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@ Goal: design efficient (polynomial-time) algorithms.
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@ Goal: design efficient (polynomial-time) algorithms.

Q Greedy
» Pro: natural approach to algorithm design.
» Con: many greedy approaches to a problem. Only some may work.
» Con: many problems for which no greedy approach is known.
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@ Goal: design efficient (polynomial-time) algorithms.
Q Greedy

» Pro: natural approach to algorithm design.
» Con: many greedy approaches to a problem. Only some may work.
» Con: many problems for which no greedy approach is known.

© Divide and conquer
» Pro: simple to develop algorithm skeleton.

» Con: conquer step can be very hard to implement efficiently.
» Con: usually reduces time for a problem known to be solvable in polynomial

time.
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Algorithm Design Techniques

@ Goal: design efficient (polynomial-time) algorithms.
Q Greedy

» Pro: natural approach to algorithm design.
» Con: many greedy approaches to a problem. Only some may work.
» Con: many problems for which no greedy approach is known.

© Divide and conquer

» Pro: simple to develop algorithm skeleton.

» Con: conquer step can be very hard to implement efficiently.

» Con: usually reduces time for a problem known to be solvable in polynomial
time.

@ Dynamic programming

» More powerful than greedy and divide-and-conquer strategies.

» Implicitly explore space of all possible solutions.

» Solve multiple sub-problems and build up correct solutions to larger and larger
sub-problems.

» Careful analysis needed to ensure number of sub-problems solved is polynomial
in the size of the input.
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@ Bellman pioneered the systematic study of dynamic programming in the
1950s.
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History of Dynamic Programming

@ Bellman pioneered the systematic study of dynamic programming in the
1950s.

@ The Secretary of Defense at that time was hostile to mathematical research.

@ Bellman sought an impressive name to avoid confrontation.

> “it's impossible to use dynamic in a pejorative sense”
> ‘“something not even a Congressman could object to” (Bellman, R. E., Eye of
the Hurricane, An Autobiography).
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Applications of Dynamic Programming

Computational biology: Smith-Waterman algorithm for sequence alignment.

Operations research: Bellman-Ford algorithm for shortest path routing in
networks.

Control theory: Viterbi algorithm for hidden Markov models.

Computer science (theory, graphics, Al, ...): Unix diff command for
comparing two files.
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Interval Scheduling

Interval Scheduling

INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s(/), f(i)),1 < i < n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

@ Two jobs are compatible if they do not overlap.

@ This problem models the situation where you have a resource, a set of fixed
jobs, and you want to schedule as many jobs as possible.

@ For any input set of jobs, algorithm must provably compute the largest set of
compatible jobs.
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Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

o Key question: in what order should we process the jobs?
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Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

o Key question: in what order should we process the jobs?

Earliest start time Increasing order of start time s(/).

Earliest finish time Increasing order of finish time f(/).

Shortest interval Increasing order of length f (i) — s(i).

Fewest conflicts Increasing order of the number of conflicting jobs. How fast
can you compute the number of conflicting jobs for each job?
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Interval Scheduling

Greedy ldeas that Do Not Work

— — — —

(@)
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Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.
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Interval Scheduling

Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty

While R is not yet empty
Choose a request ieR that has the smallest finishing time

Add request i to A
Delete all requests from R that are not compatible with request i

EndWhile
Return the set A as the set of accepted requests

Dynamic Programming
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Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

@ Claim: A is a compatible set of jobs.
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Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

@ Claim: A is a compatible set of jobs. Proof follows by construction, i.e., the
algorithm computes a compatible set of jobs.
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Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
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Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
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Interval Scheduling

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?

> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
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Ideas for Analysmg the EFT Algorlthm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?

> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.

@ Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

» What does “better” mean?
» How do we measure progress of the algorithm?
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Ideas for Analysmg the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?
> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
@ Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?
» What does “better” mean?
» How do we measure progress of the algorithm?
@ Basic idea of proof:
» We can sort jobs in any solution in increasing order of their finishing time.

» Finishing time of job number r selected by A < finishing time of job number r
selected by any other algorithm.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].
Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.
Claim: For all indices r < k, f(i,) < f(ji)-
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

" i ?

Jr1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

" i ?

Jr1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

o Claim: m = k.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, i, ..., ix be the set of jobs in A in order.

Let j1,J2,---,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

" i ?

Jr1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

o Claim: m = k.

@ Claim: The greedy algorithm returns an optimal set A.
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Implementing the EFT Algorithm

@ Reorder jobs so that they are in increasing order of finish time.
@ Store starting time of jobs in an array S.
Q k=1
@ While k < |S],
@ Output job k.
@ Let finish time of job k be f.
@ lterate over S from index k onwards to find the first index i such that S[i] > f.
Q k=i
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Implementing the EFT Algorithm

@ Reorder jobs so that they are in increasing order of finish time.
@ Store starting time of jobs in an array S.
Q k=1
@ While k < |S],
@ Output job k.
@ Let finish time of job k be f.

@ lterate over S from index k onwards to find the first index i such that S[i] > f.
Q k=i

@ Must be careful to iterate over S such that we never scan same index more
than once.

@ Running time is O(nlog n), dominated by sorting.
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Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s;,f;),1 < i < n} of start and finish times
of n jobs and a weight v; > 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that } ;s v; is
maximised.
Index
1 . Value = 1
Value = 3
2 f i
Value = 1
3 : i
>

Figure 6.1 A simple instance of weighted interval scheduling.
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Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s;,f;),1 < i < n} of start and finish times
of n jobs and a weight v; > 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that } ;s v; is
maximised.
Index
1 . Value = 1
Value = 3
2 f i
Value = 1
3 : i
>

Figure 6.1 A simple instance of weighted interval scheduling.

@ Greedy algorithm can produce arbitrarily bad results for this problem.
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Detour: a Binomial ldentity

@ Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Detour: a Binomial ldentity

@ Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

(-0
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Detour: a Binomial ldentity

@ Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

(-0

@ Proof: either we include the nth element in a subset or not ...
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Weighted Interval Scheduling

Approach
@ Sort jobs in increasing order of finish time and relabel: ff < < ... <f,.
@ Job i comes before job j if i < j.
@ p(j) is the largest index i < j such that job i is compatible with job j.
p(j) = 0 if there is no such job i.
@ All jobs that come before job p(j) are also compatible with job ;.
Index

1 |—U1=2| p() =0

2 ol p@ =0

3 l—v3=4| pB3) =1

4 | o7, p@) = 0

5 T2, p() = 3

6 }U—6:1| p(6) =3

@ We will develop optimal algorithm from obvious statements about the
problem.
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Sub-problems

Index
v =2
1] — p(1) =0
v, =4
2 k | p2) =0
v; =4
3 B pB3) =1
vy =7
4 k { p4) =0
vsg =2
5 | E— p(s) =3
v =1
6 — p6) =3

@ Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O.

Case 2: job nisin O.
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Sub-problems

Index
" T
2 ' v =4
3 R Bl
4 I Uy = 7:
5 = 2
6 solggg?farlym_J NOth}u%Fi)othal_H v = 1 H

these jobs

p(1) =
p@2) =0
p@B3) =
p@4) =0
p(S) =

p(6) =

o Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs

{1,2,...,n—1}.
Case 2: job nisin O.

T. M. Murali
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Weighted Interval Scheduling

Sub-problems

Index Rest of optimal
T solution from
1 h_ these jobs ;1) = ¢
v, =4
2 k | p2) =0
v =4
3  — pB3) =1
vy =7 ‘
4 I | p@) =0
vs = 2
5 — p(5) =3
Cannot be in J In optimal ve =1
6 optimal solution solution | p(6) =3
 E———

o Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs
{1,2,...,n—1}.
Case 2: job nisin O.
* O cannot use incompatible jobs {p(n) +1,p(n) +2,...,n—1}.
* Remaining jobs in O must be the optimal solution for jobs {1,2,..., p(n)}.
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Sub-problems

Index Index Rest of optimal
) ) solution from

11— 1) =0 1 1 these jobs 1y - o

v, =4 v, =4
2 | E—— pR)=0 2 | —— p2) =0
v; =4 v; =4
3 —_ pB3) =1 3 ] pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
vs =2 vs =2
Gptimal e =3 s =] pe) -3
ptima Not in optimal ve = 1 Cannot be in J In optimal ve = 1
6 Solutlon_from'} Solution o 1 —2 =L ) -3 6 optimal solution solution ———— p© =3

these jobs

@ Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs
{1,2,.. n—= 1}
Case 2: job nisin O.
* (O cannot use incompatible jobs {p(n) +1,p(n) +2,...,n—1}.
* Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.

@ O must be the best of these two choices!
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Sub-problems

Index Index Rest of optimal
) ) solution from

11— 1) =0 1 1 these jobs 1y - o

v, =4 v, =4
2 | E—— pR)=0 2 | —— pR)=0
v; =4 v; =4
3 —_ pB3) =1 3 ] pB) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
vs =2 vs =2
Gptimal e =3 s =] pe) -3
ptima Not in optimal ve = 1 Cannot be in__J In optimal ve = 1
6 Solutlon_from—J Solution o 1 —2 =L ) -3 6 optimal solution solution ———— p© =3

these jobs

@ Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.
Case 1: job nis not in O. O must be the optimal solution for jobs
{1,2,...,n—1}.
Case 2: job nisin O.
* (O cannot use incompatible jobs {p(n) +1,p(n) +2,...,n—1}.
* Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.
@ O must be the best of these two choices!

