NP and Computational Intractability

T. M. Murali

November 7, 12, 2018

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding.

 $O(nm^2)$ maximum flow and minimum cuts.

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(nm^2)$ maximum flow and minimum cuts.

Image segmentation \leq_P Minimum s-t cut

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
- "Anti-patterns"
 - NP-completeness.
 - PSPACE-completeness.
 - Undecidability.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points.

 $O(n^3)$ RNA folding. $O(nm^2)$ maximum flow and minimum cuts. IMAGE SEGMENTATION \leq_P MINIMUM s-t CUT

 $O(n^k)$ algorithm unlikely. $O(n^k)$ certification algorithm unlikely. No algorithm possible.

Computational Tractability

• When is an algorithm an efficient solution to a problem?

Introduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Computational Tractability

• When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

Introduction Reductions NP NP-Complete NP vs. co-NP

Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

Polynomial time	Probably not
Shortest path	Longest path
Matching	3-D matching
Minimum cut	Maximum cut
2-SAT	3-SAT
Planar four-colour	Planar three-colour
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Introduction Reductions NP NP-Complete NP vs. co-NP

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- Y is polynomial-time reducible to X ($Y \leq_P X$)

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- Y is polynomial-time reducible to X $(Y \leq_P X)$ if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.

duction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Polynomial-Time Reduction

Maximum Bipartite Matching \leq_P Maximum s-t Flow

T. M. Murali November 7, 12, 2018 NP and Computational Intractability

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- Y is polynomial-time reducible to X $(Y \leq_P X)$ if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- Y is polynomial-time reducible to X $(Y \leq_P X)$ if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.
 - ► MAXIMUM BIPARTITE MATCHING <_P MAXIMUM s-t Flow
 - ► IMAGE SEGMENTATION < P MINIMUM s-t CUT

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- Y is polynomial-time reducible to X $(Y \leq_P X)$ if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.
 - ► MAXIMUM BIPARTITE MATCHING < MAXIMUM s-t FLOW
 - ► IMAGE SEGMENTATION < P MINIMUM s-t CUT
- $Y \leq_P X$ implies that "X is at least as hard as Y."
- Such reductions are Karp reductions. Cook reductions allow a polynomial number of calls to the black box that solves X.

November 7, 12, 2018 NP and Computational Intractability ntroduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Usefulness of Reductions

• Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.

Usefulness of Reductions

- Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- Contrapositive: If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- Informally: If Y is hard, and we can show that Y reduces to X, then the hardness "spreads" to X.

Reduction Strategies

- Simple equivalence.
- Special case to general case.
- Encoding with gadgets.

ntroduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the *largest* flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.

ntroduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the *closest* pair of points.
 - ► Find the schedule with the *least* completion time.
- Now, we will focus on decision versions of problems, e.g., is there a flow with value at least k, for a given value of k?
- Decision problem: answer to every input is yes or no.

PRIMES

INSTANCE: A natural number *n*

QUESTION: Is *n* prime?

Independent Set and Vertex Cover

- Given an undirected graph G(V, E), a subset S ⊆ V is an independent set if no two vertices in S are connected by an edge.
 Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set and Vertex Cover

- Given an undirected graph G(V, E), a subset S ⊆ V is an independent set if no two vertices in S are connected by an edge.
 Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

- Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does G contain a

vertex cover of size $\leq I$?

- Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does G contain an independent set of size > k?

Vertex cover.

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does G contain a

vertex cover of size ≤ 1 ?

Demonstrate simple equivalence between these two problems.

Independent Set and Vertex Cover

- Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover.

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does G contain a

vertex cover of size $\leq I$?

- Demonstrate simple equivalence between these two problems.
- Claim: INDEPENDENT SET ≤_P VERTEX COVER and VERTEX COVER ≤_P INDEPENDENT SET.

Strategy for Proving Indep. Set \leq_P Vertex Cover

ntroduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Strategy for Proving Indep. Set \leq_P Vertex Cover

- Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- **9** From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- G' related to G in some way.
- \blacktriangleright I can depend upon k and size of G.

9 Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.

Introduction Reductions \mathcal{NP} $\mathcal{NP} ext{-}\mathsf{Complete}$ \mathcal{NP} vs. co- \mathcal{NP}

Strategy for Proving Indep. Set \leq_P Vertex Cover

- Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- **②** From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- G' related to G in some way.
- ▶ I can depend upon k and size of G.

- **9** Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.
 - Transformation and proof must be correct for all possible graphs G(V, E) and all possible values of k.
 - Why is the proof an iff statement?

Introduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Reason for Two-Way Proof

• Why is the proof an iff statement?

Introduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Reason for Two-Way Proof

- Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.
 - ① If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq l$, so that we know that the black box will find this vertex cover.
 - If the black box finds a vertex cover of size $\leq I$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.

T. M. Murali November 7, 12, 2018 NP and Computational Intractability

roduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Proof that Independent Set \leq_P **Vertex Cover**

- **①** Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- ② Let |V| = n.
- **3** Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer I = n k.

Proof that Independent Set \leq_P **Vertex Cover**

- Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- ② Let |V| = n.
- **OVER:** Same undirected graph G(V, E) and integer l = n - k.
- Claim: G(V, E) has an independent set of size $\geq k$ iff G(V, E) has a vertex cover of size < n - k.

Proof: S is an independent set in G iff V - S is a vertex cover in G.

T. M. Murali November 7, 12, 2018 NP and Computational Intractability

Proof that Independent Set \leq_P **Vertex Cover**

- Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- ② Let |V| = n.
- \odot Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer l = n - k.
- Claim: G(V, E) has an independent set of size $\geq k$ iff G(V, E) has a vertex cover of size < n - k.
 - Proof: S is an independent set in G iff V S is a vertex cover in G.
 - Same idea proves that VERTEX COVER < P INDEPENDENT SET

T. M. Murali November 7, 12, 2018 NP and Computational Intractability

Vertex Cover and Set Cover

- INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in U?

Vertex Cover and Set Cover

- INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in U?

Vertex Cover and Set Cover

- INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in U?

Vertex Cover \leq_P **Microbe Cover**

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = I.
- Create an instance $\{U, \{M_1, M_2, \dots M_l\}\}$ of MICROBE COVER where

Vertex Cover \leq_P **Microbe Cover**

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = I.
- ullet Create an instance $\left\{U,\left\{M_1,M_2,\ldots M_l
 ight\}\right\}$ of MICROBE COVER where
 - ullet U=E, i.e., each element of U is an edge of G, and
 - ▶ for each node $i \in V$, create a microbe M_i whose compounds are the set of edges incident on i.

Reductions

Vertex Cover \leq_P Microbe Cover

n = 10, l = 7

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = I.
- Create an instance $\{U, \{M_1, M_2, \dots M_l\}\}$ of MICROBE COVER where
 - V = E, i.e., each element of U is an edge of G, and
 - for each node $i \in V$, create a microbe M_i whose compounds are the set of edges incident on i.
- Claim: U can be covered with $\leq k$ microbes iff G has a vertex cover with at < k nodes.
- Proof strategy:
 - **1** If G has a vertex cover of size $\leq k$, then U can be covered with $\leq k$ microbes.
 - ② If U can be covered with $\leq k$ microbes, then G has a vertex cover of size $\leq k$.

Microbe Cover and Set Cover

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in U?

• Purely combinatorial problem: a "microbe" is just a set of "compounds."

n = 10, l = 6

Microbe Cover and Set Cover

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in U?

Purely combinatorial problem: a "microbe" is just a set of "compounds."
 SET COVER

n = 10, l = 6

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is U?

troduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Boolean Satisfiability

• Abstract problems formulated in Boolean notation.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Given a set $X = \{x_1, x_2, \dots, x_n\}$ of n Boolean variables.
- Each variable can take the value 0 or 1.
- Term: a variable x_i or its negation $\overline{x_i}$.
- Clause of length I: (or) of I distinct terms $t_1 \vee t_2 \vee \cdots t_I$.
- *Truth assignment* for X: is a function $\nu: X \to \{0,1\}$.
- An assignment ν satisfies a clause C if it causes at least one term in C to evaluate to 1 (since C is an or of terms).
- An assignment satisfies a collection of clauses $C_1, C_2, \dots C_k$ if it causes all clauses to evaluate to 1, i.e., $C_1 \wedge C_2 \wedge \dots C_k = 1$.
 - \triangleright ν is a satisfying assignment with respect to $C_1, C_2, \ldots C_k$.
 - ▶ set of clauses $C_1, C_2, ..., C_k$ is satisfiable.

