Coping with NP-Completeness

T. M. Murali

November 28, Dec 3, 5, 2018

over Load Bala

Examples of Hard Computational Problems

(from Kevin Wayne's slides at Princeton University)

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.

"I can't find an efficient algorithm, but neither can all these famous people."

(Garey and Johnson, Computers and Intractability)

• These problems come up in real life.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

- These problems come up in real life.
- *NP*-Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?

Solving NP-Complete Problems Sma

How Do We Tackle an \mathcal{NP} -Complete Problem?

- These problems come up in real life.
- *NP*-Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?

- These problems come up in real life.
- \mathcal{NP} -Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?
 - Develop algorithms that are exponential in one parameter in the problem.
 - Consider special cases of the input, e.g., graphs that "look like" trees.
 - Develop algorithms that can provably compute a solution close to the optimal.

INSTANCE: Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain a vertex cover of size at most *k*?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm?

VERTEX COVER **INSTANCE:** Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain a vertex cover of size at most *k*?

Small Vertex Covers

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.

VERTEX COVER INSTANCE: Undirected graph G and an integer k QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., $O(2^k n)$?

• Intution: if a graph has a small vertex cover, it cannot have too many edges.

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- Claim: G has a vertex cover of size at most k iff for any edge (u, v) either $G \{u\}$ or $G \{v\}$ has a vertex cover of size at most k 1.

Vertex Cover Algorithm

To search for a k-node vertex cover in G: If G contains no edges, then the empty set is a vertex cover If G contains> k |V| edges, then it has no k-node vertex cover Else let e = (u, v) be an edge of G Recursively check if either of $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size k - 1If neither of them does, then G has no k-node vertex cover Else, one of them (say, $G - \{u\}$) has a (k - 1)-node vertex cover T In this case, $T \cup \{u\}$ is a k-node vertex cover of G Endif

Endif

• Develop a recurrence relation for the algorithm with parameters

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters *n* and *k*.

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters *n* and *k*.
- $T(n,1) \leq cn$.

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \leq cn$.
- $T(n,k) \le 2T(n,k-1) + ckn$.
 - We need O(kn) time to count the number of edges.

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \leq cn$.
- $T(n,k) \le 2T(n,k-1) + ckn$.
 - We need O(kn) time to count the number of edges.
- Claim: $T(n, k) = O(2^k kn)$.

Solving $\mathcal{NP}\text{-}\textsc{Hard}$ Problems on Trees

• " \mathcal{NP} -Hard": at least as hard as \mathcal{NP} -Complete. We will use \mathcal{NP} -Hard to refer to optimisation versions of decision problems.

Solving $\mathcal{NP}\text{-}\textsc{Hard}$ Problems on Trees

- " \mathcal{NP} -Hard": at least as hard as \mathcal{NP} -Complete. We will use \mathcal{NP} -Hard to refer to optimisation versions of decision problems.
- $\bullet\,$ Many $\mathcal{NP}\text{-Hard}$ problems can be solved efficiently on trees.
- Intuition: subtree rooted at any node v of the tree "interacts" with the rest of tree only through v. Therefore, depending on whether we include v in the solution or not, we can decouple solving the problem in v's subtree from the rest of the tree.

Trees

• Optimisation problem: Find the largest independent set in a tree.

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree T(V, E) has a *leaf*, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v.

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree T(V, E) has a *leaf*, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 - Let *S* be a maximum-size independent set that does not contain *v*.
 - Let v be connected to u.
 - u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 - Since u is in S, we can swap u and v.

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree T(V, E) has a *leaf*, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 - Let *S* be a maximum-size independent set that does not contain *v*.
 - Let v be connected to u.
 - u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 - Since *u* is in *S*, we can swap *u* and *v*.
- Claim: If a tree T has a a leaf v, then a maximum-size independent set in T is v and a maximum-size independent set in T - {v}.

Greedy Algorithm for Independent Set

• A *forest* is a graph where every connected component is a tree.

```
To find a maximum-size independent set in a forest F:
Let S be the independent set to be constructed (initially empty)
While F has at least one edge
Let e = (u, v) be an edge of F such that v is a leaf
Add v to S
Delete from F nodes u and v, and all edges incident to them
Endwhile
Return S
```

Greedy Algorithm for Independent Set

• A *forest* is a graph where every connected component is a tree.