@ Suggests finding optimal solution for sub-problems consisting of jobs
{1,2,...,j —1,j}, for all values of ;.
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Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
— =3 solution from
11— p(1) =0 1 1 these jobs p(1) = 0
v, =4 v, = 4
2 —_— 27, pR2) =0 2 _ p@) =0
vy =4 vy =4
3 —_— pB3) =1 3 | — pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
Vs =2 vs =2
S | —] p(s) =3 5 | — p(s) =3
Optimal Not in optimal Ve = 1 Cannot be in__J In optimal ve = 1
6 sc;lhuetus%nigﬁ:sm—J Solution —-l»%l pe) =3 6 optimal solution solution '—"‘I pe) =3

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
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Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
— =3 solution from
11— p(1) =0 1 1 these jobs p(1) = 0
v, =4 v, = 4
2 —_— 27, pR2) =0 2 _ p@) =0
vy =4 vy =4
3 —_— pB3) =1 3 | — pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
Vs =2 vs =2
S | —] p(s) =3 5 | — p(s) =3
Optimal Not in optimal Ve = 1 Cannot be in__J In optimal ve = 1
6 S(;Ihuetls%niglgst Solution —'ln—éal pe) =3 6 optimal solution solution '—"‘I pe) =3

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
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Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T ) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [ E—— pB3) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 vs =2
— pG) =3 5 — p(s) =3
Optimal Not i : e n J -
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"m‘J solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1l j ¢ O;:
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Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T ) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [ E—— pB3) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
— pG) =3 5 — p(s) =3
Optimal Noti , — in_ J :
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"mJ solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
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Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T ) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [ E—— pB3) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
— pG) =3 5 — p(s) =3
Optimal Noti , — in_ J :
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"mJ solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;:
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Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T ) solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [ E—— pB3) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
— pG) =3 5 — p(s) =3
Optimal Noti , — in_ J :
1 ot in optimal ___, ve = 1 Cannot be in In optimal ve = 1

6 solution fr"mJ solut?on ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
T T solution from
1 _ p(1) =0 1 1 these jobs 4y = o
v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 [ E—— pB3) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
5 Sora — pG) =3 5 — p(s) =3
ptima J Not in optimal __, ve = 1 Cannot be in J In optimal v = 1
6 solution from solutllaon ——i| pe) =3 6 optimal solution solﬂtion '—6‘1 p(6) = 3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))
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Weighted Interval Scheduling

Recursion

Index Index Rest of optimal

T T solution from
1 _ p(1) =0 1 1 these jobs 4y = o

v, =4 v, = 4
2 —_— p@2) =0 2 _ p2) =0
vy =4 vy =4
3 [ E—— pB) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@) =0 4 p@) =0
Vs =2 Vs =2
T ps) =3 5 —1 ps) =3
Optimal Not i : [ - N
1 ot in optimal ve = 1 Cannot be in__J In optimal ve = 1

6 solution frumJ solution - 1 —2 "1 pe) -3 6 optimal solution solution '—6‘1 pe) =3

these jobs

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

@ When does job j belong to O;7
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Weighted Interval Scheduling

Recursion
Index Index Rest of optimal
T T solution from
1 _ p(1) =0 1 1 these jobs 4y = o
v, =4 v, = 4
2 _ 2 pR2) =0 2 —_ pR) =0
vy =4 vy =4
3 —_ pB3) =1 3 [ — pB3) =1
vy =7 vy =7
4 p@4) =0 4 p@4) =0
Vs =2 Vs =2
5 Sr— | —] p@s) =3 5 | — p6) =3
ptima Not in optimal ve = 1 Cannot be in J In optimal v = 1
6 Szwetlsoeni;[fsm solution 0 —2"1|  pe) - 3 6 optimal solution solution — ] pe =3

@ Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be the value
of this solution (OPT(0) = 0).
@ We are seeking O, with a value of OPT(n).
@ To compute OPT(j):
Case 1 j & O;: OPT(j) = OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

@ When does job j belong to O;? If and only if v; + OPT(p(j)) > OPT(j — 1).
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Recursive Algorithm

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

Compute—-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(i— 1)
Endif
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Recursive Algorithm

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

Compute—-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(i— 1)
Endif

@ Correctness of algorithm follows by induction (see textbook for proof).
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Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
v3 =4
3 —_ pB3) =1
vy =7
4 p@) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.
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Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
v3 =4
3 —_ pB3) =1
vy =7
4 p@) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

= max(vg + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
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Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
v3 =4
3 —_ pB3) =1
vy =7
4 p@) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

= max(vg + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
= max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
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Example of Recursive Algorithm

Index
v =2
1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) =

OPT(2) =

OPT(1) =

OPT(0)=0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Example of Recursive Algorithm
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1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p5) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) = max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1),0PT(2))
OPT(2) =

OPT(1) =

OPT(0)=0
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Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) = max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1),0PT(2))
OPT(2) = max(v> + OPT(p(2)),OPT(1)) = max(4 + OPT(0), OPT(1))
OPT(1) =

OPT(0)=0
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Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),OPT(3))
OPT(3) = max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1),0PT(2))
OPT(2) = max(v> + OPT(p(2)),OPT(1)) = max(4 + OPT(0), OPT(1))
OPT(1) = v =2

OPT(0) = 0
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Weighted Interval Scheduling

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3), OPT(5))
max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3), OPT(4))
max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0), OPT(3))
max(vs + OPT(p(3)),OPT(2)) = max(4 + OPT(1), OPT(2))
max(va + OPT(p(2)), OPT(1)) = max(4 + OPT(0),0PT(1)) =4
Vi = 2
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Weighted Interval Scheduling

Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3), OPT(5))
max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3), OPT(4))
max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0), OPT(3))
max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
max(vs + OPT(p(2)), OPT(1)) = max(4 + OPT(0),0PT(1)) =4
Vi = 2
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Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)), OPT(4)) = max(2 + OPT(3),0PT(4))
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v =2

OPT(0) = 0
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Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5))
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0
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Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5)) =8
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),0PT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5)) =8
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),0PT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

@ Optimal solution is
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Example of Recursive Algorithm

Index
v =2

1 p(1) =0
v, =4
2 —_— p@) =0
vy =4
3 —_ pB3) =1
vy =7
4 p@4) =0
vs =2
5 — p(s) =3
ve =1
6 — p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

OPT(6) = max(vs + OPT(p(6)), OPT(5)) = max(1 + OPT(3),0PT(5)) =8
OPT(5) = max(vs + OPT(p(5)),OPT(4)) = max(2 + OPT(3),0PT(4)) = 8
OPT(4) = max(vs + OPT(p(4)), OPT(3)) = max(7 + OPT(0),0OPT(3)) =7
OPT(3) = max(vs + OPT(p(3)), OPT(2)) = max(4 + OPT(1),0PT(2)) =6
OPT(2) = max(va2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),0PT(1)) = 4
OPT(1) = v; = 2

OPT(0) = 0

@ Optimal solution is job 5, job 3, and job 1.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Running Time of Recursive Algorithm

Compute-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif
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Running Time of Recursive Algorithm

Compute-0pt (j) @ What is the running time of the
It j=0 then algorithm?
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif
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Running Time of Recursive Algorithm

Compute-0pt () @ What is the running time of the
If j=0 then algorithm? Can be exponential in n.
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif
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Running Time of Recursive Algorithm

Compute-0pt (j) @ What is the running time of the
1f j=0 then algorithm? Can be exponential in n.
Return 0

Else @ When p(j) =j—2, forall j > 2:

Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1)) recursive calls are forj -1 and _/ _ 2
Endif ’

oPT(6)

orr(3)
—_
orr(1)  opr(1)
—_
—_
—_
The tree of subproblems
[ grows very quickly.

opT(1)

Figure 6.4 An instance of weighted interval scheduling on which the simple Compute-
Opt recursion will take exponential time. The values of all intervals in this instance Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance
are 1. of Figure 6.2.
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Memoisation

@ Store OPT(j) values in a cache and reuse them rather than recompute them.
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Memoisation

@ Store OPT(j) values in a cache and reuse them rather than recompute them.

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M[j]

Else
Define M[j] = max(vj+M—Compute—Opt(p(j)), M-Compute-0pt(j — 1))
Return M[j]

Endif
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Weighted Interval Scheduling

Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define MJ[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-0Opt(j — 1))
Return M(j]

Endif

@ Claim: running time of this algorithm is O(n) (after sorting).

T. M. Murali
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Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define MJ[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-0Opt(j — 1))
Return M(j]

Endif

@ Claim: running time of this algorithm is O(n) (after sorting).

@ Time spent in a single call to M-Compute-0pt is O(1) apart from time spent in
recursive calls.

@ Total time spent is the order of the number of recursive calls to M-Compute-0Opt.

@ How many such recursive calls are there in total?
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Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define MJ[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-0Opt(j — 1))
Return M(j]

Endif

@ Claim: running time of this algorithm is O(n) (after sorting).

Time spent in a single call to M-Compute-0pt is O(1) apart from time spent in
recursive calls.

Total time spent is the order of the number of recursive calls to M-Compute-0Opt.
How many such recursive calls are there in total?

Use number of filled entries in M as a measure of progress.

Each time M-Compute-0pt issues two recursive calls, it fills in a new entry in M.
Therefore, total number of recursive calls is O(n).
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Computing O in Addition to OPT(n)
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Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j).
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Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j). Running time becomes O(n?).
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Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j). Running time becomes O(n?).
@ Recall: request j belong to O; if and only if v; + OPT(p(j)) > OPT(j — 1).

@ Can recover O; from values of the optimal solutions in O(j) time.
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Computing O in Addition to OPT(n)

e Explicitly store O; in addition to OPT(j). Running time becomes O(n?).
@ Recall: request j belong to O; if and only if v; + OPT(p(j)) > OPT(j — 1).

