OPT(2) = max(v> + OPT(p(2)),OPT(1)) = max(4 + OPT(0), OPT(1))
OPT(1) = v =2

OPT(0) = 0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3), OPT(5))
max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3), OPT(4))
max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0), OPT(3))
max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1), OPT(2))
max(va + OPT(p(2)), OPT(1)) = max(4 + OPT(0),0PT(1)) =4
Vi = 2

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3), OPT(5))
max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3), OPT(4))
max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0), OPT(3))
max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
max(vs + OPT(p(2)), OPT(1)) = max(4 + OPT(0),0PT(1)) =4
Vi = 2

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v =2

OPT(0) = 0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5)) =8
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),0PT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5)) =8
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),0PT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

@ Optimal solution is

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5)) =8
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),0PT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

@ Optimal solution is job 5, job 3, and job 1.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Recursive Algorithm

Compute-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif

September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Recursive Algorithm

Compute-0pt (j) @ What is the running time of the
It j=0 then algorithm?
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Recursive Algorithm

Compute-0pt () @ What is the running time of the
If j=0 then algorithm? Can be exponential in n.
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Recursive Algorithm

Compute-0pt (j) @ What is the running time of the
1f j=0 then algorithm? Can be exponential in n.
Return 0

Else @ When p(j) =j—2, forall j > 2:

Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1)) recursive calls are forj -1 and _/ _ 2
Endif ’

oPT(6)

orr(3)
—_
orr(1) opr(1)
—_
—_
—_
The tree of subproblems
[grows very quickly.

opT(1)

Figure 6.4 An instance of weighted interval scheduling on which the simple Compute-
Opt recursion will take exponential time. The values of all intervals in this instance Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance
are 1. of Figure 6.2.

. Murali September 26, October 1, 3, 8, Dynamic Programming

Memoisation

@ Store OPT(j) values in a cache and reuse them rather than recompute them.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Memoisation

@ Store OPT(j) values in a cache and reuse them rather than recompute them.

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M[j]

Else
Define M[j] = max(vj+M—Compute—Opt(p(j)), M-Compute-0pt(j — 1))
Return M[j]

Endif

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Weighted Interval Scheduling

Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define MJ[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-0Opt(j — 1))
Return M(j]

Endif

@ Claim: running time of this algorithm is O(n) (after sorting).

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define MJ[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-0Opt(j — 1))
Return M(j]

Endif

@ Claim: running time of this algorithm is O(n) (after sorting).

@ Time spent in a single call to M-Compute-0pt is O(1) apart from time spent in
recursive calls.

@ Total time spent is the order of the number of recursive calls to M-Compute-0Opt.

@ How many such recursive calls are there in total?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define MJ[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-0Opt(j — 1))
Return M(j]

Endif

@ Claim: running time of this algorithm is O(n) (after sorting).

Time spent in a single call to M-Compute-0pt is O(1) apart from time spent in
recursive calls.

Total time spent is the order of the number of recursive calls to M-Compute-0Opt.
How many such recursive calls are there in total?

Use number of filled entries in M as a measure of progress.

Each time M-Compute-0pt issues two recursive calls, it fills in a new entry in M.
Therefore, total number of recursive calls is O(n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing O in Addition to OPT(n)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j). Running time becomes O(n?).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j). Running time becomes O(n?).
@ Recall: request j belong to O; if and only if v; + OPT(p(j)) > OPT(j — 1).

@ Can recover O; from values of the optimal solutions in O(j) time.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j). Running time becomes O(n?).
@ Recall: request j belong to O; if and only if v; + OPT(p(j)) > OPT(j — 1).

@ Can recover O; from values of the optimal solutions in O(j) time.

Find-Solution(j)
If j=0 then
Output nothing
Else
If vj+Mlp()]=M[j — 1] then
Output j together with the result of Find-Solution(p(j))
Else
Output the result of Find-Solution(j— 1)
Endif
Endif

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

From Recursion to lteration

@ Unwind the recursion and convert it into iteration.
e Can compute values in M iteratively in O(n) time.
@ Find-Solution works as before.

Iterative-Compute—-0Opt
M[0]=0
For j=1,2,...,n
Ml = max(v; + Mlp()], M[j — 1)
Endfor

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Basic Outline of Dynamic Programming

@ To solve a problem, we need a collection of sub-problems that satisfy a few
properties:

© There are a polynomial number of sub-problems.

@ The solution to the problem can be computed easily from the solutions to the
sub-problems.

@ There is a natural ordering of the sub-problems from “smallest” to “largest”.

@ There is an easy-to-compute recurrence that allows us to compute the solution
to a sub-problem from the solutions to some smaller sub-problems.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling Weighted Interval Scheduling Segmented Least RNA Secondary Structure Sequence Alignment Shortest Paths

Basic Outline of Dynamic Programming

@ To solve a problem, we need a collection of sub-problems that satisfy a few
properties:

© There are a polynomial number of sub-problems.

@ The solution to the problem can be computed easily from the solutions to the
sub-problems.

@ There is a natural ordering of the sub-problems from “smallest” to “largest”.

@ There is an easy-to-compute recurrence that allows us to compute the solution
to a sub-problem from the solutions to some smaller sub-problems.

o Difficulties in designing dynamic programming algorithms:
@ Which sub-problems to define?
@ How can we tie together sub-problems using a recurrence?
© How do we order the sub-problems (to allow iterative computation of optimal
solutions to sub-problems)?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

M. Murali namic Programmin

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Imagery from new street view vehicles is accompanied by laser range data, which
is aggregated and simplified by robustly fitting it in a coarse mesh that models the
dominant scene surfaces.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Fitting Lines

. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Fitting Lines

. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Fitting Lines

. Murali September 26, October 1, 3, 8, 2018 Dynamic Programmi

Fitting Lines

A

. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Fitting Lines

A

. Murali September 26, October 1, 3, 8, 2018 Dynamic Programmi

Segmented Least Squares

Fitting Lines

September 26, October 1, 3, 8, 2018

Segmented Least Squares

Fitting Lines

September 26, October 1, 3, 8, 2018

Segmented Least Squares

Least Squares Problem

ﬂ‘yl*”l*b‘ @ Given scientific or statistical data
(@1,9) plotted on two axes.

b @ Find the “best” line that “passes”
L through these points.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
e through these points.
LEAST SQUARES

INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y=ax+b tpat minimises

Error(L, P) = Z(y,- — ax; — b)*.

i=1

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
e through these points.
LEAST SQUARES

INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y=ax+b tpat minimises

Error(L, P) = Z(y,- — ax; — b)*.

i=1

@ How many unknown parameters must we find values for?

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
e through these points.
LEAST SQUARES

INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y=ax+b tpat minimises

Error(L, P) = Z(y,- — ax; — b)*.

i=1

@ How many unknown parameters must we find values for? Two: a and b.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
through these points.

—eeeeeeeeeeee

LEAST SQUARES
INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y =ax+ b tpat minimises
Error(L, P) = Z(y,- — ax; — b)*.
i=1

@ How many unknown parameters must we find values for? Two: a and b.
@ Solution is achieved by

2= ny i xiyi — (%) Q2 vi) and b — DYi—ay X
nyxE (%) n

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Segmented Least Squares

M. Murali September 26, October

Segmented Least Squares

o o
o o
o o
o o
o o
o o
o 00
c000 © 5000 o
Figure 6.8 A set of points that lie approximately on three lines.

Figure 6.7 A set of points that lie approximately on two lines.

@ Want to fit multiple lines through P.
@ Each line must fit contiguous set of x-coordinates.

@ Lines must minimise total error.

