
Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Coping with NP-Completeness

T. M. Murali

November 28, Dec 3, 5, 2018

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Examples of Hard Computational Problems
(from Kevin Wayne’s slides at Princeton University)

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.
Chemical engineering: heat exchanger network synthesis.
Civil engineering: equilibrium of urban traffic flow.
Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.
Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.
Operations research: optimal resource allocation.
Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency.
Statistics: optimal experimental design.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Do We Tackle an NP-Complete Problem?

(Garey and Johnson, Computers and Intractability)

These problems come up in real life.
NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Do We Tackle an NP-Complete Problem?

These problems come up in real life.

NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Do We Tackle an NP-Complete Problem?

These problems come up in real life.
NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Do We Tackle an NP-Complete Problem?

These problems come up in real life.

NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Do We Tackle an NP-Complete Problem?

These problems come up in real life.
NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Do We Tackle an NP-Complete Problem?

These problems come up in real life.

NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

The problem has two parameters: k and n, the number of nodes in G .

What is the running time of a brute-force algorithm?

O(kn
(
n
k

)
) = O(knk+1).

Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

The problem has two parameters: k and n, the number of nodes in G .

What is the running time of a brute-force algorithm? O(kn
(
n
k

)
) = O(knk+1).

Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

The problem has two parameters: k and n, the number of nodes in G .

What is the running time of a brute-force algorithm? O(kn
(
n
k

)
) = O(knk+1).

Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing the Vertex Cover Algorithm

Intution: if a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

Easy part of algorithm: Return no if G has more than kn edges.

G − {u} is the graph G without node u and the edges incident on u.

Consider an edge (u, v). Either u or v must be in the vertex cover.

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing the Vertex Cover Algorithm

Intution: if a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

Easy part of algorithm: Return no if G has more than kn edges.

G − {u} is the graph G without node u and the edges incident on u.

Consider an edge (u, v). Either u or v must be in the vertex cover.

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing the Vertex Cover Algorithm

Intution: if a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

Easy part of algorithm: Return no if G has more than kn edges.

G − {u} is the graph G without node u and the edges incident on u.

Consider an edge (u, v). Either u or v must be in the vertex cover.

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing the Vertex Cover Algorithm

Intution: if a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

Easy part of algorithm: Return no if G has more than kn edges.

G − {u} is the graph G without node u and the edges incident on u.

Consider an edge (u, v). Either u or v must be in the vertex cover.

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing the Vertex Cover Algorithm

Intution: if a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

Easy part of algorithm: Return no if G has more than kn edges.

G − {u} is the graph G without node u and the edges incident on u.

Consider an edge (u, v). Either u or v must be in the vertex cover.

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing the Vertex Cover Algorithm

Intution: if a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

Easy part of algorithm: Return no if G has more than kn edges.

G − {u} is the graph G without node u and the edges incident on u.

Consider an edge (u, v). Either u or v must be in the vertex cover.

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Vertex Cover Algorithm

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing the Vertex Cover Algorithm

Develop a recurrence relation for the algorithm with parameters

n and k.

Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

T (n, 1) ≤ cn.

T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

Claim: T (n, k) = O(2kkn).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing the Vertex Cover Algorithm

Develop a recurrence relation for the algorithm with parameters n and k.

Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

T (n, 1) ≤ cn.

T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

Claim: T (n, k) = O(2kkn).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing the Vertex Cover Algorithm

Develop a recurrence relation for the algorithm with parameters n and k.

Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

T (n, 1) ≤ cn.

T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

Claim: T (n, k) = O(2kkn).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing the Vertex Cover Algorithm

Develop a recurrence relation for the algorithm with parameters n and k.

Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

T (n, 1) ≤ cn.

T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

Claim: T (n, k) = O(2kkn).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing the Vertex Cover Algorithm

Develop a recurrence relation for the algorithm with parameters n and k.

Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

T (n, 1) ≤ cn.

T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

Claim: T (n, k) = O(2kkn).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Solving NP-Hard Problems on Trees

“NP-Hard”: at least as hard as NP-Complete. We will use NP-Hard to
refer to optimisation versions of decision problems.

Many NP-Hard problems can be solved efficiently on trees.

Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v . Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v ’s subtree from the
rest of the tree.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Solving NP-Hard Problems on Trees

“NP-Hard”: at least as hard as NP-Complete. We will use NP-Hard to
refer to optimisation versions of decision problems.

Many NP-Hard problems can be solved efficiently on trees.

Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v . Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v ’s subtree from the
rest of the tree.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.

Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v . Prove by exchange argument.

I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.
Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v .

Prove by exchange argument.
I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.
Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v . Prove by exchange argument.

I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.
Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v . Prove by exchange argument.

I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Algorithm for Independent Set

A forest is a graph where every connected component is a tree.

Running time of the algorithm is O(n).

The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Algorithm for Independent Set

A forest is a graph where every connected component is a tree.

Running time of the algorithm is O(n).

The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Algorithm for Independent Set

A forest is a graph where every connected component is a tree.

Running time of the algorithm is O(n).

The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Maximum Weight Independent Set

Consider the Independent Set problem but with a weight wv on every
node v .

Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

Suggests dynamic programming algorithm.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Maximum Weight Independent Set

Consider the Independent Set problem but with a weight wv on every
node v .

Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

Can we extend the greedy algorithm?

Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

Suggests dynamic programming algorithm.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Maximum Weight Independent Set

Consider the Independent Set problem but with a weight wv on every
node v .

Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

Suggests dynamic programming algorithm.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Maximum Weight Independent Set

Consider the Independent Set problem but with a weight wv on every
node v .

Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

Suggests dynamic programming algorithm.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Maximum Weight Independent Set

Consider the Independent Set problem but with a weight wv on every
node v .

Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

Suggests dynamic programming algorithm.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Dynamic Programming Algorithm

Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

What are the sub-problems?

I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

Ordering the sub-problems: start at leaves and work our way up to the root.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Dynamic Programming Algorithm

Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

What are the sub-problems?
I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

Ordering the sub-problems: start at leaves and work our way up to the root.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Designing Dynamic Programming Algorithm

Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

What are the sub-problems?
I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

Ordering the sub-problems: start at leaves and work our way up to the root.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

Recurrence: Include u or exclude u.
1 If we include u, all children must be excluded.