@ Can recover O; from values of the optimal solutions in O(j) time.

Find-Solution(j)
If j=0 then
Output nothing
Else
If vj+Mlp()]=M[j — 1] then
Output j together with the result of Find-Solution(p(j))
Else
Output the result of Find-Solution(j— 1)
Endif
Endif
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From Recursion to lteration

@ Unwind the recursion and convert it into iteration.
e Can compute values in M iteratively in O(n) time.
@ Find-Solution works as before.

Iterative-Compute—-0Opt
M[0]=0
For j=1,2,...,n
Ml = max(v; + Mlp()], M[j — 1)
Endfor

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Basic Outline of Dynamic Programming

@ To solve a problem, we need a collection of sub-problems that satisfy a few
properties:

© There are a polynomial number of sub-problems.

@ The solution to the problem can be computed easily from the solutions to the
sub-problems.

@ There is a natural ordering of the sub-problems from “smallest” to “largest”.

@ There is an easy-to-compute recurrence that allows us to compute the solution
to a sub-problem from the solutions to some smaller sub-problems.
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Basic Outline of Dynamic Programming

@ To solve a problem, we need a collection of sub-problems that satisfy a few
properties:

© There are a polynomial number of sub-problems.

@ The solution to the problem can be computed easily from the solutions to the
sub-problems.

@ There is a natural ordering of the sub-problems from “smallest” to “largest”.

@ There is an easy-to-compute recurrence that allows us to compute the solution
to a sub-problem from the solutions to some smaller sub-problems.

o Difficulties in designing dynamic programming algorithms:
@ Which sub-problems to define?
@ How can we tie together sub-problems using a recurrence?
© How do we order the sub-problems (to allow iterative computation of optimal
solutions to sub-problems)?
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Segmented Least Squares
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Imagery from new street view vehicles is accompanied by laser range data, which
is aggregated and simplified by robustly fitting it in a coarse mesh that models the
dominant scene surfaces.
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Fitting Lines
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Fitting Lines

September 26, October 1, 3, 8, 2018



Segmented Least Squares

Least Squares Problem

ﬂ‘yl*”l*b‘ @ Given scientific or statistical data
(@1,9) plotted on two axes.

b @ Find the “best” line that “passes”
L through these points.
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Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
e through these points.
LEAST SQUARES

INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y=ax+b tpat minimises

Error(L, P) = Z(y,- — ax; — b)*.

i=1
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Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
e through these points.
LEAST SQUARES

INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y=ax+b tpat minimises

Error(L, P) = Z(y,- — ax; — b)*.

i=1

@ How many unknown parameters must we find values for?
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Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
e through these points.
LEAST SQUARES

INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y=ax+b tpat minimises

Error(L, P) = Z(y,- — ax; — b)*.

i=1

@ How many unknown parameters must we find values for? Two: a and b.
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Segmented Least Squares

Least Squares Problem

Slope = a

ﬂ‘?ﬂ*”l*b‘ @ Given scientific or statistical data

(@1,9) plotted on two axes.

b

@ Find the “best” line that “passes”
through these points.

—eeeeeeeeeeee

LEAST SQUARES
INSTANCE: Set P = {(x1, 1), (x2,¥2), - - -, (Xn, ¥n)} of n points.
SOLUTION: Line L:y =ax+ b tpat minimises
Error(L, P) = Z(y,- — ax; — b)*.
i=1

@ How many unknown parameters must we find values for? Two: a and b.
@ Solution is achieved by

2= ny i xiyi — (%) Q2 vi) and b — DYi—ay X
nyxE (%) n

T. M. Murali
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Segmented Least Squares

M. Murali September 26, October



Segmented Least Squares

o o
o o
o o
o o
o o
o o
o 00
c000 © 5000 o
Figure 6.8 A set of points that lie approximately on three lines.

Figure 6.7 A set of points that lie approximately on two lines.

@ Want to fit multiple lines through P.
@ Each line must fit contiguous set of x-coordinates.

@ Lines must minimise total error.

Dynamic Programming
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Example of Segmented Least Squares

Input contains a set of two-dimensional points.
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Example of Segmented Least Squares

P a8 a

Consider the x-coordinates of the points in the input.
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Example of Segmented Least Squares

° 'Y
o ® Y
O
® 9
®

Divide the points into segments; each segment contains consecutive points in the
sorted order by x-coordinate.
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Example of Segmented Least Squares

Fit the best line for each segment.
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Example of Segmented Least Squares

U ¥ as & & S——iits N . -

Illegal solution: black point is not in any segment.
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Example of Segmented Least Squares

& R aril & ol a! 5 b Sob 5 g

Illegal solution: leftmost purple point has x-coordinate between last two points in
green segment.
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Segmented Least Squares
[

SEGMENTED LEAST SQUARES

INSTANCE: Set P = {p; = (x;,¥i),1 < i < n} of n points,
X1 < Xp < -0 < Xp .

SOLUTION:
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Segmented Least Squares

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (x,¥i),1 < i < n} of n points,
X1 < Xp < - < Xp .
SOLUTION:
@ An integer k,
@ a partition of P into k segments {Py, P>, ..., Pc}, and
© for each segment P;, the best-fit line Lj 1y = ajx + b;,1 <j < k
that minimise the total errgr

Z Error(L;, P})
=1
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Segmented Least Squares

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (x,¥i),1 < i < n} of n points,
X1 < xp < -+ < xp and a parameter C > 0.
SOLUTION:
@ An integer k,
@ a partition of P into k segments {Py, P>, ..., Pc}, and
@ for each segment P;, the best-fit line Lj : y = ajx + b;,1 <j < k
that minimise the total errgr

Z Error(L;, P;) + Ck
j=1
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Segmented Least Squares

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (x,¥i),1 < i < n} of n points,
X1 < xp < -+ < xp and a parameter C > 0.
SOLUTION:
@ An integer k,
@ a partition of P into k segments {Py, P>, ..., Pc}, and
@ for each segment P;, the best-fit line Lj : y = ajx + b;,1 <j < k
that minimise the total errgr

> Error(Ly, P;) + Ck
j=1

@ How many unknown parameters must we find? 2k, and we must find k too!
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Formulating the Recursion |

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.
e We want to compute OPT(n).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Formulating the Recursion |

® ® OPT (i) = Least total error for
® the first ¢ points

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.
e We want to compute OPT(n).
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Formulating the Recursion |

. @ OPT(i—1)

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.

e We want to compute OPT(n).

@ Observation: Where does the last segment in the optimal solution end?
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Segmented Least Squares

Formulating the Recursion |

¢ o @ OPT(i — 1)

@ Let e ; denote the minimum error of a (single) line that fits {pi, po, ..., p;}.
o Let OPT(i) be the optimal total error for the points {p1, p2,...,pi}.

e We want to compute OPT(n).
@ Observation: Where does the last segment in the optimal solution end? p,,

and this segment starts at some point p;.

Dynamic Programming
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Segmented Least Squares RNA Seconda

Formulating the Recursion |

@ OPT(i—1)

Let e ; denote the minimum error of a (single) line that fits {p;, p2,..., pj}.
Let OPT(/) be the optimal total error for the points {p1, p2, ..., pi}

We want to compute OPT(n).
Observation: Where does the last segment in the optimal solution end? p,,

and this segment starts at some point p;.

o If the last segment in the optimal partition is {p;, pit1,. .., pn}, then
OPT(n) =ei,+ C+ OPT(i — 1)

T. M. Murali
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Segmented Least Squares

Formulating the Recursion Il
. @ OPT(i—1)

@ Suppose we want to solve sub-problem on the points {p1, ps,...p;}, i.e., we
want to compute OPT(j).
o If the last segment in the optimal partition is {p;, pj+1, ..., p;}, then

OPTU) =€+ C+ OPT(i — 1)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming
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Formulating the Recursion Il
- ® OPT(i—1)

@ Suppose we want to solve sub-problem on the points {p1, ps,...p;}, i.e., we
want to compute OPT(j).
o If the last segment in the optimal partition is {p;, pj+1, ..., p;}, then
OPT(j) =€+ C+ OPT(i — 1)
@ But i can take only j distinct values: 1,2,...,j —1,j. Therefore,
OPT(j) = 12/'2j (e,-,j + C+OPT(i — 1))

@ Segment {pj, pi+1,...p;j} is part of the optimal solution for this sub-problem
if and only if the minimum value of OPT(j) is obtained using index i.
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Dynamic Programming Algorithm

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares(n)
Array MJ[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n

Use the recurrence (6.7) to compute MIJj]
Endfor
Return M|[n]
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Dynamic Programming Algorithm

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares(n)
Array MJ[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n

Use the recurrence (6.7) to compute MIJj]
Endfor
Return M|[n]

@ We can find the segments in the optimal solution by backtracking.
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Running Time

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares (n)
Array M[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M]Jj]
Endfor
Return M(n]

o Let T(n) be the running time of this algorithm.

T(n) = Z ZO(_}—I

1<j<n1<i<y
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Running Time

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares (n)
Array M[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M]Jj]
Endfor
Return M(n]

o Let T(n) be the running time of this algorithm.

T(n) = Z ZO(_/—I

1<j<n1<i<y
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Running Time

OPT(j) = mlg (eij+ C+OPT(i —1))

Segmented-Least-Squares (n)
Array M[0...n]
Set M[0]=
For all pairs i<j

Compute the least squares error ¢;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M]Jj]
Endfor
Return M(n]

o Let T(n) be the running time of this algorithm.
@ Running time is O(n%), can be improved to O(n?).