Dynamic Programming

September 26, October 1, 3, 8, 2018

T. M. Murali

Example of Segmented Least Squares

Input contains a set of two-dimensional points.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

eighted Interval Scheduling Segmented Least Squares RNA Seconda

Example of Segmented Least Squares

P a8 a

Consider the x-coordinates of the points in the input.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Segmented Least Squares

° 'Y
o ® Y
O
® 9
®

Divide the points into segments; each segment contains consecutive points in the
sorted order by x-coordinate.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Segmented Least Squares

Fit the best line for each segment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Segmented Least Squares

U ¥ as & & S——iits N . -

Illegal solution: black point is not in any segment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Segmented Least Squares

& R aril & ol a! 5 b Sob 5 g

Illegal solution: leftmost purple point has x-coordinate between last two points in
green segment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares
[

SEGMENTED LEAST SQUARES

INSTANCE: Set P = {p; = (x;,¥i),1 < i < n} of n points,
X1 < Xp < -0 < Xp .

SOLUTION:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (x,¥i),1 < i < n} of n points,
X1 < Xp < - < Xp .
SOLUTION:
@ An integer k,
@ a partition of P into k segments {Py, P>, ..., Pc}, and
© for each segment P;, the best-fit line Lj 1y = ajx + b;,1 <j < k
that minimise the total errgr

Z Error(L;, P})
=1

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (x,¥i),1 < i < n} of n points,
X1 < xp < -+ < xp and a parameter C > 0.
SOLUTION:
@ An integer k,
@ a partition of P into k segments {Py, P>, ..., Pc}, and
@ for each segment P;, the best-fit line Lj : y = ajx + b;,1 <j < k
that minimise the total errgr

Z Error(L;, P;) + Ck
j=1

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (x,¥i),1 < i < n} of n points,
X1 < xp < -+ < xp and a parameter C > 0.
SOLUTION:
@ An integer k,
@ a partition of P into k segments {Py, P>, ..., Pc}, and
@ for each segment P;, the best-fit line Lj : y = ajx + b;,1 <j < k
that minimise the total errgr

> Error(Ly, P;) + Ck
j=1

@ How many unknown parameters must we find? 2k, and we must find k too!

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Formulating the Recursion |

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.
e We want to compute OPT(n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Formulating the Recursion |

® ® OPT (i) = Least total error for
® the first ¢ points

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.
e We want to compute OPT(n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Formulating the Recursion |

. @ OPT(i—1)

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.

e We want to compute OPT(n).

@ Observation: Where does the last segment in the optimal solution end?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

Formulating the Recursion |

¢ o @ OPT(i — 1)

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.

e We want to compute OPT(n).
@ Observation: Where does the last segment in the optimal solution end? p,,

and this segment starts at some point p;.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

eighted Interval Scheduling

Segmented Least Squares RNA Seconda

Formulating the Recursion |

@ OPT(i—1)

Let e ; denote the minimum error of a (single) line that fits {p;, p2,..., pj}.
Let OPT(/) be the optimal total error for the points {p1, p2, ..., pi}

We want to compute OPT(n).
Observation: Where does the last segment in the optimal solution end? p,,

and this segment starts at some point p;.

o If the last segment in the optimal partition is {p;, pit1,. .., pn}, then
OPT(n) =ei,+ C+ OPT(i — 1)

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Segmented Least Squares

Formulating the Recursion Il
. @ OPT(i—1)

@ Suppose we want to solve sub-problem on the points {p1, ps,...p;}, i.e., we
want to compute OPT(j).
o If the last segment in the optimal partition is {p;, pj+1, ..., p;}, then

OPTU) =€+ C+ OPT(i — 1)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Formulating the Recursion Il
- ® OPT(i—1)

@ Suppose we want to solve sub-problem on the points {p1, ps,...p;}, i.e., we
want to compute OPT(j).
o If the last segment in the optimal partition is {p;, pj+1, ..., p;}, then
OPT(j) =€+ C+ OPT(i — 1)
@ But i can take only j distinct values: 1,2,...,j —1,j. Therefore,
OPT(j) = 12/'2j (e,-,j + C+OPT(i — 1))

@ Segment {pj, pi+1,...p;j} is part of the optimal solution for this sub-problem
if and only if the minimum value of OPT(j) is obtained using index i.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares(n)
Array MJ[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n

Use the recurrence (6.7) to compute MIJj]
Endfor
Return M|[n]

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares(n)
Array MJ[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n

Use the recurrence (6.7) to compute MIJj]
Endfor
Return M|[n]

@ We can find the segments in the optimal solution by backtracking.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares (n)
Array M[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M]Jj]
Endfor
Return M(n]

o Let T(n) be the running time of this algorithm.

T(n) = Z ZO(_}—I

1<j<n1<i<y

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares (n)
Array M[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M]Jj]
Endfor
Return M(n]

o Let T(n) be the running time of this algorithm.

T(n) = Z ZO(_/—I

1<j<n1<i<y

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares (n)
Array M[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M]Jj]
Endfor
Return M(n]

o Let T(n) be the running time of this algorithm.
@ Running time is O(n%), can be improved to O(n?).

T(n) = Z Z 0@ — i) = 0(n?)

1<j<n1<i<y

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Scheduling eighted Interval Scheduling Segmented st Squares RNA Secondary Structure Sequence Alignment Sho

RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

Pairs of bases match up; each base
matches with < 1 other base.

Adenine always matches with Uracil.

There are no kinks in the folded

o
o
@ Cytosine always matches with Guanine.
Qo
molecule.

o

Structures are “knot-free” .

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

ted Interval Scheduling nte Squares RNA Secondary Structure

RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

Pairs of bases match up; each base
matches with < 1 other base.

Adenine always matches with Uracil.

There are no kinks in the folded

o
o
@ Cytosine always matches with Guanine.
Qo
molecule.

o

Structures are “knot-free” .

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

@ Problem: given an RNA molecule, predict its secondary structure.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

RNA Secondary Structure

RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

Pairs of bases match up; each base
matches with < 1 other base.

Adenine always matches with Uracil.
Cytosine always matches with Guanine.

There are no kinks in the folded
molecule.

Structures are “knot-free” .

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

@ Problem: given an RNA molecule, predict its secondary structure.
@ Hypothesis: In the cell, RNA molecules form the secondary structure with the
lowest total free energy.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

RNA Secondary Structure

Formulating the Problem

G, U
o o
NG
Ad—gu
U4
ACAUGAUGGCCAUGU
ce—ac
vdda

@ ®)

Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the

string has been “stretched” lengthwise, and edges connecting matched pairs appear as
noncrossing “bubbles” over the string.

@ An RNA molecule is a string B = b1 by ... b,; each b; € {A, C, G, U}.
@ A secondary structure on B is a set of pairs S = {(/,/)}, where 1 < j,j <n
and

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Formulating the Problem

ACAUGAUGGCCAUGU

@ ®)

ting matched p:

@ An RNA molecule is a string B = b1 by ... b,; each b; € {A, C, G, U}.
@ A secondary structure on B is a set of pairs S = {(/,/)}, where 1 < j,j <n
and
Q@ (No kinks.) If (i,j) € S, then i < j — 4.
@ (Watson-Crick) The elements in each pair in S consist of either {A, U} or
{C, G} (in either order).
@ S is a matching: no index appears in more than one pair.
@ (No knots) If (i,j) and (k,) are two pairs in S, then we cannot have
i< k<j<l.

@ The energy of a secondary structure o the number of base pairs in it.
@ Problem: Compute the largest secondary structure, i.e., with the largest
number of base pairs.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

es RNA Secondary Structure Se

lllegal Secondary Structures

6—e—e6—6—6—6—6—6—6—6—6—=o
A C A U G G C C A U G U

’,———~~¥Vatson—Cr|ck’,,———~~\\

” \: F’ :
A C A U G G C C A U G U

Kink _ == _Matching

!/,E \Q /’ \\:
A C A U G G C C A U G U
T e e e Knot

A C A U G G € C A U G U

September 26, October 1, 3, 8, 2018

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment ~ Shortest Paths

Legal Secondary Structures

6—6—6—6—6—6—6—6—6—6—6—=o
A C A U G G C C A U G U

——— T e e T T ——
- - —— — —y

A C A U G G € C A U G U

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
biby...b;.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;
@ if j is not a member of any pair, use OPT(j — 1).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4,

Including the pair (¢, j) results in
two independent subproblems.

oo

12 t-1 t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4, knot condition yields two independent

sub-problems!