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:

$$x_1 \vee \overline{x_2} \vee \overline{x_3}$$

$$x_2 \vee \overline{x_3} \vee x_4$$

$$x_3 \vee \overline{x_4}$$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:

$$x_1 \lor \overline{x_2} \lor \overline{x_3} x_2 \lor \overline{x_3} \lor x_4 x_3 \lor \overline{x_4}$$

• Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:

$$x_1 \lor \overline{x_2} \lor \overline{x_3} x_2 \lor \overline{x_3} \lor x_4 x_3 \lor \overline{x_4}$$

• Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$

$$X_1 \lor \overline{X_2} \lor \overline{X_3}$$

 $X_2 \lor \overline{X_3} \lor X_4$
 $X_3 \lor \overline{X_4}$

Not a satisfying assignment

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:

$$x_1 \lor \overline{x_2} \lor \overline{x_3} x_2 \lor \overline{x_3} \lor x_4 x_3 \lor \overline{x_4}$$

• Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$

$$X_1 \lor \overline{X_2} \lor \overline{X_3}$$

 $X_2 \lor \overline{X_3} \lor X_4$
 $X_3 \lor \overline{X_4}$

- Not a satisfying assignment
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:

$$x_1 \lor \overline{x_2} \lor \overline{x_3} x_2 \lor \overline{x_3} \lor x_4 x_3 \lor \overline{x_4}$$

• Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$

$$x_1 \lor \overline{x_2} \lor \overline{x_3}$$

 $x_2 \lor \overline{x_3} \lor x_4$
 $x_3 \lor \overline{x_4}$

Not a satisfying assignment

• Assignment:
$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$$

$$x_1 \lor \overline{x_2} \lor \overline{x_3}$$

$$x_2 \lor \overline{x_3} \lor x_4$$

$$x_3 \lor \overline{x_4}$$

Is a satisfying assignment

SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$ over a set $X = \{x_1, x_2, ..., x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- SAT and 3-SAT are fundamental combinatorial search problems.
- We have to make *n* independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable?

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- ② Is $C_1 \wedge C_3$ satisfiable?

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- ② Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- ② Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **3** Is $C_2 \wedge C_3$ satisfiable?

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- ② Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **3** Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- ② Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **3** Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- Is $C_1 \wedge C_2 \wedge C_3$ satisfiable?

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- ② Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **3** Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- **9** Is $C_1 \wedge C_2 \wedge C_3$ satisfiable? No.

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$

$$C_2 = \overline{x_1} \vee x_2 \vee x_4$$

$$C_3 = \overline{x_1} \vee x_3 \vee \overline{x_4}$$

• We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET}$.

- We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET}$.
- Two ways to think about 3-SAT:
 - lacktriangledown Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$
 • Select $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$.

$$C_2 = \overline{x_1} \vee x_2 \vee x_4$$

 $C_2 = \overline{X_1} \vee X_2 \vee X_4$ Ohoose one literal from each clause to evaluate to true.

$$C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$$

- We want to prove 3-SAT \leq_P INDEPENDENT SET.
- Two ways to think about 3-SAT:
 - \bigcirc Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, e.g., select $\overline{x_2}$ in C_1 and x_2 in C_2 .

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$
 • Select $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$.

$$C_2 = \overline{x_1} \lor x_2 \lor x_4$$

$$C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$$

Choose one literal from each clause to evaluate to true.

► Choices of selected literals imply
$$x_1 = 0, x_2 = 0, x_4 = 1$$
.

- We want to prove 3-SAT \leq_P INDEPENDENT SET.
- Two ways to think about 3-SAT:
 - \bigcirc Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, e.g., select $\overline{x_2}$ in C_1 and x_2 in C_2 .

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$

$$C_2 = \overline{x_1} \lor x_2 \lor x_4$$

$$C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$$

- We are given an instance of 3-SAT with *k* clauses of length three over *n* variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.

- We are given an instance of 3-SAT with k clauses of length three over nvariables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.
 - ▶ For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - ▶ Label each node v_{ii} , $1 \le j \le 3$ with the *j*th term in C_i .

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.
 - ▶ For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - ▶ Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .
 - Add an edge between each pair of nodes whose labels correspond to terms that conflict.

• Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.

- Claim: $3\text{-}\mathrm{SAT}$ instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment \rightarrow independent set of size k:

ntroduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Proving 3-SAT \leq_P Independent Set

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment \rightarrow independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?

oduction Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}

Proving 3-SAT \leq_P Independent Set

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment \rightarrow independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size $k \rightarrow \text{satisfiable assignment}$:

Proving 3-SAT \leq_P Independent Set

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment \rightarrow independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
 - ▶ For each variable x_i , only x_i or $\overline{x_i}$ is the label of a node in S. Why?