T(n) = Z Z 0@ — i) = 0(n?)

1<j<n1<i<y
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RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:
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RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

Pairs of bases match up; each base
matches with < 1 other base.

Adenine always matches with Uracil.

There are no kinks in the folded

o
o
@ Cytosine always matches with Guanine.
Qo
molecule.

o

Structures are “knot-free” .

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.
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RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

Pairs of bases match up; each base
matches with < 1 other base.

Adenine always matches with Uracil.

There are no kinks in the folded

o
o
@ Cytosine always matches with Guanine.
Qo
molecule.

o

Structures are “knot-free” .

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

@ Problem: given an RNA molecule, predict its secondary structure.
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RNA Secondary Structure

RNA Molecules

@ RNA is a basic biological molecule. It is single stranded.

@ RNA molecules fold into complex “secondary structures.”

@ Secondary structure often governs the behaviour of an RNA molecule.
@ Various rules govern secondary structure formation:

Pairs of bases match up; each base
matches with < 1 other base.

Adenine always matches with Uracil.
Cytosine always matches with Guanine.

There are no kinks in the folded
molecule.

Structures are “knot-free” .

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

@ Problem: given an RNA molecule, predict its secondary structure.
@ Hypothesis: In the cell, RNA molecules form the secondary structure with the
lowest total free energy.
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RNA Secondary Structure

Formulating the Problem

G, U
o o
NG
Ad—gu
U4
ACAUGAUGGCCAUGU
ce—ac
vdda

@ ®)

Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the

string has been “stretched” lengthwise, and edges connecting matched pairs appear as
noncrossing “bubbles” over the string.

@ An RNA molecule is a string B = b1 by ... b,; each b; € {A, C, G, U}.
@ A secondary structure on B is a set of pairs S = {(/,/)}, where 1 < j,j <n
and

T. M. Murali
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Formulating the Problem

ACAUGAUGGCCAUGU

@ ®)

ting matched p:

@ An RNA molecule is a string B = b1 by ... b,; each b; € {A, C, G, U}.
@ A secondary structure on B is a set of pairs S = {(/,/)}, where 1 < j,j <n
and
Q@ (No kinks.) If (i,j) € S, then i < j — 4.
@ (Watson-Crick) The elements in each pair in S consist of either {A, U} or
{C, G} (in either order).
@ S is a matching: no index appears in more than one pair.
@ (No knots) If (i,j) and (k, ) are two pairs in S, then we cannot have
i< k<j<l.

@ The energy of a secondary structure o the number of base pairs in it.
@ Problem: Compute the largest secondary structure, i.e., with the largest
number of base pairs.
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lllegal Secondary Structures
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Legal Secondary Structures

6—6—6—6—6—6—6—6—6—6—6—=o
A C A U G G C C A U G U

——— T e e T T ——
- - —— — —y

A C A U G G € C A U G U
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Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
biby...b;.
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Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
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Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;
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Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;
@ if j is not a member of any pair, use OPT(j — 1).
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RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4,

Including the pair (¢, j) results in
two independent subproblems.

oo

12 t-1 t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming
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RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4, knot condition yields two independent

sub-problems!

Including the pair (¢, j) results in
two independent subproblems.

oo

12 t-1 t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming
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RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4, knot condition yields two independent

sub-problems! OPT(t — 1) and 777

Including the pair (¢, j) results in
two independent subproblems.

oo

12 t-1 t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming
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RNA Secondary Structure

Dynamic Programming Approach

e OPT(j) is the maximum number of base pairs in a secondary structure for
bibs...b;. OPT(j) =0, if j <5.
@ In the optimal secondary structure on by b, ... b;

@ if j is not a member of any pair, use OPT(j — 1).
@ if j pairs with some t < j — 4, knot condition yields two independent

sub-problems! OPT(t — 1) and 777
@ Insight: need sub-problems indexed both by start and by end.

Including the pair (¢, j) results in
two independent subproblems.

oo

12 -1t t+1 j-1
@

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

Dynamic Programming
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RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
@

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
b,'b;+1 Ce bj.

September 26, October 1, 3, 8, 2018 Dynamic Programming
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RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
@

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
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Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;

OPT(i,j) = max ( )

Dynamic Programming

T. M. Murali September 26, October 1, 3, 8, 2018



RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)
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i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).

OPT(i,j) = max (OPT(i,j - 1), )
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RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

OPT(i,j) = max (OPT(i,j - 1), )
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RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m
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i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

@ Since t can range from i to j — 5,

OPT(i,j) = max (OPT(i,j - 1), )
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RNA Secondary Structure

Correct Dynamic Programming Approach
Including the pair (¢, j) results in
two independent subproblems.
o—o—o—o—o—o—m

12 -1t t+1 j-1
(@)
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i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

@ Since t can range from i to j — 5,

OPT(i,j) = max (OPT(i,j — 1), max (14 OPT(i,t = 1)+ OPT(¢ + 1.j - 1)))
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Interval Scheduling

Correct Dynamic Programming Approach
two independent subproblems.

12 -1t t+1 j-1
(@)

oo oo o o

i t-1 tt+1 j-1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

e OPT(i,j) is the maximum number of base pairs in a secondary structure for
bibjt1...bj. OPT(i,j)=0,if i > j—4.
@ In the optimal secondary structure on bibi;s ... b;
@ if j is not a member of any pair, compute OPT(i,j — 1).
@ if j pairs with some t < j — 4, compute OPT(i,t — 1) and OPT(t + 1, — 1).

@ Since t can range from i to j — 5,
OPT(i,J) = max (OPT(i,j - 1), max (1 +OPT(i,t—1)+OPT(t+1,j — 1)))
@ In the “inner” maximisation, t runs over all indices between / and j — 5 that
are allowed to pair with j.
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Example of Dynamic Programming Algorithm
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Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.
@ How do we order them from “smallest” to “largest”?
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Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.
@ How do we order them from “smallest” to “largest”?

@ Note that computing OPT(/, ) involves sub-problems OPT(/, m) where
m—1<j—I.
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Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.
@ How do we order them from “smallest” to “largest”?

@ Note that computing OPT(/, ) involves sub-problems OPT(/, m) where
m—1<j—I.

Initialize OPT(i,j) =0 whenever i>j—4

For k=5, 6,..., n—1
For i=1,2 n—k
Set j=i+k
Compute OPT(i,j) using the recurrence in (6.13)
Endfor
Endfor

Return orPT(1, n)
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Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j — 1), max (1+OPT(i,t = 1)+ OPT(¢ + 1,/ — 1)))

@ There are O(n?) sub-problems.

@ How do we order them from “smallest” to “largest”?

@ Note that computing OPT(/, ) involves sub-problems OPT(/, m) where
m—1<j—i.

Initialize OPT(i,j) =0 whenever i>j—4

For k=5, 6,..., n—1
For i=1,2 n—k
Set j=i+k
Compute OPT(i,j) using the recurrence in (6.13)
Endfor
Endfor

Return orPT(1, n)

@ Running time of the algorithm is O(n®).
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Example of Algorithm

RNA sequence ACCGGUAGU

410(01]0 410(0(0]0 410(0]|0]0
3(0]0 3/0|0]1 3fojof1]1
210 21010 2(0(0]1
i=1 i=1]|1 i=1|1]|1
j=6 7 8 9 j=6 7 8 9 j=6 7 8 9
Initial values Filling in the values Filling in the values
fork =5 fork = 6
4(0(0|0]|0 4]0f(0]0f0
3/0(0(1(1 310(0(1(1
210101 (1 2101011
i=1[1]1]|1 i=1|11]1]2
j=6 7 8 9 j=6 7 8 9
Filling in the values Filling in the values
fork = 7 fork = 8
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Sequence Alignment

Web Search for “dnammic progranning”

dnammic progranning Q

Web Images Videos News

All Regions ~ Safe Search: Off = Any Time ¥

Including results for dynamic programming.

Search only for "dnammic" "progranning"?

Dynamic programming - Wikipedia

Dynamic programming is both a mathematical optimization method and a
computer programming method. The method was developed by Richard
Bellman in the 1950s and has found applications in numerous fields, from
aerospace engineering to economics.

W https://enwikipedia.org/wiki/Dynamic_pr... More results

@ How do they know “Dynamic” and “Dymanic” are similar?
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Sequence Similarity

@ Given two strings, measure how similar they are.

@ Given a database of strings and a query string, compute the string most
similar to query in the database.

@ Applications:

Online searches (Web, dictionary).
Spell-checkers.

Computational biology

Speech recognition.

Basis for Unix diff.

vyVvYyYVvYVvVYyYy
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Sequence Alignment

Defining Sequence Similarity

@ ‘“ocurrance” (wrong) vs “occurrence” (right).

o—currance

occurrence

o—curr—ance

occurre-nce

T. M. Murali

September 26, October 1, 3, 8, 2018
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Sequence Alignment

Defining Sequence Similarity

@ ‘“ocurrance” (wrong) vs “occurrence” (right).

o—currance

occurrence

o—curr—ance

occurre-nce

abbbaa--bbbbaab
ababaaabbbbba-b

T. M. Murali

September 26, October 1, 3, 8, 2018
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Sequence Alignment

Defining Sequence Similarity

@ ‘“ocurrance” (wrong) vs “occurrence” (right).

o—currance

occurrence

o—curr—ance

occurre-nce

abbbaa--bbbbaab
ababaaabbbbba-b

o Edit distance model: how many changes must you to make to one string to
transform it into another?

@ Changes allowed are deleting a letter, adding a letter, changing a letter.