OPTin(u) = wu +
∑

v∈children(u) OPTout(v)
2 If we exclude u, a child may or may not be excluded.

OPTout(u) =
∑

v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

Base cases:

For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

Recurrence: Include u or exclude u.
1 If we include u, all children must be excluded.

OPTin(u) = wu +
∑

v∈children(u) OPTout(v)
2 If we exclude u, a child may or may not be excluded.

OPTout(u) =
∑

v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

Recurrence: Include u or exclude u.

1 If we include u, all children must be excluded.
OPTin(u) = wu +

∑
v∈children(u) OPTout(v)

2 If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

Recurrence: Include u or exclude u.
1 If we include u, all children must be excluded.

OPTin(u) = wu +
∑

v∈children(u) OPTout(v)

2 If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

Recurrence: Include u or exclude u.
1 If we include u, all children must be excluded.

OPTin(u) = wu +
∑

v∈children(u) OPTout(v)
2 If we exclude u, a child may or may not be excluded.

OPTout(u) =
∑

v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming Algorithm

Running time of the algorithm is O(n).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming Algorithm

Running time of the algorithm is O(n).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithms

Methods for optimisation versions of NP-Complete problems.

Run in polynomial time.

Solution returned is guaranteed to be within a small factor of the optimal
solution

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithm for VertexCover
EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: C ← ∅

, E ′ ← ∅

{C will be the vertex cover}
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: {Update C using u and/or v}
5: {Update G using u and/or v}
6:

Add (u, v) to E ′ {Keep track of edges for bookkeeping.}

7: end while
8: return C

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithm for VertexCover
EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: C ← ∅

, E ′ ← ∅

{C will be the vertex cover}
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: {Update G using u and/or v}
6:

Add (u, v) to E ′ {Keep track of edges for bookkeeping.}

7: end while
8: return C

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithm for VertexCover
EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: C ← ∅, E ′ ← ∅ {C will be the vertex cover}
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v} {Delete u, v , and all incident edges from G .}
6: Add (u, v) to E ′ {Keep track of edges for bookkeeping.}
7: end while
8: return C

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithm for VertexCover
EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: C ← ∅, E ′ ← ∅ {C will be the vertex cover}
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v} {Delete u, v , and all incident edges from G .}
6: Add (u, v) to E ′ {Keep track of edges for bookkeeping.}
7: end while
8: return C

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithm for VertexCover
EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: C ← ∅, E ′ ← ∅ {C will be the vertex cover}
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v} {Delete u, v , and all incident edges from G .}
6: Add (u, v) to E ′ {Keep track of edges for bookkeeping.}
7: end while
8: return C

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Algorithm for VertexCover
EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: C ← ∅, E ′ ← ∅ {C will be the vertex cover}
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v} {Delete u, v , and all incident edges from G .}
6: Add (u, v) to E ′ {Keep track of edges for bookkeeping.}
7: end while
8: return C

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is

linear in the size of the graph.
Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.

Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.
Claim: C is a vertex cover.

Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.
Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.

Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.
Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.

Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.
Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.
Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).

No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysis of EasyVertexCover

EasyVertexCover(G)

1: C ← ∅, E ′ ← ∅
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: G ← G − {u, v}
6: Add (u, v) to E ′

7: end while
8: return C

Running time is linear in the size of the graph.
Claim: C is a vertex cover.
Claim: No two edges in E ′ can be covered by the same node.
Claim: The size c∗ of the smallest vertex cover is at least |E ′|.
Claim: |C | = 2|E ′| ≤ 2c∗

No approximation algorithm with a factor better than 1.3606 is possible
unless P = NP (Dinur and Safra, 2005).
No approximation algorithm with a factor better than 2 is possible if the
“unique games conjecture” is true (Khot and Regev, 2008).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Load Balancing Problem

1

4
3

1 1
2

1
2

4

Jobs

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

Given set of m machines M1,M2, . . .Mm.

Given a set of n jobs: job j has processing time tj .

Assign each job to one machine so that the total time spent is minimised.

Let A(i) be the set of jobs assigned to machine Mi .

Total time spent on machine i is Ti =
∑

k∈A(i) tk .

Minimise makespan T = maxi Ti , the largest load on any machine.

Minimising makespan is NP-Complete.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Load Balancing Problem

1

4
3

1 1
2

1
2

4

1

1
1

1

3
3 4

42 2

Jobs Machines

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

1 2 3
4

5
6 7 8
9 10

Given set of m machines M1,M2, . . .Mm.

Given a set of n jobs: job j has processing time tj .

Assign each job to one machine so that the total time spent is minimised.

Let A(i) be the set of jobs assigned to machine Mi .

Total time spent on machine i is Ti =
∑

k∈A(i) tk .

Minimise makespan T = maxi Ti , the largest load on any machine.

Minimising makespan is NP-Complete.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Load Balancing Problem

1

4
3

1 1
2

1
2

4

1

1
1

1

3
3 4

42 2

Jobs Machines

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

1 2 3
4

5
6 7 8
9 10

Given set of m machines M1,M2, . . .Mm.

Given a set of n jobs: job j has processing time tj .

Assign each job to one machine so that the total time spent is minimised.

Let A(i) be the set of jobs assigned to machine Mi .

Total time spent on machine i is Ti =
∑

k∈A(i) tk .

Minimise makespan T = maxi Ti , the largest load on any machine.

Minimising makespan is NP-Complete.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy-Balance Algorithm

Adopt a greedy approach (Graham, 1966).

Process jobs in any order.

Assign next job to the processor that has smallest total load so far.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Example of Greedy-Balance Algorithm

1

4
3

1 1
2

1
2

4

1

1
1

1

3
3 4

42 2

Jobs Machines

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

1 2 3
4

5
6 7 8
9 10

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Lower Bounds on the Optimal Makespan

We need a lower bound on the optimum makespan T ∗.