Proving 3-SAT \leq_P Independent Set

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment \rightarrow independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size $k \to \text{satisfiable assignment: the size of this set is } k$. How do we construct a satisfying truth assignment from the nodes in the independent set?
 - ▶ For each variable x_i , only x_i or $\overline{x_i}$ is the label of a node in S. Why?
 - ▶ If x_i is the label of a node in S, set $x_i = 1$; else set $x_i = 0$.
 - Why is each clause satisfied?

T. M. Murali November 7, 12, 2018 NP and Computational Intractability

Transitivity of Reductions

• Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.

Transitivity of Reductions

- Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- We have shown

3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least *k*?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least *k*?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between *finding* a solution and *checking* a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.

Primes

INSTANCE: A natural number *n*

QUESTION: Is *n* prime?

• Decision problem X: for every input s, answer X(s) is yes or no.

Primes

INSTANCE: A natural number *n*

QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes}, \text{no}\}.$
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no

Primes

INSTANCE: A natural number *n*

QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{yes, no\}.$
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ► There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).

Primes

INSTANCE: A natural number *n*

QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes}, \text{no}\}.$
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ► There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).
- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

Primes

INSTANCE: A natural number *n*

QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes}, \text{no}\}.$
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ► There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).
- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

A decision problem X is in \mathcal{P} iff there is an algorithm A with polynomial running time that solves X.

- ullet A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- An algorithm B is an efficient certifier for a problem X if
 - B is a polynomial time algorithm that takes two inputs s and t and
 - of for all inputs s
 - * X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - ★ the size of t is polynomial in the size of s.

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- An algorithm B is an efficient certifier for a problem X if
 - \bigcirc B is a polynomial time algorithm that takes two inputs s and t and
 - for all inputs s
 - * X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - ★ the size of t is polynomial in the size of s.
- Certifier's job is to take a candidate certificate (t) that $s \in X$ and check in polynomial time whether t is a correct certificate.
- Certificate t must be "short" so that certifier can run in polynomial time.

T. M. Murali November 7, 12, 2018 NP and Computational Intractability

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- ullet An algorithm B is an efficient certifier for a problem X if
 - lacktriangledown B is a polynomial time algorithm that takes two inputs s and t and
 - of for all inputs s
 - * X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - * the size of t is polynomial in the size of s.
- Certifier's job is to take a candidate certificate (t) that $s \in X$ and check in polynomial time whether t is a correct certificate.
- Certificate t must be "short" so that certifier can run in polynomial time.
- Certifier does not care about how to find these certificates.

T. M. Murali

 \mathcal{NP}

ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - ► Certificate *t*: a truth assignment to the variables.
 - Certifier B:

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - ► Certificate *t*: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate t: a truth assignment to the variables.
 - ▶ Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- Independent Set $\in \mathcal{NP}$:
 - Certificate t:
 - Certifier B:

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate t: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- Independent Set $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - Certifier B:

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate t: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- Independent Set $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - ► Certifier B: checks that no pair of these vertices are connected by an edge.

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate t: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- Independent Set $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - ► Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate t:
 - Certifier B:

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate t: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- Independent Set $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - ► Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate t: a list of k sets from the collection.
 - Certifier B:

- ullet \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- ullet \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate t: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- Independent Set $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - ► Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate t: a list of k sets from the collection.
 - Certifier B: checks if their union of these sets is U.

 ${\mathcal P}$ vs. ${\mathcal N}{\mathcal P}$

• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

$$\mathcal P$$
 vs. $\mathcal N\mathcal P$

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - ▶ Let X be any problem in \mathcal{P} .
 - ▶ There is a polynomial time algorithm *A* that solves *X*.

$$\mathcal P$$
 vs. $\mathcal N\mathcal P$

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - Let X be any problem in \mathcal{P} .
 - ▶ There is a polynomial time algorithm *A* that solves *X*.
 - \triangleright B ignores t and simply returns A(s). Why is B an efficient certifier?

$$\mathcal P$$
 vs. $\mathcal N\mathcal P$

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - Let X be any problem in \mathcal{P} .
 - ▶ There is a polynomial time algorithm *A* that solves *X*.
 - ▶ B ignores t and simply returns A(s). Why is B an efficient certifier?
- Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$?

$\mathcal P$ vs. $\mathcal N\mathcal P$

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - ▶ Let X be any problem in \mathcal{P} .
 - ▶ There is a polynomial time algorithm *A* that solves *X*.
 - ▶ B ignores t and simply returns A(s). Why is B an efficient certifier?
- Is $\mathcal{P}=\mathcal{NP}$ or is $\mathcal{NP}-\mathcal{P}\neq\emptyset$? One of the major unsolved problems in computer science.