T. M. Murali September 26, October 1, 3, 8, 2018

Dynamic Programming



Edit Distance

@ Proposed by Needleman and Wunsch in the early 1970s.
@ Input: two strings x = x1XoX3...Xm and y = y1y5 ... yp.
@ Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Edit Distance

o-currance o-curr-ance
occurrence occurre-nce
Proposed by Needleman and Wunsch in the early 1970s.
Input: two strings x = x1Xx0X3...Xm and y = y1yo ... V.
Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
A matching of x and y is a set M of ordered pairs such that

@ in each pair (i,j),1<i<mand 1< <nand

@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.

Dynamic Programming

September 26, October 1, 3, 8, 2018
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Edit Distance

o-currance o-curr-ance o-currance
occurrence occuUrre-nce occurrence
@ Proposed by Needleman and Wunsch in the early 1970s.
@ Input: two strings x = x1XoX3 ... Xm and y = y1yo ... yp.
o Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
@ A matching of x and y is a set M of ordered pairs such that

@ in each pair (i,j),1<i<mand 1< <nand
@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.
A matching M is an alignment if there are no “crossing pairs” in M: if
(i,j))e Mand (',j') € M and i < i’ then j <.
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Structure  Sequence Alignment Shortest Paths

Edit Distance

X

currnce o Curri pFance O-currance

Cur rk
Proposed by Needleman and Wunsch in the early 1970s.
Input: two strings x = x1X0X3...Xm and y = y1yo ... Yn.
Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
A matching of x and y is a set M of ordered pairs such that

© ineach pair (i,j),1<i<mand 1< <nand

@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.

A matching M is an alignment if there are no “crossing pairs” in M: if
(i,j) € M and (i',j/) € M and i < i’ then j <.

An index is not matched if it does not appear in the matching.

Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty 6 > 0 for every unmatched index.
Mismatch penalty Penalty a,, > 0if (i,j) € M and x; # ;.

Xz,
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Structure  Sequence Alignment Shortest Paths

Edit Distance

X

currnce o Curri pFance O-currance

Cur rk
Proposed by Needleman and Wunsch in the early 1970s.
Input: two strings x = x1X0X3...Xm and y = y1yo ... Yn.
Indices {1,2,...,m} and {1,2,..., n} represent positions in x and y.
A matching of x and y is a set M of ordered pairs such that

© ineach pair (i,j),1<i<mand 1< <nand

@ no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.

A matching M is an alignment if there are no “crossing pairs” in M: if
(i,j) € M and (i',j/) € M and i < i’ then j <.

An index is not matched if it does not appear in the matching.

Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty 6 > 0 for every unmatched index.

Mismatch penalty Penalty a,, > 0if (i,j) € M and x; # ;.

Output: compute an alignment of minimal cost.

Xz,

nce occurreiknce occurrenée




Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?
@ Consider index m € x and index n € y. What are the possibilities?
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Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?
o Consider index m € x and index n € y. What are the possibilities?
> (m, n) could be paired in the matching M.
» Neither n nor m may be matched.
> Only m may not be matched.
» Only n may not be matched.

O-currance O-currance
occurrence occurrenece
O-currance O-currance
occurrence occurrence
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Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?
@ Consider index m € x and index n € y. What are the possibilities?

(m, n) could be paired in the matching M.

Neither n nor m may be matched.

Only m may not be matched.

Only n may not be matched.

(m, i) could be paired and (j, n) could be paired where i < n and j < m. Not
possible in an alignment!

v

vYyVvyey

O - Ccurirandoc e\
Ty Not matched
with each other

occurrence/
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Developing Intuition for Dynamic Programming

@ How do we start formulating the dynamic program?

@ Consider index m € x and index n € y. What are the possibilities?

(m, n) could be paired in the matching M.

Neither n nor m may be matched.

Only m may not be matched.

Only n may not be matched.

(m, i) could be paired and (j, n) could be paired where i < n and j < m. Not
possible in an alignment!

v

vYyVvyey

e Claim: (m,n) ¢ M = m € x not matched or n € y not matched.
O-currandtc e\

X Not matched
with each other

occurrence/
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Dynamic Programming Approach

O-currandc
xe\ Not matched

T with each other
occurrendc e/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
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Dynamic Programming Approach

O-currandc
KB\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M:
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Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = Ouxiy; + OPT(i —1,j—1).
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Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=x1y2...Yj-
> (i,j) € M: OPT(i,j) = Quy; + OPT(i —1,j—1).
» i not matched:
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Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrenc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = axy, + OPT(i — 1,j — 1).
» i not matched: OPT(i,j) = + OPT(i — 1,).
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Dynamic Programming Approach

O-currandc
‘B\ Not matched

T with each other
occurrendc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = Quy; + OPT(i —1,j—1).
» i not matched: OPT(i,j) = + OPT(i — 1,).
> j not matched: OPT(i,j) = + OPT(i,j —1).
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Dynamic Programming Approach

O-currandc
‘B\ Not matched

e with each other
occurrendc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=xiy2...Y-.
> (i,j) € M: OPT(i,j) = Quy; + OPT(i —1,j—1).
» i not matched: OPT(i,j) = + OPT(i — 1,).
> j not matched: OPT(i,j) = + OPT(i,j —1).

OPT(i,j) = min (axy, + OPT(i—1,j—1),6+ OPT(i —1,;),5+OPT(i,j — 1))

> (i,j) € M if and only if minimum is achieved by the first term.

@ What are the base cases?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Dynamic Programming Approach

O-currandc
‘B\ Not matched

e with each other
occurrendc E/

e (m,n) € M = m € x not matched or n € y not matched.
@ How should we define sub-problems?
@ OPT(i,j): cost of optimal alignment between x = x;xx3 ... x; and
y=x1y2...Yj-

> (i,j) € M: OPT(i,j) = cvy, + OPT(i — 1,j — 1).

» i not matched: OPT(i,j) = + OPT(i — 1,).

> j not matched: OPT(i,j) = + OPT(i,j —1).

OPT(i,j) = min (axy, + OPT(i—1,j—1),6+ OPT(i —1,;),5+OPT(i,j — 1))

> (i,j) € M if and only if minimum is achieved by the first term.
@ What are the base cases? OPT(i,0) = OPT(0, /) = ié.
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Dynamic Programming Algorithm

OPT(i,j) = min (ax,yj +OPT(i—1,j—1),64+ OPT(i — 1,/),06 + OPT(i,j — 1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,j]=j§ for each j
For j=1,...,n
For i=1,...,m
Use the recurrence (6.16) to compute Ali,j]
Endfor
Endfor
Return A[m, n]
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Dynamic Programming Algorithm

OPT(i,j) = min (ax,.yj +OPT(i—1,j—1),64+ OPT(i — 1,/),06 + OPT(i,j — 1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,j]=j§ for each j
For j=1,....n
For i=1,...,m
Use the recurrence (6.16) to compute Ali,j]
Endfor
Endfor
Return A[m, n]

@ Running time is O(mn). Space used in O(mn).
@ (i,j) is in the optimal alignment if the first term is the smallest.
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Improving the Running Time
OPT(i,j) = min (i, + OPT(i — 1,/ — 1),8 + OPT(i — 1,j),8 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.
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Improving the Running Time
OPT(i,j) = min (a,, + OPT(i — 1,j — 1),6 + OPT(i — 1,j),0 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

Space-Efficient-Alignment(X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=i§ for each i (just as in column 0 of A)
For j=1,...,n
B[0,1]=j8 (since this corresponds to entry A[0, ]
For i=1,...,m
Bli, 1]=miney,, + Bli - 1, 0],
§+B[i—1,1], §+ Bl[i,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update B[i, 0]=Bli, 1] for each i
Endfor

e Can compute OPT(m, n) in O(mn) time and O(m + n) space.
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Improving the Running Time
OPT(i,j) = min (g, + OPT(i — 1,/ — 1),8 + OPT(i — 1,j),8 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

Space-Efficient-Alignment(X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=i§ for each i (just as in column 0 of A)
For j=1,...,n
B[0,1]=j8 (since this corresponds to entry A[0, ]
For i=1,...,m
Bli, 1]=miney,, + Bli - 1, 0],
§+B[i—1,1], §+ Bl[i,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update Bli, 0]=B[i, 1] for each i
Endfor

e Can compute OPT(m, n) in O(mn) time and O(m + n) space.
@ Problem: How do we compute matched pairs in the optimal alignment?
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Improving the Running Time
OPT(i,j) = min (g, + OPT(i — 1,/ — 1),8 + OPT(i — 1,j),8 + OPT(i,j — 1))

o Key observation: Computing entry (i, /) requires values only in previous
row/column or in previous row in current column.