Including the pair (¢, j) results in
two independent subproblems.

oo

12 t-1 t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4, knot condition yields two independent

sub-problems! OPT(t — 1) and 777

Including the pair (¢, j) results in
two independent subproblems.

oo

12 t-1 t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4, knot condition yields two independent

sub-problems! OPT(t — 1) and 777
@ Insight: need sub-problems indexed both by start and by end.

Including the pair (¢, j) results in
two independent subproblems.

oo

12 -1t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
@

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
b,'b;+1 Ce bj.

September 26, October 1, 3, 8, 2018 Dynamic Programming

T. M. Murali

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
@

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
@

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;

OPT(i,j) = max ()

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).

OPT(i,j) = max (OPT(i,j - 1),)

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

OPT(i,j) = max (OPT(i,j - 1),)

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

@ Since t can range from i to j — 5,

OPT(i,j) = max (OPT(i,j - 1),)

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

@ Since t can range from i to j — 5,

OPT(i,j) = max (OPT(i,j — 1), max (14 OPT(i,t = 1)+ OPT(¢ + 1.j - 1)))

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018

eighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence gnment Shortest Paths

Interval Scheduling

Correct Dynamic Programming Approach
two independent subproblems.

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

@ Since t can range from i to j — 5,
OPT(i,J) = max (OPT(i,j - 1), max (1 +OPT(i,t—1)+OPT(t+1,j — 1)))
@ In the “inner” maximisation, t runs over all indices between / and j — 5 that
are allowed to pair with j.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

reduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Ali

Example of Dynamic Programming Algorithm

—6—6—6—6—6—6—6—6—6—6—=6
c ¢ AU G G A C A U G U

— — —
’—— -~\

~ ~
e—o—o—o—e—d& o—o—o—o—D

e
c ¢ AU G G A C A U G U

———————-_-
—
—

—_———
-

o—o—& 6 6—6—6—6—6—6—6—

c ¢ A U G G A C A U G U
”_———————_—————__~~~

02— 00— @ @O0

c ¢ A U G G A C A U G U

/’— -

~
o—&—e—6—6—6—6—o—o—o—

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.
@ How do we order them from “smallest” to “largest”?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.
@ How do we order them from “smallest” to “largest”?

@ Note that computing OPT(/,) involves sub-problems OPT(/, m) where
m—1<j—I.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.
@ How do we order them from “smallest” to “largest”?

@ Note that computing OPT(/,) involves sub-problems OPT(/, m) where
m—1<j—I.

Initialize OPT(i,j) =0 whenever i>j—4

For k=5, 6,..., n—1
For i=1,2 n—k
Set j=i+k
Compute OPT(i,j) using the recurrence in (6.13)
Endfor
Endfor

Return orPT(1, n)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.

@ How do we order them from “smallest” to “largest”?

@ Note that computing OPT(/,) involves sub-problems OPT(/, m) where
m—1<j—i.

Initialize OPT(i,j) =0 whenever i>j—4

For k=5, 6,..., n—1
For i=1,2 n—k
Set j=i+k
Compute OPT(i,j) using the recurrence in (6.13)
Endfor
Endfor

Return orPT(1, n)

@ Running time of the algorithm is O(n®).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Example of Algorithm

RNA sequence ACCGGUAGU

410(01]0 410(0(0]0 410(0]|0]0
3(0]0 3/0|0]1 3fojof1]1
210 21010 2(0(0]1
i=1 i=1]|1 i=1|1]|1
j=6 7 8 9 j=6 7 8 9 j=6 7 8 9
Initial values Filling in the values Filling in the values
fork =5 fork = 6
4(0(0|0]|0 4]0f(0]0f0
3/0(0(1(1 310(0(1(1
210101 (1 2101011
i=1[1]1]|1 i=1|11]1]2
j=6 7 8 9 j=6 7 8 9
Filling in the values Filling in the values
fork = 7 fork = 8

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Web Search for “dnammic progranning”

dnammic progranning Q

Web Images Videos News

All Regions ~ Safe Search: Off = Any Time ¥

Including results for dynamic programming.

Search only for "dnammic" "progranning"?

Dynamic programming - Wikipedia

Dynamic programming is both a mathematical optimization method and a
computer programming method. The method was developed by Richard
Bellman in the 1950s and has found applications in numerous fields, from
aerospace engineering to economics.

W https://enwikipedia.org/wiki/Dynamic_pr... More results

@ How do they know “Dynamic” and “Dymanic” are similar?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Similarity

@ Given two strings, measure how similar they are.

@ Given a database of strings and a query string, compute the string most
similar to query in the database.

@ Applications:

Online searches (Web, dictionary).
Spell-checkers.

Computational biology

Speech recognition.

Basis for Unix diff.

vyVvYyYVvYVvVYyYy

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Defining Sequence Similarity

@ ‘“ocurrance” (wrong) vs “occurrence” (right).

o—currance

occurrence

o—curr—ance

occurre-nce

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Sequence Alignment

Defining Sequence Similarity

@ ‘“ocurrance” (wrong) vs “occurrence” (right).

o—currance

occurrence

o—curr—ance

occurre-nce

abbbaa--bbbbaab
ababaaabbbbba-b

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Sequence Alignment

Defining Sequence Similarity

@ ‘“ocurrance” (wrong) vs “occurrence” (right).

o—currance

occurrence

o—curr—ance

occurre-nce

abbbaa--bbbbaab
ababaaabbbbba-b

o Edit distance model: how many changes must you to make to one string to
transform it into another?

@ Changes allowed are deleting a letter, adding a letter, changing a letter.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Edit Distance

@ Proposed by Needleman and Wunsch in the early 1970s.
@ Input: two strings x = x1XoX3...Xm and y = y1y5 ... yp.
@ Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Edit Distance

o-currance o-curr-ance
occurrence occurre-nce
Proposed by Needleman and Wunsch in the early 1970s.
Input: two strings x = x1Xx0X3...Xm and y = y1yo ... V.
Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
A matching of x and y is a set M of ordered pairs such that

@ in each pair (i,j),1<i<mand 1< <nand

@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.

Dynamic Programming

September 26, October 1, 3, 8, 2018

T. M. Murali

Edit Distance

o-currance o-curr-ance o-currance
occurrence occuUrre-nce occurrence
@ Proposed by Needleman and Wunsch in the early 1970s.
@ Input: two strings x = x1XoX3 ... Xm and y = y1yo ... yp.
o Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
@ A matching of x and y is a set M of ordered pairs such that

@ in each pair (i,j),1<i<mand 1< <nand
@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.
A matching M is an alignment if there are no “crossing pairs” in M: if
(i,j))e Mand (',j') € M and i < i’ then j <.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

(o]

0o C

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Structure Sequence Alignment Shortest Paths

Edit Distance

X

currnce o Curri pFance O-currance

Cur rk
Proposed by Needleman and Wunsch in the early 1970s.
Input: two strings x = x1X0X3...Xm and y = y1yo ... Yn.
Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
A matching of x and y is a set M of ordered pairs such that

© ineach pair (i,j),1<i<mand 1< <nand

@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.

A matching M is an alignment if there are no “crossing pairs” in M: if
(i,j) € M and (i',j/) € M and i < i’ then j <.

An index is not matched if it does not appear in the matching.

Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty 6 > 0 for every unmatched index.
Mismatch penalty Penalty a,, > 0if (i,j) € M and x; # ;.