$\mathcal P$ vs. $\mathcal N\mathcal P$

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - Let X be any problem in \mathcal{P} .
 - ► There is a polynomial time algorithm *A* that solves *X*.
 - ▶ B ignores t and simply returns A(s). Why is B an efficient certifier?
- Is $\mathcal{P}=\mathcal{NP}$ or is $\mathcal{NP}-\mathcal{P}\neq\emptyset$? One of the major unsolved problems in computer science. \$1M prize offered by Clay Mathematics Institute.

Summary

- $\mathcal{P} \subseteq \mathcal{NP}$
- 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- 3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER

Summary

- $\mathcal{P} \subset \mathcal{NP}$
- 3-SAT, VertexCover, SetCover, IndependentSet are in \mathcal{NP} .
- 3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER
- What is the structure of the problems in \mathcal{NP} ?

Summary

- $\mathcal{P} \subset \mathcal{NP}$
- ullet 3-SAT, VertexCover, SetCover, IndependentSet are in \mathcal{NP} .
- 3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER
- What is the structure of the problems in \mathcal{NP} ?
 - Is there a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , such that $X_1 <_P X_2 <_P X_3 <_P \ldots$?

Summary

- $\mathcal{P} \subset \mathcal{NP}$
- ullet 3-SAT, VertexCover, SetCover, IndependentSet are in \mathcal{NP} .
- 3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER
- What is the structure of the problems in \mathcal{NP} ?
 - Is there a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , such that $X_1 <_P X_2 <_P X_3 <_P \ldots$?
 - **3** Are there two problems X_1 and X_2 in \mathcal{NP} such that there is no problem $X \in \mathcal{NP}$ where $X_1 \leq_P X$ and $X_2 \leq_P X$?

$\mathcal{NP}\text{-}\textbf{Complete}$ and $\mathcal{NP}\text{-}\textbf{Hard}$ Problems

ullet What are the hardest problems in \mathcal{NP} ?

$\mathcal{NP} ext{-}\mathbf{Complete}$ and $\mathcal{NP} ext{-}\mathbf{Hard}$ Problems

ullet What are the hardest problems in \mathcal{NP} ?

A problem X is \mathcal{NP} -Complete if A problem X is \mathcal{NP} -Hard if

- $X \in \mathcal{NP}$ and
- one for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

$\mathcal{NP}\text{-}\textbf{Complete}$ and $\mathcal{NP}\text{-}\textbf{Hard}$ Problems

• What are the hardest problems in \mathcal{NP} ?

A problem X is \mathcal{NP} -Hard if

- A problem X is \mathcal{NP} -Complete if

 $X \in \mathcal{NP}$ and

of for every problem $Y \in \mathcal{NP}$, $Y \leq_{P} X$.

• Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.

\mathcal{NP} -Complete and \mathcal{NP} -Hard Problems

ullet What are the hardest problems in \mathcal{NP} ?

A problem X is \mathcal{NP} -Hard if

A problem X is \mathcal{NP} -Complete if

 $X \in \mathcal{NP}$ and

on for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

- Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP} -Complete problem can be solved in polynomial time.

$\mathcal{NP}\text{-}\mathbf{Complete}$ and $\mathcal{NP}\text{-}\mathbf{Hard}$ Problems

• What are the hardest problems in \mathcal{NP} ?

A problem X is \mathcal{NP} -Complete if A problem X is \mathcal{NP} -Hard if

- $X \in \mathcal{NP}$ and
- of for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

- Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP} -Complete problem can be solved in polynomial time.
- Does even one \mathcal{NP} -Complete problem exist?! If it does, how can we prove that *every* problem in \mathcal{NP} reduces to this problem?

Circuit Satisfiability

ullet Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.

Circuit Satisfiability

- ullet Cook-Levin Theorem: CIRCUIT SATISFIABILITY is $\mathcal{NP}\text{-}\mathsf{Complete}.$
- A circuit K is a labelled, directed acyclic graph such that
 - 1 the sources in K are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - ullet every other node is labelled with one Boolean operator \wedge , \vee , or \neg .
 - \odot a single node with no outgoing edges represents the *output* of K.

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Circuit Satisfiability

- Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - 1 the sources in K are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - ② every other node is labelled with one Boolean operator \land , \lor , or \neg .
 - \odot a single node with no outgoing edges represents the *output* of K.