Space-Efficient-Alignment (X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=i§ for each i (just as in column 0 of A)
For j=1,...,n
B[0,1]=j8 (since this corresponds to entry A[0, ]
For i=1,...,m
Bli, 1]=miney,, + Bli - 1, 0],
§+B[i—1,1], §+ Bl[i,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update Bli, 0]=B[i, 1] for each i
Endfor

e Can compute OPT(m, n) in O(mn) time and O(m + n) space.
@ Problem: How do we compute matched pairs in the optimal alignment?
Requires new ideas: combine divide and conquer with dynamic programming!
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Y Y2 Ys Y4 Ys Yo Y7 Ys
o Grid graph G,:
» m+ 1 rows numbered from 0 to m (corresponding to x).
> n+ 1 rows numbered from 0 to n (corresponding to y).
> Rows labelled by symbols in x and columns labelled by symbols in y.
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@ Grid graph G,:
» m+ 1 rows numbered from 0 to m (corresponding to x).
> n+ 1 rows numbered from 0 to n (corresponding to y).
> Rows labelled by symbols in x and columns labelled by symbols in y.
» Node (i,/) has three outgoing edges to (i,j + 1)), to (i + 1,), and to
(i+1,j+1).
» Edges directed upward or to the right have cost §.
> Edge directed from (i,j) to (i +1,j + 1) has cost v, ,y;.,-
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cheduling Segmented Least Squares RNA Secondary Structure
Shortest Paths in G,,
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@ For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,J).




al Scheduling  Segmented Least Squares RNA Secondary Structure
Shortest Paths in G,,

Y1 Y2 Y3 Y4 Ys Ye Y7 Y8

o For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i, ).
e Claim: f(i,j) = OPT(i,j).
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al Scheduling Segmented Least Squares RNA Secondary Structure
Shortest Paths in G,,

Yi Y2 Ys Y4 Us Ys Y7 Ys
@ For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,J).
e Claim: f(i,j) = OPT(i, ).
@ Proof by induction on i + j: Use the fact that the last edge on the shortest
path to (i,j) must be either from (i —1,j — 1), (i — 1,j) or (i,j — 1).
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Shortest Paths in G,,

46

(o)}

6 =2 n
a(cons,cons) = 1
a(vow,vow) = 1
a(cons,vow) =3

W—» U

O—» N—> R —» O —>

>2—>4—>6—8

— n a m e

@ For every i,j, f(i,j) = minimum cost of a path in Gxy from (0,0) to (i,J).

e Claim: f(i,j) = OPT(i, ).

@ Proof by induction on i + j: Use the fact that the last edge on the shortest
path to (i,j) must be either from (i —1,j — 1), (i — 1,j) or (i,j — 1).

@ Diagonal edges in the shortest path are the matched pairs in the alignment
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Y1 Y2 Ys Ya4 Ys Ys Y7 Y8

e Corner-to-corner path: path from (0,0) to (n, m).
@ Given i and j, what is the length /(/, /) of the shortest corner-to-corner path
through (/,)?
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Y1 Y2 Y3 Y4 Ys Ye Y7 Y8

e Corner-to-corner path: path from (0,0) to (n, m).
@ Given i and j, what is the length /(/, /) of the shortest corner-to-corner path
through (/,)?
» One segment is the shortest path from (0,0) to (/,) with cost (i, J).

September 26, October 1, 3, 8, 2018



Segmented Leas es  RNA Secondary Structure Sequence Alignment 1

Shortest Paths Through (i./) in G,

Y1 Y2 Ys Ya4 Ys Ys Y7 Y8

e Corner-to-corner path: path from (0,0) to (n, m).
@ Given i and j, what is the length /(/, /) of the shortest corner-to-corner path
through (/,)?
» One segment is the shortest path from (0,0) to (/,) with cost (i, J).
> The other segment is the shortest path from (i, ) to (m, n) with some cost.
How can we compute the cost of this path?
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o Define g(/, /) as cost of the shortest path from (7, ) to (m, n).




Sequence Alignment

Shortest Paths Through (i./) in G,
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o Define g(/, /) as cost of the shortest path from (7, ) to (m, n).

T. M. Murali September 26, October 1, 3, 8, 2018
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Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Shortest Paths Through (i./) in G,

Y Y2 Y3 Ya Us Ye Y7 Y8
o Define g(/, /) as cost of the shortest path from (7, ) to (m, n).

g(i,j) = min (ouyy,0, + OPT(i+1,j+1),6 + OPT(i + 1,/),6 + OPT(i,j + 1))

@ We can compute g(/i, ;) for every i and j in O(mn) time and O(m + n) space
using Backward-Space-Efficient-Alignment.
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Shortest Path Through (i,J) in Gy

yl Y2 Y3 y4 Ys y6 y7 ys
o Claim: I(i,j) = f(i.j) + g(i.J)-
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____Interval Scheduling _ Weighted Interval Scheduling _Segmented Least Squares _RNA Secondary Structure _Sequence Alignment _ Shortest Paths _____
Shortest Path Through (i) in G,,

O Oas Op Op, O, O o 00 -
onls A AT AL

X AKX A AKX A%

VP VEevevev4
La( Y= = = )= }—>
K /X /X% /% A%

v

L6

o Claim: /(i,j) = f(i,j) + g(i,j).
@ Shortest corner-to-corner path through (/,;) must go from (0,0) to (/,;) and
then from (i,}) to (m, n).
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____Interval Scheduling _ Weighted Interval Scheduling _Segmented Least Squares _RNA Secondary Structure _Sequence Alignment _ Shortest Paths _____
Shortest Path Through (1 J) in Gy,

o y2 y3 y4 Ys ye ZJ? 318
o Claim: I(i,j) = f(i,j) + g(i,))-
@ Shortest corner-to-corner path through (i, ) must go from (0,0) to (/,/) and
then from (i,}) to (m, n).
o Therefore, I(i,j) > f(i,j) + g(i,)).
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Shortest Path Through (i) in G,,

Y1 Y2 Y3 Ya Us Yo Y7 Y8

o Claim: I(i,j) = f(i,j) + g(i,J).

@ Shortest corner-to-corner path through (7, j) must go from (0,0) to (i,/) and
then from (7,j) to (m, n).

o Therefore, I(i,j) > f(i,j)+ g(i,J)).

@ Now consider the following corner-to-corner path: Shortest path from (0, 0)
to (i,/) followed by the shortest path from (i,/) to (m, n). What is its
length? .

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Shortest Path Through (i) in G,,

Y1 Y2 Y3 Ya Us Yo Y7 Y8

o Claim: I(i,j) = f(i,j) + g(i,J).

@ Shortest corner-to-corner path through (7, j) must go from (0,0) to (i,/) and
then from (7,j) to (m, n).

o Therefore, I(i,j) > f(i,j)+ g(i,J)).

@ Now consider the following corner-to-corner path: Shortest path from (0, 0)
to (i,/) followed by the shortest path from (i,/) to (m, n). What is its
length? f(i,j) + g(i,J).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Shortest Path Through (i) in G,,

o Claim: I(i,j) = f(i,j) + g(i,J).

@ Shortest corner-to-corner path through (7, j) must go from (0,0) to (i,/) and
then from (7,j) to (m, n).

o Therefore, I(i,j) > f(i,j)+ g(i,J)).

@ Now consider the following corner-to-corner path: Shortest path from (0, 0)
to (i,/) followed by the shortest path from (i,/) to (m, n). What is its
length? f(i,j) + g(i,J).

@ Therefore, I(i,j) < f(i,j)+ g(i,Jj).
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Sequence Alignment

Shortest Paths Through Column k in G,
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o Fix arbitrary k between 0 and n.
@ Does the shortest corner-to-corner path pass through a node in column k?
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Shortest Paths Through Column k in G,
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o Fix arbitrary k between 0 and n.
@ Does the shortest corner-to-corner path pass through a node in column k?
> Yes, it must pass through exactly one such node, say (qgx, k).
» How can we compute qgi given values of f(i, k) and g(i, k) for every i?
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o Fix arbitrary k between 0 and n.
@ Does the shortest corner-to-corner path pass through a node in column k?
> Yes, it must pass through exactly one such node, say (qgx, k).
» How can we compute qgi given values of f(i, k) and g(i, k) for every i?

qx = arg min (£(i, k) +g(i, k)

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Sequence Alignment

h Column k in G,

Shortest Paths Throug
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qx = arg min (f(i, k) +g(i, k)

@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.
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Sequence Alignment

Shortest Paths Through Column k in G,
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qk = arg0r<‘nl_i<nm (F(i, k) + g(i, k))

@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.
» Let /* be the length of the shortest corner-to-corner path.
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Sequence Alignment

Shortest Paths Through Column k in G,
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qx = arg min (f(i, k) +g(i, k)
@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.

» Let /* be the length of the shortest corner-to-corner path.
» "< f(qu k) +g(qk7 k) Why?
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Shortest Paths Through Column k in G,
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qk = arg0r<‘nl_i<nm (F(i, k) + g(i, k))

@ Why should there be a shortest corner-to-corner path that passes through
node (gk, k)? Proof is very similar to previous proof.
» Let /* be the length of the shortest corner-to-corner path.
> " < f(qk, k) + g(ak, k). Why?
> Shortest corner-to-corner path must use some node p in column k. Therefore,
1" = F(p, k) + &(p, k) = mino<i<m (F(i, k) + g(i. k)) = F(qu, k) + &(q. k).
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Sequence Alignment

Divide and Conquer Intuition
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e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
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Sequence Alignment

D|V|de and Conque Intuition
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e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Sequence Alignment

Divide and Conquer Intuition
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e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.
» Compute g(i,n/2) for every i: use Backward-Space-Efficient-Alignment.
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Divide and Conquer Intuition

Y1 Y2 Ys Y4 Ys Yo Y7 Y8
e Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.
» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.
» Compute g(i,n/2) for every i: use Backward-Space-Efficient-Alignment.
» Compute gn/>. All these steps take O(mn) time and O(m + n) space.
@ Store (gn/2,n/2) in a global list. There must be a shortest corner-to-corner
path through this node.
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Sequence Alignment

Divide and Conquer Intuition
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Divide G, into two: columns 0 to n/2 and columns n/2 to n.
@ Determine q,/>.

» Compute f(i, n/2) for every i: use Space-Efficient-Alignment.

» Compute g(i,n/2) for every i: use Backward-Space-Efficient-Alignment.