The two bounds below will suffice:

T ∗ ≥ 1

m

∑
j

tj

T ∗ ≥ max
j

tj

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Lower Bounds on the Optimal Makespan

We need a lower bound on the optimum makespan T ∗.

The two bounds below will suffice:

T ∗ ≥ 1

m

∑
j

tj

T ∗ ≥ max
j

tj

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing Greedy-Balance
Machines Claim: Computed makespan T ≤ 2T ∗.

Let Mi be the machine whose load is T
and j be the last job placed on Mi .

What was the situation just before
placing this job?

Mi had the smallest load and its load
was T − tj .

For every machine Mk , load
Tk ≥ T − tj .∑

k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing Greedy-Balance
Machines

Added
after j

Claim: Computed makespan T ≤ 2T ∗.

Let Mi be the machine whose load is T
and j be the last job placed on Mi .

What was the situation just before
placing this job?

Mi had the smallest load and its load
was T − tj .

For every machine Mk , load
Tk ≥ T − tj .∑

k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing Greedy-Balance
Machines

Added
after j

Claim: Computed makespan T ≤ 2T ∗.

Let Mi be the machine whose load is T
and j be the last job placed on Mi .

What was the situation just before
placing this job?

Mi had the smallest load and its load
was T − tj .

For every machine Mk , load
Tk ≥ T − tj .

∑
k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analysing Greedy-Balance
Machines

Added
after j

Claim: Computed makespan T ≤ 2T ∗.

Let Mi be the machine whose load is T
and j be the last job placed on Mi .

What was the situation just before
placing this job?

Mi had the smallest load and its load
was T − tj .

For every machine Mk , load
Tk ≥ T − tj .∑

k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Improving the Bound

It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

How can we improve the algorithm?

What if we process the jobs in decreasing order of processing time? (Graham,
1969)

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Improving the Bound

It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

How can we improve the algorithm?

What if we process the jobs in decreasing order of processing time? (Graham,
1969)

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Improving the Bound

It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

How can we improve the algorithm?

What if we process the jobs in decreasing order of processing time? (Graham,
1969)

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Sorted-Balance Algorithm

This algorithm assigns the first m jobs to m distinct machines.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Sorted-Balance Algorithm

This algorithm assigns the first m jobs to m distinct machines.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Example of Sorted-Balance Algorithm

1

4
3

11
2

1
2

4

Jobs

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time Machines

1
1

1 1

344

2 2

1 2 3

3
4

5 6

7 8 9
10

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Analyzing Sorted-Balance
Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time ≥ tm+1.
I This machine will have load at least 2tm+1.

Claim: T ≤ 3T ∗/2.

Let Mi be the machine whose load is T
and j be the last job placed on Mi . (Mi

has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Better bound: T ≤ 4T ∗/3 (Graham,
1969).

Machines

Polynomial-time approximation scheme: for every ε > 0, compute solution with

makespan T ≤ (1 + ε)T ∗ in O((n/ε)(1/ε
2)) time (Hochbaum and Shmoys, 1987).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn.

SOLUTION: A subset S of numbers such that
∑

i∈S wi =
∑

i 6∈S wi .

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Knapsack

INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .

SOLUTION: A subset S of items such that
∑

i∈S vi is maximised
subject to the constraint

∑
i∈S wi ≤W .

3D Matching ≤P Partition ≤P Subset Sum ≤P Knapsack

All problems have dynamic programming algorithms with pseudo-polynomial
running times.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn.

SOLUTION: A subset S of numbers such that
∑

i∈S wi =
∑

i 6∈S wi .

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Knapsack

INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .

SOLUTION: A subset S of items such that
∑

i∈S vi is maximised
subject to the constraint

∑
i∈S wi ≤W .

3D Matching ≤P Partition ≤P Subset Sum ≤P Knapsack

All problems have dynamic programming algorithms with pseudo-polynomial
running times.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn.

SOLUTION: A subset S of numbers such that
∑

i∈S wi =
∑

i 6∈S wi .

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Knapsack

INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .

SOLUTION: A subset S of items such that
∑

i∈S vi is maximised
subject to the constraint

∑
i∈S wi ≤W .

3D Matching ≤P Partition ≤P Subset Sum ≤P Knapsack

All problems have dynamic programming algorithms with pseudo-polynomial
running times.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn.

SOLUTION: A subset S of numbers such that
∑

i∈S wi =
∑

i 6∈S wi .

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Knapsack

INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .

SOLUTION: A subset S of items such that
∑

i∈S vi is maximised
subject to the constraint

∑
i∈S wi ≤W .

3D Matching ≤P Partition ≤P Subset Sum ≤P Knapsack

All problems have dynamic programming algorithms with pseudo-polynomial
running times.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Worked it out on board in class a few weeks ago. Running time is O(nW).

OPT(i ,w) is the largest sum possible using only the first i numbers with
target w .

OPT(i ,w) = OPT(i − 1,w), i > 0,wi > w

OPT(i ,w) = max
(
OPT(i − 1,w),wi + OPT(i − 1,w − wi)

)
, i > 0,wi ≤ w

OPT(0,w) = 0

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Worked it out on board in class a few weeks ago. Running time is O(nW).

OPT(i ,w) is the largest sum possible using only the first i numbers with
target w .

OPT(i ,w) = OPT(i − 1,w), i > 0,wi > w

OPT(i ,w) = max
(
OPT(i − 1,w),wi + OPT(i − 1,w − wi)

)
, i > 0,wi ≤ w

OPT(0,w) = 0

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

SOLUTION: A subset S of numbers such that
∑

i∈S wi is maximised
subject to the constraint

∑
i∈S wi ≤W .

Worked it out on board in class a few weeks ago. Running time is O(nW).

OPT(i ,w) is the largest sum possible using only the first i numbers with
target w .

OPT(i ,w) = OPT(i − 1,w), i > 0,wi > w

OPT(i ,w) = max
(
OPT(i − 1,w),wi + OPT(i − 1,w − wi)

)
, i > 0,wi ≤ w

OPT(0,w) = 0

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Knapsack
Knapsack
INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .
SOLUTION: A subset S of items such that

∑
i∈S vi is maximised

subject to the constraint
∑

i∈S wi ≤W .