Trees

• Running time of the algorithm is O(n).

```
To find a maximum-size independent set in a forest F:
Let S be the independent set to be constructed (initially empty)
While F has at least one edge
Let e = (u, v) be an edge of F such that v is a leaf
Add v to S
Delete from F nodes u and v, and all edges incident to them
Endwhile
Return S
```

Greedy Algorithm for Independent Set

• A *forest* is a graph where every connected component is a tree.

Trees

- Running time of the algorithm is O(n).
- The algorithm works correctly on any graph for which we can repeatedly find a leaf.

To find a maximum-size independent set in a forest F: Let S be the independent set to be constructed (initially empty) While F has at least one edge Let e = (u, v) be an edge of F such that v is a leaf Add v to SDelete from F nodes u and v, and all edges incident to them Endwhile Beturn S

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm?

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v .

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v .
- But there are still only two possibilities: either include *u* in the independent set or include *all* neighbours of *u* that are leaves.
Maximum Weight Independent Set

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v .
- But there are still only two possibilities: either include *u* in the independent set or include *all* neighbours of *u* that are leaves.
- Suggests dynamic programming algorithm.

Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?

Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node *r* and *root* tree at *r*: orient edges towards *r*.
 - parent p(u) of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u : subtree induced by u and all its descendants.

Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node *r* and *root* tree at *r*: orient edges towards *r*.
 - parent p(u) of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u : subtree induced by u and all its descendants.
- Ordering the sub-problems: start at leaves and work our way up to the root.

- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.

- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases:

- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include *u* or exclude *u*.

- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include *u* or exclude *u*.
 - If we include u, all children must be excluded. $OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$

- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include *u* or exclude *u*.
 - If we include *u*, all children must be excluded. $OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$
 - If we exclude u, a child may or may not be excluded. $OPT_{out}(u) = \sum_{v \in children(u)} max(OPT_{in}(v), OPT_{out}(v))$

Dynamic Programming Algorithm

```
To find a maximum-weight independent set of a tree T:
    Root the tree at a node r
    For all nodes u of T in post-order
         If u is a leaf then set the values:
               M_{out}[u] = 0
               M_{in}[u] = w_n
         Else set the values:
               M_{out}[u] = \sum \max(M_{out}[v], M_{in}[v])
                         v \in children(u)
               M_{in}[u] = w_u + \sum M_{out}[u].
                                v \in children(u)
         Endif
    Endfor
    Return \max(M_{out}[r], M_{in}[r])
```

Dynamic Programming Algorithm

```
To find a maximum-weight independent set of a tree T:
    Root the tree at a node r
    For all nodes u of T in post-order
         If u is a leaf then set the values:
               M_{out}[u] = 0
               M_{in}[u] = w_n
         Else set the values:
               M_{out}[u] = \sum \max(M_{out}[v], M_{in}[v])
                         v \in children(u)
               M_{in}[u] = w_u + \sum M_{out}[u].
                                v \in children(u)
         Endif
    Endfor
     Return \max(M_{out}[r], M_{in}[r])
```

• Running time of the algorithm is O(n).

Approximation Algorithms

- $\bullet\,$ Methods for optimisation versions of $\mathcal{NP}\text{-}\mathsf{Complete}$ problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution

ipsack Set Cov

Approximation Algorithm for VertexCover

T. M. Murali

apsack Set Cov

Approximation Algorithm for VertexCover

psack Set Cov

Approximation Algorithm for VertexCover

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ {C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C

apsack Set Cov

Approximation Algorithm for VertexCover

EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ {C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C

T. M. Murali

psack Set Cov

Approximation Algorithm for VertexCover

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ {C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C

psack Set Cov

Approximation Algorithm for VertexCover

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ {C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C

5:
$$G \leftarrow G - \{u, v\}$$

6: Add
$$(u, v)$$
 to E'

- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.

Set Cover

Analysis of EasyVertexCover

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.

- 1: $C \leftarrow \emptyset, E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.
 - Claim: $|C| = 2|E'| \le 2c^*$

Set Cover

Analysis of EasyVertexCover

- 1: $C \leftarrow \emptyset, E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.
 - Claim: $|C| = 2|E'| \le 2c^*$
 - No approximation algorithm with a factor better than 1.3606 is possible unless $\mathcal{P} = \mathcal{NP}$ (Dinur and Safra, 2005).

- 1: $C \leftarrow \emptyset, E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.
 - Claim: $|C| = 2|E'| \le 2c^*$
 - No approximation algorithm with a factor better than 1.3606 is possible unless $\mathcal{P} = \mathcal{NP}$ (Dinur and Safra, 2005).
 - No approximation algorithm with a factor better than 2 is possible if the "unique games conjecture" is true (Khot and Regev, 2008).

Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j .
- Assign each job to one machine so that the total time spent is minimised.

Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j .
- Assign each job to one machine so that the total time spent is minimised.
- Let A(i) be the set of jobs assigned to machine M_i .
- Total time spent on machine *i* is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.

Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j .
- Assign each job to one machine so that the total time spent is minimised.
- Let A(i) be the set of jobs assigned to machine M_i .
- Total time spent on machine *i* is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
- Minimising makespan is \mathcal{NP} -Complete.

Greedy-Balance Algorithm

- Adopt a greedy approach (Graham, 1966).
- Process jobs in *any* order.
- Assign next job to the processor that has smallest total load so far.

```
Greedy-Balance:

Start with no jobs assigned

Set T_i = 0 and A(i) = \emptyset for all machines M_i

For j = 1, \dots, n

Let M_i be a machine that achieves the minimum \min_k T_k

Assign job j to machine M_i

Set A(i) \leftarrow A(i) \cup \{j\}

Set T_i \leftarrow T_i + t_j

EndFor
```


Lower Bounds on the Optimal Makespan

• We need a lower bound on the optimum makespan T^* .

Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^* .
- The two bounds below will suffice:

$$\mathcal{T}^* \geq rac{1}{m} \sum_j t_j$$
 $\mathcal{T}^* \geq \max_j t_j$

Analysing Greedy-Balance

• Claim: Computed makespan $T \leq 2T^*$.

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i .
- What was the situation just before placing this job?

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i .
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T t_j$.
- For every machine M_k , load $T_k \ge T t_j$.
Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i .
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T t_j$.
- For every machine M_k , load $T_k \ge T t_j$.

 $\sum_{k} T_{k} \ge m(T - t_{j}), \text{ where } k \text{ ranges over all machines}$ $\sum_{j} t_{j} \ge m(T - t_{j}), \text{ where } j \text{ ranges over all jobs}$ $T - t_{j} \le 1/m \sum_{j} t_{j} \le T^{*}$ $T \le 2T^{*}, \text{ since } t_{i} \le T^{*}$

Improving the Bound

• It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time? (Graham, 1969)

Sorted-Balance Algorithm

```
Sorted-Balance:
Start with no jobs assigned
Set T_i = 0 and A(i) = \emptyset for all machines M_i
Sort jobs in decreasing order of processing times t_i
Assume that t_1 \geq t_2 \geq \ldots \geq t_n
For i = 1, ..., n
  Let M_i be the machine that achieves the minimum \min_k T_k
  Assign job j to machine M_i
  Set A(i) \leftarrow A(i) \cup \{j\}
  Set T_i \leftarrow T_i + t_i
EndFor
```

Sorted-Balance Algorithm

```
Sorted-Balance:
Start with no jobs assigned
Set T_i = 0 and A(i) = \emptyset for all machines M_i
Sort jobs in decreasing order of processing times t_i
Assume that t_1 \geq t_2 \geq \ldots \geq t_n
For i = 1, ..., n
  Let M_i be the machine that achieves the minimum \min_k T_k
  Assign job j to machine M_i
  Set A(i) \leftarrow A(i) \cup \{i\}
  Set T_i \leftarrow T_i + t_i
EndFor
```

• This algorithm assigns the first *m* jobs to *m* distinct machines.

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - ▶ This machine will have load at least 2*t*_{*m*+1}.

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - This machine will have load at least $2t_{m+1}$.
- Claim: $T \le 3T^*/2$.

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - This machine will have load at least 2t_{m+1}.
- Claim: $T \le 3T^*/2$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i . (M_i has at least two jobs.)

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - This machine will have load at least 2t_{m+1}.
- Claim: $T \le 3T^*/2$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i . (M_i has at least two jobs.)

$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T - t_j \leq T^*$, GREEDY-BALANCE proof
 $T \leq 3T^*/2$

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - This machine will have load at least 2t_{m+1}.
- Claim: $T \le 3T^*/2$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i . (M_i has at least two jobs.)

$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T - t_j \leq T^*$, GREEDY-BALANCE proof
 $T \leq 3T^*/2$

• Better bound: $T \le 4T^*/3$ (Graham, 1969).

- Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - This machine will have load at least 2t_{m+1}.
- Claim: $T \le 3T^*/2$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i . (M_i has at least two jobs.)