CIRCUIT SATISFIABILITY

INSTANCE: A circuit *K*.

QUESTION: Is there a truth assignment to the inputs that causes the output to have value 1?

 $\textbf{Figure 8.4} \ \ \text{A circuit with three inputs, two additional sources that have assigned truth values, and one output.}$

Skip proof: read textbook or Chapter 2.6 of Garey and Johnson.

• Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - can be represented by an equivalent circuit and
 - ② if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - can be represented by an equivalent circuit and
 - ② if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - can be represented by an equivalent circuit and
 - ② if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X?

Proving Circuit Satisfiability is \mathcal{NP} -Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - can be represented by an equivalent circuit and
 - ② if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot,\cdot)$.

Proving Circuit Satisfiability is \mathcal{NP} -Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1 can be represented by an equivalent circuit and
 - ② if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
- To determine whether $s \in X$, we ask "Is there a certificate t of length p(n) such that B(s,t) = yes?"

• To determine whether $s \in X$, we ask "Is there a certificate t of length p(|s|) such that B(s,t) = yes?"

- To determine whether $s \in X$, we ask "Is there a certificate t of length p(|s|) such that B(s,t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - lacktriangledown First n sources are hard-coded with the bits of s.
 - ② The remaining p(n) sources labelled with variables representing the bits of t.

Proving Circuit Satisfiability is \mathcal{NP} -Complete

- To determine whether $s \in X$, we ask "Is there a certificate t of length p(|s|) such that B(s,t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - First *n* sources are hard-coded with the bits of *s*.
 - ② The remaining p(n) sources labelled with variables representing the bits of t.
- $s \in X$ iff there is an assignment of the input bits of K that makes K satisfiable.

Example of Transformation to Circuit Satisfiability

• Does a graph G on n nodes have a two-node independent set?

Example of Transformation to Circuit Satisfiability

- Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- *t* encodes the independent set with *n* bits.
- Certifier needs to check if
 - 1 at least two bits in t are set to 1 and
 - On two bits in t are set to 1 if they form the ends of an edge (the corresponding bit in s is set to 1).

Example of Transformation to Circuit Satisfiability

• Suppose G contains three nodes u, v, and w with v connected to u and w.

Example of Transformation to Circuit Satisfiability

• Suppose G contains three nodes u, v, and w with v connected to u and w.

 $\textbf{Figure 8.5} \ \, \text{A circuit to verify whether a 3-node graph contains a 2-node independent set.}$

Asymmetry of Certification

- \bullet Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input s is a "yes" instance iff there exists a short certificate t such that B(s,t) = yes.
 - An input s is a "no" instance iff for all short certificates t, B(s,t) = no.

Asymmetry of Certification

- \bullet Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input s is a "yes" instance iff there exists a short certificate t such that B(s,t) = yes.
 - An input s is a "no" instance iff for all short certificates t, B(s,t) = no. The definition of \mathcal{NP} does not guarantee a short proof for "no" instances.

$$co-\mathcal{NP}$$

• For a decision problem X, its complementary problem \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.

$$co-\mathcal{NP}$$

- For a decision problem X, its complementary problem \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$,

$$co-\mathcal{NP}$$

- For a decision problem X, its complementary problem \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.

$$co-\mathcal{NP}$$

- For a decision problem X, its complementary problem \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$?

$$co-\mathcal{NP}$$

- For a decision problem X, its *complementary problem* \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} .

$$\operatorname{co-}\mathcal{NP}$$

- For a decision problem X, its complementary problem \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} .

• Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?

$$co-\mathcal{NP}$$

- For a decision problem X, its complementary problem \overline{X} is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} .

- Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?
- Claim: If $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ then $\mathcal{P} \neq \mathcal{NP}$.

- \bullet If a problem belongs to both \mathcal{NP} and co- $\!\mathcal{NP}\!$, then
 - ▶ When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.

- \bullet If a problem belongs to both \mathcal{NP} and co- $\!\mathcal{NP}\!$, then
 - When the answer is yes, there is a short proof.
 - ▶ When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.

- \bullet If a problem belongs to both \mathcal{NP} and co- $\!\mathcal{NP}\!$, then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least ν.
 - No: demonstrate a cut with capacity less than ν.

Good Characterisations: the Class $\mathcal{NP} \cap \mathbf{co}\text{-}\mathcal{NP}$

- ullet If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - ▶ When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least ν.
 - ▶ No: demonstrate a cut with capacity less than ν .

• Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

- ullet If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least ν.
 - ▶ No: demonstrate a cut with capacity less than ν .

- Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?