Can generalize the dynamic program for Subset Sum.
But we will develop a different dynamic program that will be useful later.
OPT(i , v) is the smallest knapsack weight so that there is a solution using
only the first i items with total value ≥ v .
What are the ranges of i and v?

I i ranges between 0 and n, the number of items.
I Given i , v ranges between 0 and

∑
1≤j≤i vj .

I Largest value of v is
∑

1≤j≤n vj ≤ nv∗, where v∗ = maxi vi .

The solution we want is the largest value v such that OPT(n, v) ≤W .

OPT(i , 0) = 0 for every i ≥ 1

OPT(i , v) = max
(
OPT(i − 1, v),wi + OPT(i − 1, v − vi)

)
, otherwise

Can find items in the solution by tracing back.
Running time is O(n2v∗), which is pseudo-polynomial in the input size.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Knapsack
Knapsack
INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .
SOLUTION: A subset S of items such that

∑
i∈S vi is maximised

subject to the constraint
∑

i∈S wi ≤W .

Can generalize the dynamic program for Subset Sum.
But we will develop a different dynamic program that will be useful later.
OPT(i , v) is the smallest knapsack weight so that there is a solution using
only the first i items with total value ≥ v .
What are the ranges of i and v?

I i ranges between 0 and n, the number of items.
I Given i , v ranges between 0 and

∑
1≤j≤i vj .

I Largest value of v is
∑

1≤j≤n vj ≤ nv∗, where v∗ = maxi vi .

The solution we want is the largest value v such that OPT(n, v) ≤W .

OPT(i , 0) = 0 for every i ≥ 1

OPT(i , v) = max
(
OPT(i − 1, v),wi + OPT(i − 1, v − vi)

)
, otherwise

Can find items in the solution by tracing back.
Running time is O(n2v∗), which is pseudo-polynomial in the input size.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Knapsack
Knapsack
INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .
SOLUTION: A subset S of items such that

∑
i∈S vi is maximised

subject to the constraint
∑

i∈S wi ≤W .

Can generalize the dynamic program for Subset Sum.
But we will develop a different dynamic program that will be useful later.
OPT(i , v) is the smallest knapsack weight so that there is a solution using
only the first i items with total value ≥ v .
What are the ranges of i and v?

I i ranges between 0 and n, the number of items.
I Given i , v ranges between 0 and

∑
1≤j≤i vj .

I Largest value of v is
∑

1≤j≤n vj ≤ nv∗, where v∗ = maxi vi .

The solution we want is

the largest value v such that OPT(n, v) ≤W .

OPT(i , 0) = 0 for every i ≥ 1

OPT(i , v) = max
(
OPT(i − 1, v),wi + OPT(i − 1, v − vi)

)
, otherwise

Can find items in the solution by tracing back.
Running time is O(n2v∗), which is pseudo-polynomial in the input size.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Knapsack
Knapsack
INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .
SOLUTION: A subset S of items such that

∑
i∈S vi is maximised

subject to the constraint
∑

i∈S wi ≤W .

Can generalize the dynamic program for Subset Sum.
But we will develop a different dynamic program that will be useful later.
OPT(i , v) is the smallest knapsack weight so that there is a solution using
only the first i items with total value ≥ v .
What are the ranges of i and v?

I i ranges between 0 and n, the number of items.
I Given i , v ranges between 0 and

∑
1≤j≤i vj .

I Largest value of v is
∑

1≤j≤n vj ≤ nv∗, where v∗ = maxi vi .

The solution we want is the largest value v such that OPT(n, v) ≤W .

OPT(i , 0) = 0 for every i ≥ 1

OPT(i , v) = max
(
OPT(i − 1, v),wi + OPT(i − 1, v − vi)

)
, otherwise

Can find items in the solution by tracing back.
Running time is O(n2v∗), which is pseudo-polynomial in the input size.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Knapsack
Knapsack
INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .
SOLUTION: A subset S of items such that

∑
i∈S vi is maximised

subject to the constraint
∑

i∈S wi ≤W .

Can generalize the dynamic program for Subset Sum.
But we will develop a different dynamic program that will be useful later.
OPT(i , v) is the smallest knapsack weight so that there is a solution using
only the first i items with total value ≥ v .
What are the ranges of i and v?

I i ranges between 0 and n, the number of items.
I Given i , v ranges between 0 and

∑
1≤j≤i vj .

I Largest value of v is
∑

1≤j≤n vj ≤ nv∗, where v∗ = maxi vi .

The solution we want is the largest value v such that OPT(n, v) ≤W .

OPT(i , 0) = 0 for every i ≥ 1

OPT(i , v) = max
(
OPT(i − 1, v),wi + OPT(i − 1, v − vi)

)
, otherwise

Can find items in the solution by tracing back.
Running time is O(n2v∗), which is pseudo-polynomial in the input size.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Dynamic Programming for Knapsack
Knapsack
INSTANCE: A set of n elements, with each element i having a weight
wi and a value vi , and a knapsack capacity W .
SOLUTION: A subset S of items such that

∑
i∈S vi is maximised

subject to the constraint
∑

i∈S wi ≤W .

Can generalize the dynamic program for Subset Sum.
But we will develop a different dynamic program that will be useful later.
OPT(i , v) is the smallest knapsack weight so that there is a solution using
only the first i items with total value ≥ v .
What are the ranges of i and v?

I i ranges between 0 and n, the number of items.
I Given i , v ranges between 0 and

∑
1≤j≤i vj .

I Largest value of v is
∑

1≤j≤n vj ≤ nv∗, where v∗ = maxi vi .

The solution we want is the largest value v such that OPT(n, v) ≤W .

OPT(i , 0) = 0 for every i ≥ 1

OPT(i , v) = max
(
OPT(i − 1, v),wi + OPT(i − 1, v − vi)

)
, otherwise

Can find items in the solution by tracing back.
Running time is O(n2v∗), which is pseudo-polynomial in the input size.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Underlying Approximation Algorithm

What is the running time if all values are the same?