$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T - t_j \leq T^*$, GREEDY-BALANCE proof
 $T \leq 3T^*/2$

- Better bound: $T \le 4T^*/3$ (Graham, 1969).
 - Polynomial-time approximation scheme: for every $\varepsilon > 0$, compute solution with makespan $T \leq (1 + \varepsilon)T^*$ in $O((n/\varepsilon)^{(1/\varepsilon^2)})$ time (Hochbaum and Shmoys, 1987).

The Knapsack Problem

PARTITION **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

The Knapsack Problem

PARTITION **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$. SUBSET SUM **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$ and a target *W*. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

The Knapsack Problem

PARTITION **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$. SUBSET SUM

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target *W*. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

KNAPSACK

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

The Knapsack Problem

PARTITION **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$. SUBSET SUM

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target *W*. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

KNAPSACK

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

- 3D Matching \leq_P Partition \leq_P Subset Sum \leq_P Knapsack
- All problems have dynamic programming algorithms with pseudo-polynomial running times.

Dynamic Programming for Subset Sum

SUBSET SUM **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$ and a target *W*. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Load Balancin

Knapsack Set Co

Dynamic Programming for Subset Sum

SUBSET SUM **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$ and a target *W*. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Worked it out on board in class a few weeks ago. Running time is O(nW).
- *OPT*(*i*, *w*) is the largest sum possible using only the first *i* numbers with target *w*.

Load Balancing

Knapsack Set Co

Dynamic Programming for Subset Sum

SUBSET SUM **INSTANCE:** A set of *n* natural numbers $w_1, w_2, ..., w_n$ and a target *W*. **SOLUTION:** A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Worked it out on board in class a few weeks ago. Running time is O(nW).
- *OPT*(*i*, *w*) is the largest sum possible using only the first *i* numbers with target *w*.

$$OPT(i, w) = OPT(i - 1, w), \quad i > 0, w_i > w$$

 $OPT(i, w) = \max (OPT(i - 1, w), w_i + OPT(i - 1, w - w_i)), \quad i > 0, w_i \le w$
 $OPT(0, w) = 0$

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- $\bullet\,$ Can generalize the dynamic program for $\rm SUBSET\,\,SUM.$
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution using only the first i items with total value ≥ v.
- What are the ranges of *i* and *v*?

T. M. Murali

r Load Balanci

Dynamic Programming for Knapsack

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

- $\bullet\,$ Can generalize the dynamic program for $\rm SUBSET\,\,SUM.$
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution using only the first i items with total value ≥ v.
- What are the ranges of *i* and *v*?
 - ▶ *i* ranges between 0 and *n*, the number of items.
 - Given *i*, *v* ranges between 0 and $\sum_{1 \le j \le i} v_j$.
 - Largest value of v is $\sum_{1 \le j \le n} v_j \le nv^{*}$, where $v^* = \max_i v_i$.
- The solution we want is

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

- $\bullet\,$ Can generalize the dynamic program for $\rm SUBSET\,\,SUM.$
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution using only the first i items with total value ≥ v.
- What are the ranges of *i* and *v*?
 - ▶ *i* ranges between 0 and *n*, the number of items.
 - Given *i*, *v* ranges between 0 and $\sum_{1 \le j \le i} v_j$.
 - Largest value of v is $\sum_{1 \le j \le n} v_j \le nv^{\overline{*}}$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \le W$.

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

- $\bullet\,$ Can generalize the dynamic program for $\rm SUBSET\,\,SUM.$
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution using only the first i items with total value ≥ v.
- What are the ranges of *i* and *v*?
 - ▶ *i* ranges between 0 and *n*, the number of items.
 - Given *i*, *v* ranges between 0 and $\sum_{1 \le i \le i} v_j$.
 - Largest value of v is $\sum_{1 \le j \le n} v_j \le nv^{\overline{*}}$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \le W$.

$$\mathsf{OPT}(i, 0) = 0$$
 for every $i \ge 1$
 $\mathsf{OPT}(i, v) = \max \left(\mathsf{OPT}(i - 1, v), w_i + \mathsf{OPT}(i - 1, v - v_i)\right),$ otherwise

INSTANCE: A set of *n* elements, with each element *i* having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- $\bullet\,$ Can generalize the dynamic program for $\rm SUBSET\,\,SUM.$
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution using only the first i items with total value ≥ v.
- What are the ranges of *i* and *v*?
 - ▶ *i* ranges between 0 and *n*, the number of items.
 - Given *i*, *v* ranges between 0 and $\sum_{1 \le j \le i} v_j$.
 - Largest value of v is $\sum_{1 \le j \le n} v_j \le nv^{\overline{*}}$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \le W$.