» Compute gn/>. All these steps take O(mn) time and O(m + n) space.
Store (qgn/2,n/2) in a global list. There must be a shortest corner-to-corner
path through this node.
Recursively compute the nodes in the shortest path from (0,0) to (g,/2, n).
Recursively compute the nodes in the shortest path from (0,0) to (g,/2, n).
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Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+41:n]
Let g be the index minimizing f(q, n/2) +g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q], Y[1:1t/2])
Divide-and-Conquer-Alignment (X[g+1:n],Y[n/2+41:n])
Return P
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Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q,n/2) +g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P
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Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ Let T(m,n) be the worst-case running time of this algorithm on strings on
input m and n, respectively.
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Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ Let T(m,n) be the worst-case running time of this algorithm on strings on
input m and n, respectively.

T(m,n) < T(q,n/2)+ T(m—q,n/2)+ cmn
T(m,2) <

cm
T(2,n)<cn
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Running Time of Divide and Conquer Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ Let T(m,n) be the worst-case running time of this algorithm on strings on
input m and n, respectively.
@ Challenges: Function of both m and n and g depends on the input.

T(m,n) < T(q,n/2)+ T(m—q,n/2)+ cmn
T(m,2) <cm
T(2,n) <ecn
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).

@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis:
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis: For every m" < m,n’ <n, T(m',n") < km'n’.
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis: For every m" < m,n’ <n, T(m',n") < km'n’.
> Inductive step: Need to prove T(m,n) < kmn.
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Solving the Recurrence

o Consider a special case first. Assume n=m and g = m/2.

T(n) <2T(n/2) + cn?
T(2) <2c

@ We can prove by induction that T(n) = O(n?).
@ Therefore, let us guess that the original recurrence has the solution
T(m,n) < kmn.
» Base case: m < 2,n<2. Holdsif k> c/2.
> Inductive hypothesis: For every m" < m,n’ <n, T(m',n") < km'n’.
> Inductive step: Need to prove T(m,n) < kmn.

T(m,n) < T(q,n/2)+ T(m— q,n/2)+ cmn, from the recurrence
< kqn/2 + k(m — q)n/2 4+ cmn, from the inductive hypothesis
< (k/2+ c)mn
< kmn, if k > 2c.
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Analysing the Space Used by the Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m<2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n])
Let ¢ be the index minimizing f(q, n/2)+g(q, n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment (X[g+ 1:n],Y[n/2+1:n])
Return P

@ At most one call to Space-Efficient-Alignment or
Backward-Space-Efficient-Alignment executing at any time.

@ Input to any invocation of these procedures has size at most m + n.
@ Size of P is at most n.

@ Therefore, total space used is O(m + n).
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Motivation

o Computational finance:
» Each node is a financial agent.
» The cost ¢, of an edge (u, v) is the cost of a transaction in which we buy
from agent u and sell to agent v.
> Negative cost corresponds to a profit.

@ Internet routing protocols

> Dijkstra’s algorithm needs knowledge of the entire network.
Routers only know which other routers they are connected to.
Algorithm for shortest paths with negative edges is decentralised.
We will not study this algorithm in the class. See Chapter 6.9.

vvyy
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Problem Statement

@ Input: a directed graph G = (V/, E) with a cost function c: E = R, i.e, ¢,
is the cost of the edge (u,v) € E.
@ A negative cycle is a directed cycle whose edges have a total cost that is
negative.
@ Two related problems:
@ If G has no negative cycles, find the shortest s-t path: a path of from source s

to destination t with minimum total cost.
@ Does G have a negative cycle?
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Problem Statement

@ Input: a directed graph G = (V/, E) with a cost function c: E = R, i.e, ¢,
is the cost of the edge (u,v) € E.
@ A negative cycle is a directed cycle whose edges have a total cost that is
negative.
@ Two related problems:
@ If G has no negative cycles, find the shortest s-t path: a path of from source s

to destination t with minimum total cost.
@ Does G have a negative cycle?

Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going
around the cycle C many times).
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Approaches for Shortest Path Algorithm

@ Dijsktra’s algorithm.

@ Add some large constant to each
edge.
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Shortest Paths

Approaches for Shortest Path Algorithm

@ Dijsktra’s algorithm. Computes
incorrect answers because it is
greedy.

@ Add some large constant to each
edge. Computes incorrect answers
because the minimum cost path
changes.

Figure 6.21 (a) With negative
edge costs, Dijkstra’s Algo-
rithm can give the wrong
answer for the Shortest-Path
Problem. (b) Adding 3 to the
cost of each edge will make
all edges nonnegative, but it
will change the identity of the
shortest s-t path.
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Dynamic Programming Approach
@ Assume G has no negative cycles.

@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node)
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Dynamic Programming Approach
@ Assume G has no negative cycles.

@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.
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Dynamic Programming Approach

@ Assume G has no negative cycles.
@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

@ How do we define sub-problems?
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Dynamic Programming Approach

@ Assume G has no negative cycles.
@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

@ How do we define sub-problems?
> Shortest s-t path has < n—1
edges: how we can reach t using i
edges, for different values of i?
» We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V?
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Dynamic Programming Approach

@ Assume G has no negative cycles.
@ Claim: There is a shortest path from s to t that is simple (does not repeat a
node) and hence has at most n — 1 edges.

@ How do we define sub-problems?
> Shortest s-t path has < n—1
edges: how we can reach t using i
edges, for different values of i?
» We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V?

@ Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.
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Dynamic Programming Recursion

@ OPT(i,v): minimum cost of a v-t path that uses at most /i edges.
@ t is not explicitly mentioned in the sub-problems.
o Goal is to compute OPT(n —1,s).
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Dynamic Programming Recursion

@ OPT(i,v): minimum cost of a v-t path that uses at most /i edges.
@ t is not explicitly mentioned in the sub-problems.
o Goal is to compute OPT(n —1,s).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

@ Let P be the optimal path whose cost is OPT(i, v).
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Dynamic Programming Recursion

OPT(i,v): minimum cost of a v-t path that uses at most / edges.

t is not explicitly mentioned in the sub-problems.
Goal is to compute OPT(n — 1,s).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

Let P be the optimal path whose cost is OPT(/, v).
@ If P actually uses i — 1 edges, then OPT(/,v) = OPT(i — 1, v).
@ If first node on P is w, then OPT(i,v) = cw + OPT(i — 1, w).
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Dynamic Programming Recursion

OPT(i,v): minimum cost of a v-t path that uses at most / edges.

t is not explicitly mentioned in the sub-problems.
Goal is to compute OPT(n — 1,s).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

Let P be the optimal path whose cost is OPT(/, v).
@ If P actually uses i — 1 edges, then OPT(/,v) = OPT(i — 1, v).
@ If first node on P is w, then OPT(i,v) = cw + OPT(i — 1, w).

OPT(i,v) = min (OPT(i —1,v), min (cay + OPT(i — 1, w))>
we
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Example of Dynamic Programming Recursion
OPT(/, v) = min (OPT(i —1,v), mir\} (cw + OPT(i — 1, W)))
we

0O 1 2 3 45
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ience Alignment  Shortest Paths

Example of Dynamic Programming Recursion
OPT(/, v) = min (OPT(i —1,v), mir\} (cw + OPT(i — 1, W)))
we
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Example of Dynamic Programming Recursion
(OPT(i —1,v), vrpel?/ (cw + OPT(i — 1, W)))

1 2 3

OPT(/, v) = min
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Weighted Interval Scheduling S

Segmented Least Squares

OPT(/, v) = min

Example of Dynamic Programming Recursion
(i—1,v), VTE"\]/ (cw + OPT(i — 1, W)))
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Segmented Least Squares

OPT(/, v) = min

Example of Dynamic Programming Recursion
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reduling  Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

Example of Dynamic Programming Recursion
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reduling  Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment  Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))
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Segmented Least Squares

OPT(/, v) = min

uence Alignment  Shortest Paths

Example of Dynamic Programming Recursion
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reduling  Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment  Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))
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reduling  Weighted Interval Scheduling

Segmented Least Squares

OPT(/, v) = min

uence Alignment  Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), vrpel?/ (cw + OPT(i — 1, W)))
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Weighted Interval Scheduling Segmented Least Squares

OPT(/, v) = min

Secondary Structure

Sequence

Alignment ~ Shortest Paths

Example of Dynamic Programming Recursion
(i—1,v), VTE"\]/ (cw + OPT(i — 1, W)))
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condary Structure

Sequence

Alignment ~ Shortest Paths

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA Se

Example of Dynamic Programming Recursion
(OPT(i —1,v), VTE"\]/ (cw + OPT(i — 1, W)))

OPT(/, v) = min
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Secondary Structure Sequence Alignment Shortest Paths

Interval Scheduling

Weighted Interval Scheduling Segmented Least Squares RNA

Example of Dynamic Programming Recursion
(OPT(i —1,v), VTE"\]/ (cw + OPT(i — 1, W)))

OPT(/, v) = min
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RNA Secondary Structure Sequence Alignment Shortest Paths

Weighted Interval Scheduling Segmented Least Squares

Example of Dynamic Programming Recursion
(i—1,v), VTE”\]/ (cw + OPT(i — 1, W)))

OPT(/, v) = min
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Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute
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Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
r‘@? OPT_(i, s).
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Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to

compute

n—1
r‘ry{\ OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
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Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
r‘ry{\ OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
> If first node on P is w, then OPT_(i, v) = cw + OPT_(i - 1, w).
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Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
r‘ry{\ OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
> If first node on P is w, then OPT_(i, v) = cw + OPT_(i - 1, w).