Polynomial.

What is the running time if all values are small integers? Also polynomial.

Idea:
I Round and scale all the values to lie in a smaller range.
I Run the dynamic programming algorithm with the modified new values.
I Return the items in this optimal solution.
I Prove that the value of this solution is not much smaller than the true

optimum.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Underlying Approximation Algorithm

What is the running time if all values are the same? Polynomial.

What is the running time if all values are small integers?

Also polynomial.

Idea:
I Round and scale all the values to lie in a smaller range.
I Run the dynamic programming algorithm with the modified new values.
I Return the items in this optimal solution.
I Prove that the value of this solution is not much smaller than the true

optimum.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Underlying Approximation Algorithm

What is the running time if all values are the same? Polynomial.

What is the running time if all values are small integers? Also polynomial.

Idea:
I Round and scale all the values to lie in a smaller range.
I Run the dynamic programming algorithm with the modified new values.
I Return the items in this optimal solution.
I Prove that the value of this solution is not much smaller than the true

optimum.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Polynomial-Time Approximation Scheme for Knapsack

0 < ε < 1 is a “precision” parameter; assume that 1/ε is an integer.

Scaling factor θ = εv∗

2n .

For every item i , set

ṽi =

⌈
vi
θ

⌉
θ, v̂i =

⌈
vi
θ

⌉

Knapsack-Approx(ε)
Solve the Knapsack problem using the dynamic program with the values v̂i .
Return the set S of items found.

What is the running time of Knapsack-Approx?
O(n2 maxi v̂i) = O(n2v∗/θ) = O(n3/ε).

We need to show that the value of the solution returned by
Knapsack-Approx is good.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Polynomial-Time Approximation Scheme for Knapsack

0 < ε < 1 is a “precision” parameter; assume that 1/ε is an integer.

Scaling factor θ = εv∗

2n .

For every item i , set

ṽi =

⌈
vi
θ

⌉
θ, v̂i =

⌈
vi
θ

⌉
Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values v̂i .
Return the set S of items found.

What is the running time of Knapsack-Approx?
O(n2 maxi v̂i) = O(n2v∗/θ) = O(n3/ε).

We need to show that the value of the solution returned by
Knapsack-Approx is good.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Polynomial-Time Approximation Scheme for Knapsack

0 < ε < 1 is a “precision” parameter; assume that 1/ε is an integer.

Scaling factor θ = εv∗

2n .

For every item i , set

ṽi =

⌈
vi
θ

⌉
θ, v̂i =

⌈
vi
θ

⌉
Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values v̂i .
Return the set S of items found.

What is the running time of Knapsack-Approx?

O(n2 maxi v̂i) = O(n2v∗/θ) = O(n3/ε).

We need to show that the value of the solution returned by
Knapsack-Approx is good.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Polynomial-Time Approximation Scheme for Knapsack

0 < ε < 1 is a “precision” parameter; assume that 1/ε is an integer.

Scaling factor θ = εv∗

2n .

For every item i , set

ṽi =

⌈
vi
θ

⌉
θ, v̂i =

⌈
vi
θ

⌉
Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values v̂i .
Return the set S of items found.

What is the running time of Knapsack-Approx?
O(n2 maxi v̂i) = O(n2v∗/θ) = O(n3/ε).

We need to show that the value of the solution returned by
Knapsack-Approx is good.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim:

(1 + ε)

∑
i∈S vi ≥

∑
j∈S∗ vj . Polynomial-time approximation scheme.

Since Knapsack-Approx is optimal for the values ṽi ,∑
i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim:

(1 + ε)

∑
i∈S vi ≥

∑
j∈S∗ vj . Polynomial-time approximation scheme.

Since Knapsack-Approx is optimal for the values ṽi ,∑
i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim: (1 + ε)
∑

i∈S vi ≥
∑

j∈S∗ vj . Polynomial-time approximation scheme.
Since Knapsack-Approx is optimal for the values ṽi ,∑

i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim: (1 + ε)
∑

i∈S vi ≥
∑

j∈S∗ vj . Polynomial-time approximation scheme.
Since Knapsack-Approx is optimal for the values ṽi ,∑

i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim: (1 + ε)
∑

i∈S vi ≥
∑

j∈S∗ vj . Polynomial-time approximation scheme.
Since Knapsack-Approx is optimal for the values ṽi ,∑

i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .

Therefore, ∑
j∈S∗

vj ≤
∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim: (1 + ε)
∑

i∈S vi ≥
∑

j∈S∗ vj . Polynomial-time approximation scheme.
Since Knapsack-Approx is optimal for the values ṽi ,∑

i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim: (1 + ε)
∑

i∈S vi ≥
∑

j∈S∗ vj . Polynomial-time approximation scheme.
Since Knapsack-Approx is optimal for the values ṽi ,∑

i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ?

Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Approximation Guarantee for Knapsack-Approx

Let S be the solution computed by Knapsack-Approx.
Let S∗ be any other solution satisfying

∑
j∈S∗ wj ≤W .

Claim: (1 + ε)
∑

i∈S vi ≥
∑

j∈S∗ vj . Polynomial-time approximation scheme.
Since Knapsack-Approx is optimal for the values ṽi ,∑

i∈S

ṽi ≥
∑
j∈S∗

ṽj

Since for each i , vi ≤ ṽi ≤ vi + θ,∑
j∈S∗

vj ≤
∑
j∈S∗

ṽj ≤
∑
i∈S

ṽi ≤
∑
i∈S

vi + nθ =
∑
i∈S

vi +
εv∗

2

Apply argument to S∗ containing only the item with largest value:
v∗ ≤

∑
i∈S vi + εv∗

2 ≤
∑

i∈S vi + v∗

2 , i.e., v∗ ≤ 2
∑

i∈S vi .
Therefore, ∑

j∈S∗
vj ≤

∑
i∈S

vi +
εv∗

2
≤ (1 + ε)

∑
i∈S

vi

How can we do better ? Improve running time to O(n log2
1
ε + 1

ε4) (Lawler,
1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Set Cover

Set Cover
INSTANCE: A set U of n elements, a collection S1,S2, . . . ,Sm of
subsets of U, each with an associated weight w .
SOLUTION: A collection C of sets in the collection such that⋃

Si∈C Si = U and
∑

Si∈C wi is minimised.