 $\mathsf{OPT}(i,0) = 0$ for every $i \ge 1$

 $\mathsf{OPT}(i, v) = \max \left(\mathsf{OPT}(i-1, v), w_i + \mathsf{OPT}(i-1, v-v_i)\right), \quad \text{otherwise}$

- Can find items in the solution by tracing back.
- Running time is $O(n^2v^*)$, which is pseudo-polynomial in the input size.

Intuition Underlying Approximation Algorithm

• What is the running time if all values are the same?

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers?

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers? Also polynomial.
- Idea:
 - Round and scale all the values to lie in a smaller range.
 - Run the dynamic programming algorithm with the modified new values.
 - Return the items in this optimal solution.
 - Prove that the value of this solution is not much smaller than the true optimum.

Knapsack Set C

Polynomial-Time Approximation Scheme for Knapsack

- 0 < ε < 1 is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item *i*, set

$$\tilde{v}_i = \left\lceil \frac{v_i}{\theta} \right
ceil heta, \qquad \hat{v}_i = \left\lceil \frac{v_i}{\theta}
ight
ceil$$

Polynomial-Time Approximation Scheme for Knapsack

- 0 < ε < 1 is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item *i*, set

$$\tilde{v}_i = \left\lceil \frac{v_i}{\theta} \right
ceil heta, \qquad \hat{v}_i = \left\lceil \frac{v_i}{\theta}
ight
ceil$$

Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i . Return the set S of items found.

Polynomial-Time Approximation Scheme for Knapsack

- $0 < \varepsilon < 1$ is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item *i*, set

$$\tilde{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right
ceil heta, \qquad \hat{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta}
ight
ceil$$

 $Knapsack-Approx(\varepsilon)$

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i . Return the set S of items found.

• What is the running time of Knapsack-Approx?

Polynomial-Time Approximation Scheme for Knapsack

- $0 < \varepsilon < 1$ is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item *i*, set

$$\tilde{v}_i = \left\lceil \frac{v_i}{\theta} \right
ceil heta, \qquad \hat{v}_i = \left\lceil \frac{v_i}{\theta}
ight
ceil$$

Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i . Return the set S of items found.

- What is the running time of Knapsack-Approx? $O(n^2 \max_i \hat{v}_i) = O(n^2 v^*/\theta) = O(n^3/\varepsilon).$
- We need to show that the value of the solution returned by Knapsack-Approx is good.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S} v_i \ge \sum_{j \in S^*} v_j$. Polynomial-time approximation scheme.
- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $(1 + \varepsilon) \sum_{i \in S} v_i \ge \sum_{i \in S^*} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i ,

$$\sum_{i\in\mathcal{S}} ilde{v}_i\geq\sum_{j\in\mathcal{S}^*} ilde{v}_j$$

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $(1 + \varepsilon) \sum_{i \in S} v_i \ge \sum_{j \in S^*} v_j$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values v_i

$$\sum_{i\in S} \tilde{v}_i \ge \sum_{j\in S^*} \tilde{v}_j$$

• Since for each *i*, $v_i \leq \tilde{v}_i \leq v_i + \theta$,

$$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $(1 + \varepsilon) \sum_{i \in S} v_i \ge \sum_{j \in S^*} v_j$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values v_i

$$\sum_{i\in S} \tilde{v}_i \geq \sum_{j\in S^*} \tilde{v}_j$$

• Since for each *i*, $v_i \leq \tilde{v}_i \leq v_i + \theta$,

$$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

• Apply argument to S^* containing only the item with largest value: $v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \leq 2 \sum_{i \in S} v_i$.