Xz,

nce occurreiknce occurrenée

(o]

0o C

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Structure Sequence Alignment Shortest Paths

Edit Distance

X

currnce o Curri pFance O-currance

Cur rk
Proposed by Needleman and Wunsch in the early 1970s.
Input: two strings x = x1X0X3...Xm and y = y1yo ... Yn.
Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
A matching of x and y is a set M of ordered pairs such that

© ineach pair (i,j),1<i<mand 1< <nand

@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.

A matching M is an alignment if there are no “crossing pairs” in M: if
(i,j) € M and (i',j/) € M and i < i’ then j <.

An index is not matched if it does not appear in the matching.

Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty 6 > 0 for every unmatched index.

Mismatch penalty Penalty a,, > 0if (i,j) € M and x; # ;.

Output: compute an alignment of minimal cost.

Xz,

nce occurreiknce occurrenée

Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?
@ Consider index m € x and index n € y. What are the possibilities?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?
o Consider index m € x and index n € y. What are the possibilities?
> (m, n) could be paired in the matching M.
» Neither n nor m may be matched.
> Only m may not be matched.
» Only n may not be matched.

O-currance O-currance
occurrence occurrenece
O-currance O-currance
occurrence occurrence

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?
@ Consider index m € x and index n € y. What are the possibilities?

(m, n) could be paired in the matching M.

Neither n nor m may be matched.

Only m may not be matched.

Only n may not be matched.

(m, i) could be paired and (j, n) could be paired where i < n and j < m. Not
possible in an alignment!

v

vYyVvyey

O - Ccurirandoc e\
Ty Not matched
with each other

occurrence/

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?

@ Consider index m € x and index n € y. What are the possibilities?

(m, n) could be paired in the matching M.

Neither n nor m may be matched.

Only m may not be matched.

Only n may not be matched.

(m, i) could be paired and (j, n) could be paired where i < n and j < m. Not
possible in an alignment!

v

vYyVvyey

e Claim: (m,n) ¢ M = m € x not matched or n € y not matched.
O-currandtc e\

X Not matched
with each other

occurrence/

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
xe\ Not matched

T with each other
occurrendc e/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
KB\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = Ouxiy; + OPT(i —1,j—1).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=x1y2...Yj-
> (i,j) € M: OPT(i,j) = Quy; + OPT(i —1,j—1).
» i not matched:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = axy, + OPT(i — 1,j — 1).
» i not matched: OPT(i,j) = + OPT(i — 1,).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrendc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = Quy; + OPT(i —1,j—1).
» i not matched: OPT(i,j) = + OPT(i — 1,).
> j not matched: OPT(i,j) = + OPT(i,j —1).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
‘B\ Not matched

e with each other
occurrendc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = Quy; + OPT(i —1,j—1).
» i not matched: OPT(i,j) = + OPT(i — 1,).
> j not matched: OPT(i,j) = + OPT(i,j —1).

OPT(i,j) = min (axy, + OPT(i—1,j—1),6+ OPT(i —1,;),5+OPT(i,j — 1))

> (i,j) € M if and only if minimum is achieved by the first term.

@ What are the base cases?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

O-currandc
‘B\ Not matched

e with each other
occurrendc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=x1y2...Yj-

> (i,j) € M: OPT(i,j) = cvy, + OPT(i — 1,j — 1).

» i not matched: OPT(i,j) = + OPT(i — 1,).

> j not matched: OPT(i,j) = + OPT(i,j —1).

OPT(i,j) = min (axy, + OPT(i—1,j—1),6+ OPT(i —1,;),5+OPT(i,j — 1))

> (i,j) € M if and only if minimum is achieved by the first term.
@ What are the base cases? OPT(i,0) = OPT(0, /) = ié.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(i,j) = min (ax,yj +OPT(i—1,j—1),64+ OPT(i — 1,/),06 + OPT(i,j — 1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,j]=j§ for each j
For j=1,...,n
For i=1,...,m
Use the recurrence (6.16) to compute Ali,j]
Endfor
Endfor
Return A[m, n]

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Algorithm

OPT(i,j) = min (ax,.yj +OPT(i—1,j—1),64+ OPT(i — 1,/),06 + OPT(i,j — 1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,j]=j§ for each j
For j=1,....n
For i=1,...,m
Use the recurrence (6.16) to compute Ali,j]
Endfor
Endfor
Return A[m, n]

@ Running time is O(mn). Space used in O(mn).
@ (i,j) is in the optimal alignment if the first term is the smallest.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Running Time
OPT(i,j) = min (i, + OPT(i — 1,/ — 1),8 + OPT(i — 1,j),8 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Running Time
OPT(i,j) = min (a,, + OPT(i — 1,j — 1),6 + OPT(i — 1,j),0 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

Space-Efficient-Alignment(X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=i§ for each i (just as in column 0 of A)
For j=1,...,n
B[0,1]=j8 (since this corresponds to entry A[0,]
For i=1,...,m
Bli, 1]=miney,, + Bli - 1, 0],
§+B[i—1,1], §+ Bl[i,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update B[i, 0]=Bli, 1] for each i
Endfor

e Can compute OPT(m, n) in O(mn) time and O(m + n) space.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Improving the Running Time
OPT(i,j) = min (g, + OPT(i — 1,/ — 1),8 + OPT(i — 1,j),8 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

Space-Efficient-Alignment(X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=i§ for each i (just as in column 0 of A)
For j=1,...,n
B[0,1]=j8 (since this corresponds to entry A[0,]
For i=1,...,m
Bli, 1]=miney,, + Bli - 1, 0],
§+B[i—1,1], §+ Bl[i,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update Bli, 0]=B[i, 1] for each i
Endfor

e Can compute OPT(m, n) in O(mn) time and O(m + n) space.
@ Problem: How do we compute matched pairs in the optimal alignment?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Running Time
OPT(i,j) = min (g, + OPT(i — 1,/ — 1),8 + OPT(i — 1,j),8 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

Space-Efficient-Alignment (X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=i§ for each i (just as in column 0 of A)
For j=1,...,n
B[0,1]=j8 (since this corresponds to entry A[0,]
For i=1,...,m
Bli, 1]=miney,, + Bli - 1, 0],
§+B[i—1,1], §+ Bl[i,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update Bli, 0]=B[i, 1] for each i
Endfor

e Can compute OPT(m, n) in O(mn) time and O(m + n) space.
@ Problem: How do we compute matched pairs in the optimal alignment?
Requires new ideas: combine divide and conquer with dynamic programming!

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Y Y2 Ys Y4 Ys Yo Y7 Ys
o Grid graph G,:
» m+ 1 rows numbered from 0 to m (corresponding to x).
> n+ 1 rows numbered from 0 to n (corresponding to y).
> Rows labelled by symbols in x and columns labelled by symbols in y.

September 26, October 1, 3, 8, 2018

Y1 Y2 Y3 Y4+ Us Ye Y1 Y8
@ Grid graph G,:
» m+ 1 rows numbered from 0 to m (corresponding to x).
> n+ 1 rows numbered from 0 to n (corresponding to y).
> Rows labelled by symbols in x and columns labelled by symbols in y.
» Node (i,/) has three outgoing edges to (i,j + 1)), to (i + 1,), and to
(i+1,j+1).
» Edges directed upward or to the right have cost §.
> Edge directed from (i,j) to (i +1,j + 1) has cost v, ,y;.,-

September 26, October 1, 3, 8, 2018

cheduling Segmented Least Squares RNA Secondary Structure
Shortest Paths in G,,

oﬂoﬂoﬂoﬂoﬂoﬂoﬂoﬂo
.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ,ﬂ.ﬂ.ﬂ.
oﬂoﬂoﬂoﬂoﬂoﬂoﬂoﬂo
AR
S AT

Y1 Y2 Y3 Y4 Ys Ye Y7 Y8

Te
Ts5

T4
x3

T2
X1

@ For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,J).

al Scheduling Segmented Least Squares RNA Secondary Structure
Shortest Paths in G,,

Y1 Y2 Y3 Y4 Ys Ye Y7 Y8

o For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,).
e Claim: f(i,j) = OPT(i,j).