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

5
Element in
universe
Element label

0.25
Element cost

1
Set

Set weight

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

1

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?

Maintain set R of uncovered elements.

Process set in decreasing order of wi/|Si ∩ R|.

The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?

Maintain set R of uncovered elements.

Process set in decreasing order of wi/|Si ∩ R|.

The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?

Maintain set R of uncovered elements.

Process set in decreasing order of wi/|Si ∩ R|.

The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?

Maintain set R of uncovered elements.

Process set in decreasing order of wi/|Si ∩ R|.

The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Add Bookkeeping to Greedy-Set-Cover

Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

Bookkeeping: record the
per-element cost paid when
selecting Si .

In the algorithm, after selecting Si ,
add the line

Define ct = wi/|Si ∩ R| for all

t ∈ Si ∩ R.

As each set Si is selected, distribute
its weight over the costs ct of the
newly-covered elements.

Each element in the universe
assigned cost exactly once.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Add Bookkeeping to Greedy-Set-Cover

Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

Bookkeeping: record the
per-element cost paid when
selecting Si .

In the algorithm, after selecting Si ,
add the line

Define ct = wi/|Si ∩ R| for all

t ∈ Si ∩ R.

As each set Si is selected, distribute
its weight over the costs ct of the
newly-covered elements.

Each element in the universe
assigned cost exactly once.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Add Bookkeeping to Greedy-Set-Cover

Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

Bookkeeping: record the
per-element cost paid when
selecting Si .

In the algorithm, after selecting Si ,
add the line

Define ct = wi/|Si ∩ R| for all

t ∈ Si ∩ R.

As each set Si is selected, distribute
its weight over the costs ct of the
newly-covered elements.

Each element in the universe
assigned cost exactly once.

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Add Bookkeeping to Greedy-Set-Cover

Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

Bookkeeping: record the
per-element cost paid when
selecting Si .

In the algorithm, after selecting Si ,
add the line

Define ct = wi/|Si ∩ R| for all

t ∈ Si ∩ R.

As each set Si is selected, distribute
its weight over the costs ct of the
newly-covered elements.

Each element in the universe
assigned cost exactly once.

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Starting the Analysis of Greedy-Set-Cover

Let C be the set cover computed by Greedy-Set-Cover.

Claim:
∑

Si∈C wi =
∑

t∈U cs .

∑
Si∈C

wi =
∑
Si∈C

(∑
t∈Si∩R

cs

)
, by definition of cs

=
∑
t∈U

ct , since each element in the universe contributes exactly once

In other words, the total weight of the solution computed by
Greedy-Set-Cover is the sum of the costs it assigns to the elements in
the universe.

Can “switch” between set-based weight of solution and element-based costs.

Note: sets have weights whereas Greedy-Set-Cover assigns costs to
elements.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.

What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥

∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?
For any set Sk , suppose we can prove

∑
t∈Sk

ct ≤ αwk , for some fixed α > 0,
i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.
What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥ ∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?
For any set Sk , suppose we can prove

∑
t∈Sk

ct ≤ αwk , for some fixed α > 0,
i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.
What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥ ∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?
For any set Sk , suppose we can prove

∑
t∈Sk

ct ≤ αwk , for some fixed α > 0,
i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.
What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥ ∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

For any set Sk , suppose we can prove
∑

t∈Sk
ct ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.
What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥ ∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?
For any set Sk , suppose we can prove

∑
t∈Sk

ct ≤ αwk , for some fixed α > 0,
i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.
What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥ ∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?
For any set Sk , suppose we can prove

∑
t∈Sk

ct ≤ αwk , for some fixed α > 0,
i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Intuition Behind the Proof

Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
Goal is to relate total weight of sets in C to total weight of sets in C∗.
What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

Since C∗ is a set cover,
∑
Sj∈C∗

∑
t∈Sj

ct

 ≥ ∑
t∈U

ct =
∑
Si∈C

wi = w .

In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?
For any set Sk , suppose we can prove

∑
t∈Sk

ct ≤ αwk , for some fixed α > 0,
i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

Then w ≤
∑
Sj∈C∗

∑
t∈Sj

ct

 ≤ ∑
Sj∈C∗

αwj = αw∗, giving an algorithm with

approximation factor α.

For every set Sk in the input, goal is to prove an upper bound on

∑
t∈Sk

ct

wk
.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Upper Bounding Cost-by-Weight Ratio

Consider any set Sk (even one not
selected by the algorithm).

How large can

∑
t∈Sk

ct

wk
get?

The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

Claim: For every set Sk , the sum∑
t∈Sk

ct ≤ H(|Sk |)wk .

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Upper Bounding Cost-by-Weight Ratio

Consider any set Sk (even one not
selected by the algorithm).

How large can

∑
t∈Sk

ct

wk
get?

The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

Claim: For every set Sk , the sum∑
t∈Sk

ct ≤ H(|Sk |)wk .

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Upper Bounding Cost-by-Weight Ratio

Consider any set Sk (even one not
selected by the algorithm).

How large can

∑
t∈Sk

ct

wk
get?

The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

Claim: For every set Sk , the sum∑
t∈Sk

ct ≤ H(|Sk |)wk .

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Renumbering Elements in Sk

Renumber elements in U so that
elements in Sk are the first d = |Sk |
elements of U, i.e.,
Sk = {t1, t2, . . . , td}.
Order elements of Sk in the order
they get covered by the algorithm
(i.e., when they get assigned a cost
by Greedy-Set-Cover).

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Renumbering Elements in Sk

Renumber elements in U so that
elements in Sk are the first d = |Sk |
elements of U, i.e.,
Sk = {t1, t2, . . . , td}.
Order elements of Sk in the order
they get covered by the algorithm
(i.e., when they get assigned a cost
by Greedy-Set-Cover).