OPT_(i, v) = min (cw +OPT_(i - 1, w))
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Alternate Dynamic Programming Formulation

@ OPT_(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to
compute

n—1
ny{] OPT_(i, s).

o Let P be the optimal path whose cost is OPT_(i, v).
> If first node on P is w, then OPT_(i, v) = cw + OPT_(i - 1, w).

OPT_(i, v) = min (cow +OPT_(i - 1, w))

@ Compare the two desired solutions:

n—1 n—1
min OPT_(i, s) = min (.,Te”\]/ (Cow +OPT_(i - 1, w)))

OPT(n—1,s) = min <OPT(n —2,s), mir\l/ (Cow +OPT(n -2, W)))
we

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Bellman-Ford Algorithm

OPT(/, v) = min (OPT(i —1,v), mir\1/ (cw + OPT(i — 1, W)))
we

Shortest-Path(G, s, t)
n= number of nodes in G
Array M[0...n—1,V]
Define M[0,t]=0 and M[0,v]=o00 for all other veV
For i=1,...,n—1
For veV in any order
Compute M([i,v] using the recurrence (6.23)
Endfor
Endfor
Return M[n —1,s]
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Bellman-Ford Algorithm

OPT(/, v) = min (OPT(i —1,v), mir\1/ (cw + OPT(i — 1, W)))
we

Shortest-Path(G, s, t)
n= number of nodes in G
Array M[0...n—1,V]
Define M[0,t]=0 and M[0,v]=o00 for all other veV
For i=1,...,n—1
For veV in any order
Compute M([i,v] using the recurrence (6.23)
Endfor
Endfor
Return M([n —1,s]

@ Space used is O(n?). Running time is O(n®).
o If shortest path uses k edges, we can recover it in O(kn) time by tracing back
through smaller sub-problems.
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An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?
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An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

Mi, v] = min (M[i —1,v], min (cw + M[i — 1, w])>
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An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

M([i, v] = min (M[i —1,v], min (cow + M[i — 1, w]))

@ w only needs to range over outgoing neighbours N, of v.

e If n, = |N,| is the number of outgoing neighbours of v, then in each round,
we spend time equal to
> =

vev
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An Improved Bound on the Running Time

@ Suppose G has n nodes and m < (’2’) edges. Can we demonstrate a better
upper bound on the running time?

M([i, v] = min (M[i —1,v], min (cow + M[i — 1, w]))

@ w only needs to range over outgoing neighbours N, of v.
e If n, = |N,| is the number of outgoing neighbours of v, then in each round,
we spend time equal to
S =m

vev

@ The total running time is O(mn).
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Improving the Memory Requirements

M([i, v] = min (M[i —1,v], min (Cu + MIi — 1, Wl))

@ The algorithm uses O(n?) space to store the array M.
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Improving the Memory Requirements

MIi,v] = min <M[i —1,v], min (cw + M[i — 1, W]))

@ The algorithm uses O(n?) space to store the array M.
@ Observe that M[i, v] depends only on M[i — 1, %] and no other indices.
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Improving the Memory Requirements

MIi,v] = min (M[i —1,v], min (cw + M[i — 1, W]))

@ The algorithm uses O(n?) space to store the array M.
@ Observe that M[i, v] depends only on M[i — 1, %] and no other indices.

o Modified algorithm:

© Maintain two arrays M and M’ indexed over V.
@ At the beginning of each iteration, copy M into M’.
© To update M, use

M[v] = min <M'[v], min (e + M'[W])>
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Improving the Memory Requirements

MIi,v] = min (M[i —1,v], min (cw + M[i — 1, W]))

The algorithm uses O(n?) space to store the array M.

Observe that M[i, v] depends only on M[i — 1, %] and no other indices.
Modified algorithm:

© Maintain two arrays M and M’ indexed over V.
@ At the beginning of each iteration, copy M into M’.
© To update M, use

M[v] = min (M'[v], min (e + M'[W])>

o Claim: at the beginning of iteration i, M stores values of OPT(i — 1, v) for
all nodes v € V.

@ Space used is O(n).
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Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

@ How can we recover the shortest path that has cost M[v]?
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Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

@ How can we recover the shortest path that has cost M[v]?

@ For each node v, compute and update f(v), the first node after v in the
current shortest path from v to t.

e Updating f(v):

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

@ How can we recover the shortest path that has cost M[v]?

@ For each node v, compute and update f(v), the first node after v in the
current shortest path from v to t.

e Updating f(v): If x is the node that attains the minimum in
minWENV (va + MI[W]).

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Computing the Shortest Path: Algorithm

M[v] = min (M’[v], min (cw + M’[W]))

How can we recover the shortest path that has cost M[v]?

For each node v, compute and update f(v), the first node after v in the
current shortest path from v to t.

Updating f(v): If x is the node that attains the minimum in
minwen, (va + M’[W]), set

» M[v] = c» + M’[x] and

» f(v)=x.
At the end, follow f(v) pointers from s to t.
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Example of Maintaining Pointers

M[v] = min (M’[v], min (cow + M’[W]))
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reduling  Weighted Interval Scheduling Segmented Least Squares

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))
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Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))
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Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structur

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))
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Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))
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Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure ~ Sequence Alignm

Example of Maintaining Pointers

M[v] = min <M’[v], min (cow + M’[W]))
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Secondary Structure equence Alignment  Shortest Paths

Computmg the Shortest Path: Correctness

o Pointer graph P(V, F): each edge in F is (v, f(v)).
» Can P have cycles?
> Is there a path from s to t in P?
» Can there be multiple paths s to t in P?
» Which of these is the shortest path?

012 345
t{oj0O[0|0O|OfO
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Shortest Paths

Computing the Shortest Path: Cycles in P

@@
M{[v] = min <M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Shortest Paths

Computing the Shortest Path: Cycles in P

@@
M{[v] = min <M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.
» Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].
> Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Shortest Paths

Computing the Shortest Path: Cycles in P

@@
M{[v] = min (M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.
» Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].
> Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.
> Let vi, va,... vk be the nodes in C and assume that (vk, v1) is the last edge to
have been added.
» What is the situation just before this addition?

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



eighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths

Computmg the Shortest Path: Cycles in P

@@
M{[v] = min (M’[v], minyen, (va + M’[W])) @ @

@ Claim: If P has a cycle C, then C has negative cost.

» Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].

> Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

> Let vi, va,... vk be the nodes in C and assume that (vk, v1) is the last edge to
have been added.

» What is the situation just before this addition?

» M[vi] — M[vi11] > ¢y, forall 1 <i <k —1.

> Mlvi] = M[w1] > cyv-
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Computing the Shortest Path: Cycles in P

N,
\,

M[v] = min (M'[v], minuen, (e + M'[wl)) ()

@ Claim: If P has a cycle C, then C has negative cost.

>

>

vy vy VvVYYy

Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].

Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

Let vi, v, ... vk be the nodes in C and assume that (v, v1) is the last edge to
have been added.

What is the situation just before this addition?

M[vi] — M[viz1] > ¢,y forall 1 < i< k—1.

M[vi] — M[w1] > ¢y, -

Adding all these inequalities, 0 > Zf:ll Cvjviy1 + Cyy = cost of C.

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming



Interval Sch

Mlv] =
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Computing the Shortest Path: Cycles in P

OG0
min(M’[v],minWeNv(cvw—l—l\/l’[w])) @ @

@ Claim: If P has a cycle C, then C has negative cost.

>

>

vy vy VvVYYy

Suppose we set f(v) = w. At this instant, M[v] = cw + M[w].

Between this assignment and the assignment of f(v) to some other node,
M[w] may itself decrease. Hence, M[v] > ¢, + M[w], in general.

Let vi, v, ... vk be the nodes in C and assume that (v, v1) is the last edge to
have been added.

What is the situation just before this addition?

M[vi] — M[viz1] > ¢,y forall 1 < i< k—1.

M[vi] — M[w1] > ¢y, -

Adding all these inequalities, 0 > Zf:ll Cvjviy1 + Cyy = cost of C.

@ Corollary: if G has no negative cycles that P does not either.

T. M. Murali

September 26, October 1, 3, 8, 2018 Dynamic Programming



Computing the Shortest Path: Paths in P

@ Let P be the pointer graph upon termination of the algorithm.

o Consider the path P, in P obtained by following the pointers from v to
f(v) = v, to f(v1) = vy, and so on.
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Computing the Shortest Path: Paths in P

@ Let P be the pointer graph upon termination of the algorithm.
o Consider the path P, in P obtained by following the pointers from v to
f(v) = v, to f(v1) = vy, and so on.

o Claim: P, terminates at t.
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Computing the Shortest Path: Paths in P

Let P be the pointer graph upon termination of the algorithm.

Consider the path P, in P obtained by following the pointers from v to
f(v) = v, to f(v1) = vy, and so on.

Claim: P, terminates at t.

Claim: P, is the shortest path in G from v to t.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming



Bellman-Ford Algorithm: One Array

M[v] = min (M[v], min (e + M[Wl))

@ We can prove algorithm's correctness in this case as well.
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Shortest Paths

Bellman-Ford Algorithm: Early Termination

MIv] = min <M[v], min (cow + M[W]))

@ In general, after i iterations, the path whose length is M[v] may have many
more than i edges.
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Bellman-Ford Algorithm: Early Termination

M[v] = min <M[v], Mr,glﬁ (cw + M[W]))

@ In general, after i iterations, the path whose length is M[v] may have many
more than i edges.

o Early termination: If M does not change after processing all the nodes, we
have computed all the shortest paths to t.

T. M. Murali September 26, October 1, 3, 8, 2018 Dynamic Programming
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