September 26, October 1, 3, 8, 2018

al Scheduling Segmented Least Squares RNA Secondary Structure
Shortest Paths in G,,

Yi Y2 Ys Y4 Us Ys Y7 Ys
@ For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,J).
e Claim: f(i,j) = OPT(i,).
@ Proof by induction on i + j: Use the fact that the last edge on the shortest
path to (i,j) must be either from (i —1,j — 1), (i — 1,j) or (i,j — 1).

September 26, October 1, 3, 8, 2018

Shortest Paths in G,,

46

(o)}

6 =2 n
a(cons,cons) = 1
a(vow,vow) = 1
a(cons,vow) =3

W—» U

O—» N—> R —» O —>

>2—>4—>6—8

— n a m e

@ For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,J).

e Claim: f(i,j) = OPT(i,).

@ Proof by induction on i + j: Use the fact that the last edge on the shortest
path to (i,j) must be either from (i —1,j — 1), (i — 1,j) or (i,j — 1).

@ Diagonal edges in the shortest path are the matched pairs in the alignment

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Y1 Y2 Ys Ya4 Ys Ys Y7 Y8

e Corner-to-corner path: path from (0,0) to (n, m).
@ Given i and j, what is the length /(/, /) of the shortest corner-to-corner path
through (/,)?

September 26, October 1, 3, 8, 2018

Y1 Y2 Y3 Y4 Ys Ye Y7 Y8

e Corner-to-corner path: path from (0,0) to (n, m).
@ Given i and j, what is the length /(/, /) of the shortest corner-to-corner path
through (/,)?
» One segment is the shortest path from (0,0) to (/,) with cost (i, J).

September 26, October 1, 3, 8, 2018

Segmented Leas es RNA Secondary Structure Sequence Alignment 1

Shortest Paths Through (i./) in G,

Y1 Y2 Ys Ya4 Ys Ys Y7 Y8

e Corner-to-corner path: path from (0,0) to (n, m).
@ Given i and j, what is the length /(/, /) of the shortest corner-to-corner path
through (/,)?
» One segment is the shortest path from (0,0) to (/,) with cost (i, J).
> The other segment is the shortest path from (i,) to (m, n) with some cost.
How can we compute the cost of this path?

September 26, October 1, 3, 8, 2018

R T
ey I IR
a0l e e 4,
U0 T fa T

Y1 Y2 Ys Y4 Ys Ys Y7 Y8

X1

o Define g(/, /) as cost of the shortest path from (7,) to (m, n).

Sequence Alignment

Shortest Paths Through (i./) in G,

L6 O~ OO~~~
-
5
Y 192954
T
i 70

Y Y2 Y3 Y4 Us Yo Y7 Y8
o Define g(/, /) as cost of the shortest path from (7,) to (m, n).

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming

Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Shortest Paths Through (i./) in G,

Y Y2 Y3 Ya Us Ye Y7 Y8
o Define g(/, /) as cost of the shortest path from (7,) to (m, n).

g(i,j) = min (ouyy,0, + OPT(i+1,j+1),6 + OPT(i + 1,/),6 + OPT(i,j + 1))

@ We can compute g(/i, ;) for every i and j in O(mn) time and O(m + n) space
using Backward-Space-Efficient-Alignment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Path Through (i,J) in Gy

yl Y2 Y3 y4 Ys y6 y7 ys
o Claim: I(i,j) = f(i.j) + g(i.J)-

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

____Interval Scheduling _ Weighted Interval Scheduling _Segmented Least Squares _RNA Secondary Structure _Sequence Alignment _ Shortest Paths _____
Shortest Path Through (i) in G,,

O Oas Op Op, O, O o 00 -
onls A AT AL

X AKX A AKX A%

VP VEevevev4
La(Y= = =)= }—>
K /X /X% /% A%

v

L6

o Claim: /(i,j) = f(i,j) + g(i,j).
@ Shortest corner-to-corner path through (/,;) must go from (0,0) to (/,;) and
then from (i,}) to (m, n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

____Interval Scheduling _ Weighted Interval Scheduling _Segmented Least Squares _RNA Secondary Structure _Sequence Alignment _ Shortest Paths _____
Shortest Path Through (1 J) in Gy,

o y2 y3 y4 Ys ye ZJ? 318
o Claim: I(i,j) = f(i,j) + g(i,))-
@ Shortest corner-to-corner path through (i,) must go from (0,0) to (/,/) and
then from (i,}) to (m, n).
o Therefore, I(i,j) > f(i,j) + g(i,)).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Path Through (i) in G,,

Y1 Y2 Y3 Ya Us Yo Y7 Y8

o Claim: I(i,j) = f(i,j) + g(i,J).

@ Shortest corner-to-corner path through (7, j) must go from (0,0) to (i,/) and
then from (7,j) to (m, n).

o Therefore, I(i,j) > f(i,j)+ g(i,J)).

@ Now consider the following corner-to-corner path: Shortest path from (0, 0)
to (i,/) followed by the shortest path from (i,/) to (m, n). What is its
length? .

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Path Through (i) in G,,

Y1 Y2 Y3 Ya Us Yo Y7 Y8

o Claim: I(i,j) = f(i,j) + g(i,J).

@ Shortest corner-to-corner path through (7, j) must go from (0,0) to (i,/) and
then from (7,j) to (m, n).

o Therefore, I(i,j) > f(i,j)+ g(i,J)).

@ Now consider the following corner-to-corner path: Shortest path from (0, 0)
to (i,/) followed by the shortest path from (i,/) to (m, n). What is its
length? f(i,j) + g(i,J).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Path Through (i) in G,,

o Claim: I(i,j) = f(i,j) + g(i,J).

@ Shortest corner-to-corner path through (7, j) must go from (0,0) to (i,/) and
then from (7,j) to (m, n).

o Therefore, I(i,j) > f(i,j)+ g(i,J)).

@ Now consider the following corner-to-corner path: Shortest path from (0, 0)
to (i,/) followed by the shortest path from (i,/) to (m, n). What is its
length? f(i,j) + g(i,J).

@ Therefore, I(i,j) < f(i,j)+ g(i,Jj).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Shortest Paths Through Column k in G,

xG A});A} P A/‘);A){kA:} :(:A\})‘" >/Q
oA VSV %1
AT Y
A ARTHAH
z3 ;/} o ;/} > a).,» / 4 , /})‘ J} e
LVl ls¥, Ytol
GOt el
1~~~ 05050
‘ ‘/,/ % 4 44

yl Y2 y3 y4 Ys y6 y7 ys

o Fix arbitrary k between 0 and n.
@ Does the shortest corner-to-corner path pass through a node in column k?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths Through Column k in G,
T5 (5
Ta(S
T3~
To()

T1()

Y1 Y2 Ys Ya Us Ye Y7 Y8
o Fix arbitrary k between 0 and n.
@ Does the shortest corner-to-corner path pass through a node in column k?
> Yes, it must pass through exactly one such node, say (qgx, k).
» How can we compute qgi given values of f(i, k) and g(i, k) for every i?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths Through Column k in G,
T5 (5
Ta(S
T3~
T2

Ha

Y1 Y2 Ys Ya Us Ye Y7 Y8
o Fix arbitrary k between 0 and n.
@ Does the shortest corner-to-corner path pass through a node in column k?
> Yes, it must pass through exactly one such node, say (qgx, k).
» How can we compute qgi given values of f(i, k) and g(i, k) for every i?

qx = arg min (£(i, k) +g(i, k)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

h Column k in G,

Shortest Paths Throug
> . } \ \ }—>

wﬁ —>{ >

o —>{ .,'.,7 o Y—>{ }—>{
Y Y2 Ys Ya Ys Ye Y7 Y8
qx = arg min (f(i, k) +g(i, k)

@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Shortest Paths Through Column k in G,

Te()
1) =
Y Y2 Ys Y4 Ys Ye Y7 Y8

qk = arg0r<‘nl_i<nm (F(i, k) + g(i, k))

@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.
» Let /* be the length of the shortest corner-to-corner path.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Shortest Paths Through Column k in G,

L6

Ts(
T4 (Y
T3 { Y-
Tol

x

Y Y2 Ys Ya Ys Ye Y7 Y8

qx = arg min (f(i, k) +g(i, k)
@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.