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving
∑

t∈Sk ct ≤ H(|SK |)wk

What happens in the iteration when the
algorithm covers element tj ∈ Sk , j ≤ d?

At the start of this iteration, R must contain
tj , tj+1, . . . td , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

What cost did the algorithm assign to tj?

Suppose the algorithm selected set Si in this
iteration.
ctj =

wi

|Si ∩ R|

≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

We are done!∑
t∈Sk

ct =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving
∑

t∈Sk ct ≤ H(|SK |)wk

What happens in the iteration when the
algorithm covers element tj ∈ Sk , j ≤ d?

At the start of this iteration, R must contain
tj , tj+1, . . . td , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

What cost did the algorithm assign to tj?

Suppose the algorithm selected set Si in this
iteration.
ctj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

We are done!∑
t∈Sk

ct =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving
∑

t∈Sk ct ≤ H(|SK |)wk

What happens in the iteration when the
algorithm covers element tj ∈ Sk , j ≤ d?

At the start of this iteration, R must contain
tj , tj+1, . . . td , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

What cost did the algorithm assign to tj?

Suppose the algorithm selected set Si in this
iteration.
ctj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

We are done!∑
t∈Sk

ct =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving
∑

t∈Sk ct ≤ H(|SK |)wk

What happens in the iteration when the
algorithm covers element tj ∈ Sk , j ≤ d?

At the start of this iteration, R must contain
tj , tj+1, . . . td , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

What cost did the algorithm assign to tj?

Suppose the algorithm selected set Si in this
iteration.
ctj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

We are done!∑
t∈Sk

ct =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving
∑

t∈Sk ct ≤ H(|SK |)wk

What happens in the iteration when the
algorithm covers element tj ∈ Sk , j ≤ d?

At the start of this iteration, R must contain
tj , tj+1, . . . td , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

What cost did the algorithm assign to tj?

Suppose the algorithm selected set Si in this
iteration.
ctj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

We are done!∑
t∈Sk

ct =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk . 1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

Let d∗ be the size of the largest set in the collection.

Recall that C∗ is the optimal set cover and w∗ =
∑

Sj∈C∗ wj .

For each set Sj in C∗, we proved wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

Combining with
∑

Si∈C wi =
∑

t∈U ct , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

(
1

H(d∗)

∑
t∈Sj

ct

)
≥ 1

H(d∗)

∑
t∈U

ct =
1

H(d∗)

∑
Si∈C

wi = w .

We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

Let d∗ be the size of the largest set in the collection.

Recall that C∗ is the optimal set cover and w∗ =
∑

Sj∈C∗ wj .

For each set Sj in C∗, we proved wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

Combining with
∑

Si∈C wi =
∑

t∈U ct , we have

w∗ =
∑
Sj∈C∗

wj

≥
∑
Sj∈C∗

(
1

H(d∗)

∑
t∈Sj

ct

)
≥ 1

H(d∗)

∑
t∈U

ct =
1

H(d∗)

∑
Si∈C

wi = w .

We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

Let d∗ be the size of the largest set in the collection.

Recall that C∗ is the optimal set cover and w∗ =
∑

Sj∈C∗ wj .

For each set Sj in C∗, we proved wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

Combining with
∑

Si∈C wi =
∑

t∈U ct , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

(
1

H(d∗)

∑
t∈Sj

ct

)
≥ 1

H(d∗)

∑
t∈U

ct

=
1

H(d∗)

∑
Si∈C

wi = w .

We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

Let d∗ be the size of the largest set in the collection.

Recall that C∗ is the optimal set cover and w∗ =
∑

Sj∈C∗ wj .

For each set Sj in C∗, we proved wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

Combining with
∑

Si∈C wi =
∑

t∈U ct , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

(
1

H(d∗)

∑
t∈Sj

ct

)
≥ 1

H(d∗)

∑
t∈U

ct =
1

H(d∗)

∑
Si∈C

wi = w .

We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

Let d∗ be the size of the largest set in the collection.

Recall that C∗ is the optimal set cover and w∗ =
∑

Sj∈C∗ wj .

For each set Sj in C∗, we proved wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

Combining with
∑

Si∈C wi =
∑

t∈U ct , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

(
1

H(d∗)

∑
t∈Sj

ct

)
≥ 1

H(d∗)

∑
t∈U

ct =
1

H(d∗)

∑
Si∈C

wi = w .

We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Badly Can Greedy-Set-Cover Perform?

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

Generalise this example to show
that algorithm produces a set cover
of weight Ω(log n) even though
optimal weight is 2 + ε.

More complex constructions show
greedy algorithm incurs a weight
close to H(n) times the optimal
weight.

No polynomial time algorithm can
achieve an approximation bound
better than (1− Ω(1)) ln n times
optimal unless P = NP (Dinur and
Steurer, 2014)

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

How Badly Can Greedy-Set-Cover Perform?

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

Generalise this example to show
that algorithm produces a set cover
of weight Ω(log n) even though
optimal weight is 2 + ε.

More complex constructions show
greedy algorithm incurs a weight
close to H(n) times the optimal
weight.

No polynomial time algorithm can
achieve an approximation bound
better than (1− Ω(1)) ln n times
optimal unless P = NP (Dinur and
Steurer, 2014)

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Traveling Salesman Problem

General case: Cannot be approximated within any polynomial time
computable function unless P = NP (Sahni, Gonzalez, 1976).

Metric TSP (distances are symmetric, positive, satisfy triangle inequality):
3/2-factor approximation algorithm (Christofides, 1976), innapproximable to
better than 123/122 ratio unless P = NP (Karpinski, Lampis, Schmied,
2013).

1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

Euclidean TSP (distances defined by points in d dimensions): PTAS in
O(n(log n)1/ε) time (Arora, 1997; Mithcell, 1999) (second algorithm is
slower).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Traveling Salesman Problem

General case: Cannot be approximated within any polynomial time
computable function unless P = NP (Sahni, Gonzalez, 1976).