» Let /* be the length of the shortest corner-to-corner path.
» "< f(qu k) +g(qk7 k) Why?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths Through Column k in G,

L6

Ts5 O
T4 { '}
T3 {
T2

x

Y Y2 Ys Ya Ys Ye Y7 Y8

qk = arg0r<‘nl_i<nm (F(i, k) + g(i, k))

@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.
» Let /* be the length of the shortest corner-to-corner path.
> " < f(qk, k) + g(ak, k). Why?
> Shortest corner-to-corner path must use some node p in column k. Therefore,
1" = F(p, k) + &(p, k) = mino<i<m (F(i, k) + g(i. k)) = F(qu, k) + &(q. k).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Divide and Conquer Intuition

5
X
0

rL
N
X
0

\
J
>l >)

L5 F>((5 S>> ()
IT 94V L1 1/ %
4‘\ /’—H\ /’—>< /’—H\ J /’—>{\ /’—H\ /’—H J
I Y W%
3‘ ’—H /’—>{\ /’—H J /’—>{\ /’—H\ /’—H J
XX 0 VS V4
To(o ===
. Tﬁj\étﬁj\ Ve
-/ P ./ -/ vy ./) N N
-/ -/

Vi Y2 Ys Ua Ys Vs YT Us
e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

D|V|de and Conque Intuition

= X ’ X X X \
vi v2 Ys U4 Ys Us YUr Us
e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Divide and Conquer Intuition

Te

T5(-

I4v‘» -

LT3 ~ o

2(g

ZE]_A { =
el
Q
Q

Y1 Y2 Y3 Y4 Ys Yo Y7 Ys
e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.
» Compute g(i,n/2) for every i: use Backward-Space-Efficient-Alignment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Divide and Conquer Intuition

Y1 Y2 Ys Y4 Ys Yo Y7 Y8
e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.
» Compute g(i,n/2) for every i: use Backward-Space-Efficient-Alignment.
» Compute gn/>. All these steps take O(mn) time and O(m + n) space.
@ Store (gn/2,n/2) in a global list. There must be a shortest corner-to-corner
path through this node.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Sequence Alignment

Divide and Conquer Intuition

X6
/

T5(

Tyl

' r/r/r//o -
] iff/ffi?@ 1

ZEl Jﬁ
\

y1 Y2 Y3 Ya y5 y6 y7 ys

Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.

» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.

» Compute g(i,n/2) for every i: use Backward-Space-Efficient-Alignment.

» Compute gn/>. All these steps take O(mn) time and O(m + n) space.
Store (qgn/2,n/2) in a global list. There must be a shortest corner-to-corner
path through this node.
Recursively compute the nodes in the shortest path from (0,0) to (g,/2, n).
Recursively compute the nodes in the shortest path from (0,0) to (g,/2, n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+41:n]
Let g be the index minimizing f(q, n/2) +g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q], Y[1:1t/2])
Divide-and-Conquer-Alignment (X[g+1:n],Y[n/2+41:n])
Return P

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q,n/2) +g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ Let T(m,n) be the worst-case running time of this algorithm on strings on
input m and n, respectively.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ Let T(m,n) be the worst-case running time of this algorithm on strings on
input m and n, respectively.

T(m,n) < T(q,n/2)+ T(m—q,n/2)+ cmn
T(m,2) <

cm
T(2,n)<cn

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ Let T(m,n) be the worst-case running time of this algorithm on strings on
input m and n, respectively.
@ Challenges: Function of both m and n and g depends on the input.

T(m,n) < T(q,n/2)+ T(m—q,n/2)+ cmn
T(m,2) <cm
T(2,n) <ecn

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).

@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis:

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis: For every m" < m,n’ <n, T(m',n") < km'n’.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis: For every m" < m,n’ <n, T(m',n") < km'n’.
> Inductive step: Need to prove T(m,n) < kmn.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis: For every m" < m,n’ <n, T(m',n") < km'n’.
> Inductive step: Need to prove T(m,n) < kmn.

T(m,n) < T(q,n/2)+ T(m— q,n/2)+ cmn, from the recurrence
< kqn/2 + k(m — q)n/2 4+ cmn, from the inductive hypothesis
< (k/2+ c)mn
< kmn, if k > 2c.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Analysing the Space Used by the Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ At most one call to Space-Efficient-Alignment or
Backward-Space-Efficient-Alignment executing at any time.

@ Input to any invocation of these procedures has size at most m + n.
@ Size of P is at most n.

@ Therefore, total space used is O(m + n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Motivation

o Computational finance:
» Each node is a financial agent.
» The cost ¢, of an edge (u, v) is the cost of a transaction in which we buy
from agent u and sell to agent v.
> Negative cost corresponds to a profit.

@ Internet routing protocols

> Dijkstra’s algorithm needs knowledge of the entire network.
Routers only know which other routers they are connected to.
Algorithm for shortest paths with negative edges is decentralised.
We will not study this algorithm in the class. See Chapter 6.9.

vvyy

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Problem Statement

@ Input: a directed graph G = (V/, E) with a cost function c: E = R, i.e, ¢,
is the cost of the edge (u,v) € E.
@ A negative cycle is a directed cycle whose edges have a total cost that is
negative.
@ Two related problems:
@ If G has no negative cycles, find the shortest s-t path: a path of from source s

to destination t with minimum total cost.
@ Does G have a negative cycle?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Problem Statement

@ Input: a directed graph G = (V/, E) with a cost function c: E = R, i.e, ¢,
is the cost of the edge (u,v) € E.
@ A negative cycle is a directed cycle whose edges have a total cost that is
negative.
@ Two related problems:
@ If G has no negative cycles, find the shortest s-t path: a path of from source s

to destination t with minimum total cost.
@ Does G have a negative cycle?

Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going
around the cycle C many times).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Approaches for Shortest Path Algorithm

@ Dijsktra’s algorithm.

@ Add some large constant to each
edge.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths

Approaches for Shortest Path Algorithm

@ Dijsktra’s algorithm. Computes
incorrect answers because it is
greedy.

@ Add some large constant to each
edge. Computes incorrect answers
because the minimum cost path
changes.

Figure 6.21 (a) With negative
edge costs, Dijkstra’s Algo-
rithm can give the wrong
answer for the Shortest-Path
Problem. (b) Adding 3 to the
cost of each edge will make
all edges nonnegative, but it
will change the identity of the
shortest s-t path.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach
@ Assume G has no negative cycles.

@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach
@ Assume G has no negative cycles.

@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

@ Assume G has no negative cycles.
@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

@ How do we define sub-problems?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Approach

@ Assume G has no negative cycles.
@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

@ How do we define sub-problems?
> Shortest s-t path has < n—1
edges: how we can reach t using i
edges, for different values of i?
» We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Dynamic Programming Approach

@ Assume G has no negative cycles.
@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

@ How do we define sub-problems?
> Shortest s-t path has < n—1
edges: how we can reach t using i
edges, for different values of i?
» We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V?

@ Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Recursion

@ OPT(i,v): minimum cost of a v-t path that uses at most /i edges.
@ t is not explicitly mentioned in the sub-problems.
o Goal is to compute OPT(n —1,s).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Recursion

@ OPT(i,v): minimum cost of a v-t path that uses at most /i edges.
@ t is not explicitly mentioned in the sub-problems.
o Goal is to compute OPT(n —1,s).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

@ Let P be the optimal path whose cost is OPT(i, v).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Recursion

OPT(i,v): minimum cost of a v-t path that uses at most / edges.

t is not explicitly mentioned in the sub-problems.
Goal is to compute OPT(n — 1,s).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

Let P be the optimal path whose cost is OPT(/, v).
@ If P actually uses i — 1 edges, then OPT(/,v) = OPT(i — 1, v).
@ If first node on P is w, then OPT(i,v) = cw + OPT(i — 1, w).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Dynamic Programming Recursion

OPT(i,v): minimum cost of a v-t path that uses at most / edges.

t is not explicitly mentioned in the sub-problems.
Goal is to compute OPT(n — 1,s).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

Let P be the optimal path whose cost is OPT(/, v).
@ If P actually uses i — 1 edges, then OPT(/,v) = OPT(i — 1, v).
@ If first node on P is w, then OPT(i,v) = cw + OPT(i — 1, w).

OPT(i,v) = min (OPT(i —1,v), min (cay + OPT(i — 1, w))>
we

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Example of Dynamic Programming Recursion
OPT(/, v) = min (OPT(i —1,v), mir\} (cw + OPT(i — 1, W)))
we

0O 1 2 3 45

D Q 6 T o9 ~

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

ience Alignment Shortest Paths

Example of Dynamic Programming Recursion
OPT(/, v) = min (OPT(i —1,v), mir\} (cw + OPT(i — 1, W)))
we

012 345

D Q O T o ~

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

ience Alignmer

nt Shortest Paths

reduling Weighted Interval Scheduling Segmented Least Squares

Example of Dynamic Programming Recursion
(OPT(i —1,v), vrpel?/ (cw + OPT(i — 1, W)))

1 2 3

OPT(/, v) = min

D Q O T o ~

81 8]8(8

0

0

0

0

4 5
0O

80O

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Weighted Interval Scheduling S

Segmented Least Squares

OPT(/, v) = min

Example of Dynamic Programming Recursion
(i—1,v), VTE"\]/ (cw + OPT(i — 1, W)))

1 2 3

0

D Q 6 T o9 ~

81 8[8|8| 8|

September 26, October 1, 3, 8, 2018

uence Alignment Shortest Paths

Dynamic Programming

reduling Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))

uence Alignment Shortest Paths

0O 1 2 3

0

D Q 6 T o9 ~

888|838

NS wl g

September 26, October 1, 3, 8, 2018

Dynamic Programming

reduling Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))

uence Alignment Shortest Paths

0O 1 2 3

0

D Q 6 T o9 ~

888|838

NS wl g

September 26, October 1, 3, 8, 2018

Dynamic Programming

reduling Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))

0O 1 2 3

0

0

0

0

-3

-3

D Q 6 T o9 ~

888|838

NS wl g

o|lw|lWwW|o

September 26, October 1, 3, 8, 2018

Dynamic Programming

reduling Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))

0O 1 2 3

0

0

0

0

-3

-3

D Q 6 T o9 ~

888|838

NS wl g

o|lw|lWwW|o

September 26, October 1, 3, 8, 2018

Dynamic Programming

reduling Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))

01 2 3 4

0

0

0

0

0

-3

-3

4

-2

3

3

D Q 6 T o9 ~

888|838

NS wl g

o|lw|lWwW|o

September 26, October 1, 3, 8, 2018

Dynamic Programming

reduling Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))

01 2 3 4

0

0

0

0

0

-3

-3

4

-2

3

3

D Q 6 T o9 ~

888|838

NS wl g

o|lw|lWwW|o

September 26, October 1, 3, 8, 2018

Dynamic Programming

Weighted Interval Scheduling Segmented Least Squares

OPT(/, v) = min

Secondary Structure

Sequence

Alignment ~ Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), VTE"\]/ (cw + OPT(i — 1, W)))

01 2 3 4

0

0

0

0

0

-3

-3

4

-6

-2

-2

3

3

D Q 6 T o9 ~

8|1 88|88

NS wl g

o|lw|lWwW|o

OIN|W

September 26, October 1, 3, 8, 2018

Dynamic Programming

condary Structure

Sequence

Alignment ~ Shortest Paths

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA Se

Example of Dynamic Programming Recursion
(OPT(i —1,v), VTE"\]/ (cw + OPT(i — 1, W)))

OPT(/, v) = min

D Q O T o ~

01 2 3 4

0

0

0

0

5
0/0

©|-3]-31-4|-6
| ofQ]|-2]-2
©|313]|3]|3
ol 413]3]|2
©| 2|10]|0]|0

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

Secondary Structure Sequence Alignment Shortest Paths

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA

Example of Dynamic Programming Recursion
(OPT(i —1,v), VTE"\]/ (cw + OPT(i — 1, W)))

OPT(/, v) = min

D Q O T o ~

0O 1 2 3 45

0|0 0f0]0!O0
©|-3(-3(-4]|-6|-6
|| Q|-2]-2-2
| 33333
©| 413131210
©|2|0[(0|0 |0

T. M. Murali

September 26, October 1, 3, 8, 2018

Dynamic Programming

RNA Secondary Structure Sequence Alignment Shortest Paths

Weighted Interval Scheduling Segmented Least Squares

Example of Dynamic Programming Recursion
(i—1,v), VTE”\]/ (cw + OPT(i — 1, W)))

OPT(/, v) = min

0O 1 2 3 45

0(0] 0]|0f(0O]|O

-3|-3]-4]-6]6

-2(-21|-2

3

D Q 6 T o9 ~

8|1 88|88

NS wl g
o|lw|w|o

313
31210
010

September 26, October 1, 3, 8, 2018

Dynamic Programming

Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
r‘@? OPT_(i, s).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to

compute

n—1
r‘ry{\ OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
r‘ry{\ OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
> If first node on P is w, then OPT_(i, v) = cw + OPT_(i - 1, w).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
r‘ry{\ OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
> If first node on P is w, then OPT_(i, v) = cw + OPT_(i - 1, w).

OPT_(i, v) = min (cw +OPT_(i - 1, w))

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
ny{] OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
> If first node on P is w, then OPT_(i, v) = cw + OPT_(i - 1, w).

OPT_(i, v) = min (cow +OPT_(i - 1, w))

@ Compare the two desired solutions:

n—1 n—1
min OPT_(i, s) = min (.,Te”\]/ (Cow +OPT_(i - 1, w)))

OPT(n—1,s) = min <OPT(n —2,s), mir\l/ (Cow +OPT(n -2, W)))
we

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Bellman-Ford Algorithm

OPT(/, v) = min (OPT(i —1,v), mir\1/ (cw + OPT(i — 1, W)))
we

Shortest-Path(G, s, t)
n= number of nodes in G
Array M[0...n—1,V]
Define M[0,t]=0 and M[0,v]=o00 for all other veV
For i=1,...,n—1
For veV in any order
Compute M([i,v] using the recurrence (6.23)
Endfor
Endfor
Return M[n —1,s]

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Bellman-Ford Algorithm

OPT(/, v) = min (OPT(i —1,v), mir\1/ (cw + OPT(i — 1, W)))
we

Shortest-Path(G, s, t)
n= number of nodes in G
Array M[0...n—1,V]
Define M[0,t]=0 and M[0,v]=o00 for all other veV
For i=1,...,n—1
For veV in any order
Compute M([i,v] using the recurrence (6.23)
Endfor
Endfor
Return M([n —1,s]

@ Space used is O(n?). Running time is O(n®).
o If shortest path uses k edges, we can recover it in O(kn) time by tracing back
through smaller sub-problems.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

Mi, v] = min (M[i —1,v], min (cw + M[i — 1, w])>

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

M([i, v] = min (M[i —1,v], min (cow + M[i — 1, w]))

@ w only needs to range over outgoing neighbours N, of v.

e If n, = |N,| is the number of outgoing neighbours of v, then in each round,
we spend time equal to
> =

vev

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

M([i, v] = min (M[i —1,v], min (cow + M[i — 1, w]))

@ w only needs to range over outgoing neighbours N, of v.
e If n, = |N,| is the number of outgoing neighbours of v, then in each round,
we spend time equal to
S =m

vev

@ The total running time is O(mn).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Memory Requirements

M([i, v] = min (M[i —1,v], min (Cu + MIi — 1, Wl))

@ The algorithm uses O(n?) space to store the array M.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Memory Requirements

MIi,v] = min <M[i —1,v], min (cw + M[i — 1, W]))

@ The algorithm uses O(n?) space to store the array M.
@ Observe that M[i, v] depends only on M[i — 1, %] and no other indices.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Memory Requirements

MIi,v] = min (M[i —1,v], min (cw + M[i — 1, W]))

@ The algorithm uses O(n?) space to store the array M.
@ Observe that M[i, v] depends only on M[i — 1, %] and no other indices.

o Modified algorithm:

© Maintain two arrays M and M’ indexed over V.
@ At the beginning of each iteration, copy M into M’.
© To update M, use

M[v] = min <M'[v], min (e + M'[W])>

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Improving the Memory Requirements

MIi,v] = min (M[i —1,v], min (cw + M[i — 1, W]))

The algorithm uses O(n?) space to store the array M.

Observe that M[i, v] depends only on M[i — 1, %] and no other indices.
Modified algorithm:

© Maintain two arrays M and M’ indexed over V.
@ At the beginning of each iteration, copy M into M’.
© To update M, use

M[v] = min (M'[v], min (e + M'[W])>

o Claim: at the beginning of iteration i, M stores values of OPT(i — 1, v) for
all nodes v € V.

@ Space used is O(n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

@ How can we recover the shortest path that has cost M[v]?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

@ How can we recover the shortest path that has cost M[v]?

@ For each node v, compute and update f(v), the first node after v in the
current shortest path from v to t.

e Updating f(v):

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

@ How can we recover the shortest path that has cost M[v]?

@ For each node v, compute and update f(v), the first node after v in the
current shortest path from v to t.

e Updating f(v): If x is the node that attains the minimum in
minWENV (va + MI[W]).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

How can we recover the shortest path that has cost M[v]?

For each node v, compute and update f(v), the first node after v in the
current shortest path from v to t.

Updating f(v): If x is the node that attains the minimum in
minwen, (va + M’[W]), set

» M[v] = c» + M’[x] and

» f(v)=x.
At the end, follow f(v) pointers from s to t.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

reduling Weighted Interval Scheduling Segmented Least Squares

Example of Maintaining Pointers

M[v] = min (M’[v], min (cow + M’[W]))

D Q O T 9 ~

September 26, October 1, 3, 8, 2018

0

1

ience Alignment Shortest Paths

2
0

o w

o+

80O

81 8]8(8

reduling Weighted Interval Scheduling Segmented Least Squares

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))

2
0/0]0

D Q O T o ~+
818|888

September 26, October 1, 3, 8, 2018

Dynamic Programming

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))

01 2 3 45
t|0(0O| 0/0(O]|O
ale«|-31-3
bl w|® 0
Clo| 313
dle|4|3
e|lxl 2|0

September 26, October 1, 3, 8, 2018

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence A

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))

D Q O T o ~+
818|888

September 26, October 1, 3, 8, 2018

Dynamic Programming

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structur

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))

D Q O T o ~+
818|888

September 26, October 1, 3, 8, 2018

Dynamic Programming

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))

D Q O T 9 ~

818|8|8

September 26, October 1, 3, 8, 2018

0 1

ignment Shortest Paths

oIN

8
w

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure ~ Sequence Alignm

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))

ent Shortest Paths

D Q O T o ~+
818|888

September 26, October 1, 3, 8, 2018

Dynamic Programming

Secondary Structure equence Alignment Shortest Paths

Computmg the Shortest Path: Correctness

o Pointer graph P(V, F): each edge in F is (v, f(v)).
» Can P have cycles?
> Is there a path from s to t in P?
» Can there be multiple paths s to t in P?
» Which of these is the shortest path?

012 345
t{oj0O[0|0O|OfO
al®|-3|-3|-4(-6|-6
blow|»l0Q]-2]-2]2
cle[3[3]3]3]3
dl{«[4[3]3]2]0
el 2|/0]|0]|0|O

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths

Computing the Shortest Path: Cycles in P

@@
M{[v] = min <M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths

Computing the Shortest Path: Cycles in P

@@
M{[v] = min <M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.
» Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].
> Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths

Computing the Shortest Path: Cycles in P

@@
M{[v] = min (M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.
» Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].
> Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.
> Let vi, va,... vk be the nodes in C and assume that (vk, v1) is the last edge to
have been added.
» What is the situation just before this addition?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

eighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Computmg the Shortest Path: Cycles in P

@@
M{[v] = min (M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.

» Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].

> Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

> Let vi, va,... vk be the nodes in C and assume that (vk, v1) is the last edge to
have been added.

» What is the situation just before this addition?

» M[vi] — M[vi11] > ¢y, forall 1 <i <k —1.

> Mlvi] = M[w1] > cyv-

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Scheduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Computing the Shortest Path: Cycles in P

N,
\,

M[v] = min (M'[v], minuen, (e + M'[wl)) ()

@ Claim: If P has a cycle C, then C has negative cost.

>

>

vy vy VvVYYy

Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].

Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

Let vi, v, ... vk be the nodes in C and assume that (v, v1) is the last edge to
have been added.

What is the situation just before this addition?

M[vi] — M[viz1] > ¢,y forall 1 < i< k—1.

M[vi] — M[w1] > ¢y, -

Adding all these inequalities, 0 > Zf:ll Cvjviy1 + Cyy = cost of C.

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Interval Sch

Mlv] =

eduling Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Computing the Shortest Path: Cycles in P

OG0
min(M’[v],minWeNv(cvw—l—l\/l’[w])) @ @

@ Claim: If P has a cycle C, then C has negative cost.

>

>

vy vy VvVYYy

Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].

Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

Let vi, v, ... vk be the nodes in C and assume that (v, v1) is the last edge to
have been added.

What is the situation just before this addition?

M[vi] — M[viz1] > ¢,y forall 1 < i< k—1.

M[vi] — M[w1] > ¢y, -

Adding all these inequalities, 0 > Zf:ll Cvjviy1 + Cyy = cost of C.

@ Corollary: if G has no negative cycles that P does not either.

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Paths in P

@ Let P be the pointer graph upon termination of the algorithm.

o Consider the path P, in P obtained by following the pointers from v to
f(v) = v, to f(v1) = vy, and so on.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Paths in P

@ Let P be the pointer graph upon termination of the algorithm.
o Consider the path P, in P obtained by following the pointers from v to
f(v) = v, to f(v1) = vy, and so on.

o Claim: P, terminates at t.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Computing the Shortest Path: Paths in P

Let P be the pointer graph upon termination of the algorithm.

Consider the path P, in P obtained by following the pointers from v to
f(v) = v, to f(v1) = vy, and so on.

Claim: P, terminates at t.

Claim: P, is the shortest path in G from v to t.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Bellman-Ford Algorithm: One Array

M[v] = min (M[v], min (e + M[Wl))

@ We can prove algorithm's correctness in this case as well.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

Shortest Paths

Bellman-Ford Algorithm: Early Termination

MIv] = min <M[v], min (cow + M[W]))

@ In general, after i iterations, the path whose length is M[v] may have many
more than i edges.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

eighted Interval Scheduling Segmented Least Squares RNA Seconda Sequence Alignment Shortest Paths

Bellman-Ford Algorithm: Early Termination

M[v] = min <M[v], Mr,glﬁ (cw + M[W]))

@ In general, after i iterations, the path whose length is M[v] may have many
more than i edges.

o Early termination: If M does not change after processing all the nodes, we
have computed all the shortest paths to t.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming

	Interval Scheduling
	Weighted Interval Scheduling
	Segmented Least Squares
	RNA Secondary Structure
	Sequence Alignment
	Shortest Paths