Metric TSP (distances are symmetric, positive, satisfy triangle inequality):
3/2-factor approximation algorithm (Christofides, 1976), innapproximable to
better than 123/122 ratio unless P = NP (Karpinski, Lampis, Schmied,
2013).

1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

Euclidean TSP (distances defined by points in d dimensions): PTAS in
O(n(log n)1/ε) time (Arora, 1997; Mithcell, 1999) (second algorithm is
slower).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Traveling Salesman Problem

General case: Cannot be approximated within any polynomial time
computable function unless P = NP (Sahni, Gonzalez, 1976).

Metric TSP (distances are symmetric, positive, satisfy triangle inequality):
3/2-factor approximation algorithm (Christofides, 1976), innapproximable to
better than 123/122 ratio unless P = NP (Karpinski, Lampis, Schmied,
2013).

1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

Euclidean TSP (distances defined by points in d dimensions): PTAS in
O(n(log n)1/ε) time (Arora, 1997; Mithcell, 1999) (second algorithm is
slower).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Traveling Salesman Problem

General case: Cannot be approximated within any polynomial time
computable function unless P = NP (Sahni, Gonzalez, 1976).

Metric TSP (distances are symmetric, positive, satisfy triangle inequality):
3/2-factor approximation algorithm (Christofides, 1976), innapproximable to
better than 123/122 ratio unless P = NP (Karpinski, Lampis, Schmied,
2013).

1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

Euclidean TSP (distances defined by points in d dimensions): PTAS in
O(n(log n)1/ε) time (Arora, 1997; Mithcell, 1999) (second algorithm is
slower).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Problems in P

3-SUM: Given a set of n numbers, are there three elements in it whose sum is
0?

Can be solved in O(n2) time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n
lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires n2−o(1) time.

All pairs shortest paths: Any algorithm for this problem requires n3−o(1) time.

Strongly exponential time hypothesis (SETH): For every ε > 0, there exists
an integer k such that k-SAT on n variables cannot be solved in
O(2(1−ε)npoly(n)) time.

Edit distance (sequence alighment) between two strings of length n: If it can
be computed in O(n2−δ) time for some constant δ >), then SAT with n
variables and m clauses can be solved in mO(1)2(1−ε)n time, for some ε > 0
(Backurs, Indyk, 2015).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Problems in P

3-SUM: Given a set of n numbers, are there three elements in it whose sum is
0? Can be solved in O(n2) time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n
lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires n2−o(1) time.

All pairs shortest paths: Any algorithm for this problem requires n3−o(1) time.

Strongly exponential time hypothesis (SETH): For every ε > 0, there exists
an integer k such that k-SAT on n variables cannot be solved in
O(2(1−ε)npoly(n)) time.

Edit distance (sequence alighment) between two strings of length n: If it can
be computed in O(n2−δ) time for some constant δ >), then SAT with n
variables and m clauses can be solved in mO(1)2(1−ε)n time, for some ε > 0
(Backurs, Indyk, 2015).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Problems in P

3-SUM: Given a set of n numbers, are there three elements in it whose sum is
0? Can be solved in O(n2) time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n
lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires n2−o(1) time.

All pairs shortest paths: Any algorithm for this problem requires n3−o(1) time.

Strongly exponential time hypothesis (SETH): For every ε > 0, there exists
an integer k such that k-SAT on n variables cannot be solved in
O(2(1−ε)npoly(n)) time.

Edit distance (sequence alighment) between two strings of length n: If it can
be computed in O(n2−δ) time for some constant δ >), then SAT with n
variables and m clauses can be solved in mO(1)2(1−ε)n time, for some ε > 0
(Backurs, Indyk, 2015).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Problems in P

3-SUM: Given a set of n numbers, are there three elements in it whose sum is
0? Can be solved in O(n2) time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n
lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires n2−o(1) time.

All pairs shortest paths: Any algorithm for this problem requires n3−o(1) time.

Strongly exponential time hypothesis (SETH): For every ε > 0, there exists
an integer k such that k-SAT on n variables cannot be solved in
O(2(1−ε)npoly(n)) time.

Edit distance (sequence alighment) between two strings of length n: If it can
be computed in O(n2−δ) time for some constant δ >), then SAT with n
variables and m clauses can be solved in mO(1)2(1−ε)n time, for some ε > 0
(Backurs, Indyk, 2015).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Problems in P

3-SUM: Given a set of n numbers, are there three elements in it whose sum is
0? Can be solved in O(n2) time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n
lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires n2−o(1) time.

All pairs shortest paths: Any algorithm for this problem requires n3−o(1) time.

Strongly exponential time hypothesis (SETH): For every ε > 0, there exists
an integer k such that k-SAT on n variables cannot be solved in
O(2(1−ε)npoly(n)) time.

Edit distance (sequence alighment) between two strings of length n:

If it can
be computed in O(n2−δ) time for some constant δ >), then SAT with n
variables and m clauses can be solved in mO(1)2(1−ε)n time, for some ε > 0
(Backurs, Indyk, 2015).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Approx. Vertex Cover Load Balancing Knapsack Set Cover

Problems in P

3-SUM: Given a set of n numbers, are there three elements in it whose sum is
0? Can be solved in O(n2) time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n
lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires n2−o(1) time.

All pairs shortest paths: Any algorithm for this problem requires n3−o(1) time.

Strongly exponential time hypothesis (SETH): For every ε > 0, there exists
an integer k such that k-SAT on n variables cannot be solved in
O(2(1−ε)npoly(n)) time.

Edit distance (sequence alighment) between two strings of length n: If it can
be computed in O(n2−δ) time for some constant δ >), then SAT with n
variables and m clauses can be solved in mO(1)2(1−ε)n time, for some ε > 0
(Backurs, Indyk, 2015).

T. M. Murali November 28, Dec 3, 5, 2018 Coping with NP-Completeness

	Solving NP-Complete Problems
	Small Vertex Covers
	Trees
	Approx. Vertex Cover
	Load Balancing
	Knapsack
	Set Cover