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $(1 + \varepsilon) \sum_{i \in S} v_i \ge \sum_{j \in S^*} v_j$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values v_i

$$\sum_{i\in S} \tilde{v}_i \geq \sum_{j\in S^*} \tilde{v}_j$$

• Since for each *i*, $v_i \leq \tilde{v}_i \leq v_i + \theta$,

$$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

 Apply argument to S^{*} containing only the item with largest value: v^{*} ≤ ∑_{i∈S} v_i + ^{εv^{*}}/₂ ≤ ∑_{i∈S} v_i + ^{v^{*}}/₂, i.e., v^{*} ≤ 2∑_{i∈S} v_i.
 Therefore.

$$\sum_{j \in S^*} v_j \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq (1 + \varepsilon) \sum_{i \in S} v_i$$

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $(1 + \varepsilon) \sum_{i \in S} v_i \ge \sum_{j \in S^*} v_j$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values v_i

$$\sum_{i\in S} \tilde{v}_i \ge \sum_{j\in S^*} \tilde{v}_j$$

• Since for each *i*, $v_i \leq \tilde{v}_i \leq v_i + \theta$,

$$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

• Apply argument to S^* containing only the item with largest value: $v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \leq 2 \sum_{i \in S} v_i$.

$$\sum_{j \in \mathcal{S}^*} v_j \leq \sum_{i \in \mathcal{S}} v_i + rac{arepsilon v^*}{2} \leq (1 + arepsilon) \sum_{i \in \mathcal{S}} v_i$$

• How can we do better ?

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $(1 + \varepsilon) \sum_{i \in S} v_i \ge \sum_{j \in S^*} v_j$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values v_i

$$\sum_{i\in S} \tilde{v}_i \geq \sum_{j\in S^*} \tilde{v}_j$$

• Since for each *i*, $v_i \leq \tilde{v}_i \leq v_i + \theta$,

$$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

• Apply argument to S^* containing only the item with largest value: $v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \leq 2 \sum_{i \in S} v_i$.

Therefore,

$$\sum_{j\in S^*} v_j \leq \sum_{i\in S} v_i + \frac{\varepsilon v^*}{2} \leq (1+\varepsilon) \sum_{i\in S} v_i$$

• How can we do better ? Improve running time to $O(n \log_2 \frac{1}{\varepsilon} + \frac{1}{\varepsilon^4})$ (Lawler, 1979).

Set Cover **INSTANCE:** A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w. **SOLUTION:** A collection C of sets in the collection such that $\bigcup_{S_i \in C} S_i = U$ and $\sum_{S_i \in C} w_i$ is minimised. 1.1 1.1 Element in universe Element label Element cost Set weight Set 6

• To get a greedy algorithm, in what order should we process the sets?

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set *R* of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

```
Greedy-Set-Cover:

Start with R = U and no sets selected

While R \neq \emptyset

Select set S_i that minimizes w_i/|S_i \cap R|

Delete set S_i from R

EndWhile

Return the selected sets
```

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

```
Greedy-Set-Cover:

Start with R = U and no sets selected

While R \neq \emptyset

Select set S_i that minimizes w_i/|S_i \cap R|

Delete set S_i from R

EndWhile

Return the selected sets
```

• The algorithm computes a set cover whose weight is at most $O(\log n)$ times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

• Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting *S*_i.

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting *S*_i.
- In the algorithm, after selecting S_i, add the line

Define $c_t = w_i / |S_i \cap R|$ for all $t \in S_i \cap R$.

- As each set S_i is selected, distribute its weight over the costs c_t of the *newly*-covered elements.
- Each element in the universe assigned cost exactly once.

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting *S*_i.
- In the algorithm, after selecting S_i, add the line

Define $c_t = w_i / |S_i \cap R|$ for all $t \in S_i \cap R$.

- As each set S_i is selected, distribute its weight over the costs c_t of the *newly*-covered elements.
- Each element in the universe assigned cost exactly once.

Starting the Analysis of Greedy-Set-Cover

 \bullet Let ${\mathcal C}$ be the set cover computed by $\operatorname{GREEDY-SET-COVER}.$

• Claim:
$$\sum_{S_i \in \mathcal{C}} w_i = \sum_{t \in U} c_s$$
.

$$\sum_{S_i \in \mathcal{C}} w_i = \sum_{S_i \in \mathcal{C}} \left(\sum_{t \in S_i \cap R} c_s \right), \text{ by definition of } c_s$$
$$= \sum_{t \in U} c_t, \text{ since each element in the universe contributes exactly once}$$

- In other words, the total weight of the solution computed by GREEDY-SET-COVER is the sum of the costs it assigns to the elements in the universe.
- Can "switch" between set-based weight of solution and element-based costs.
- Note: sets have weights whereas GREEDY-SET-COVER assigns costs to elements.

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_i \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^* .

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_i \in C^*} w_j$.
- Goal is to relate total weight of sets in $\mathcal C$ to total weight of sets in $\mathcal C^*$.
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^* ?

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^* .
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^* ?

• Since
$$\mathcal{C}^*$$
 is a set cover, $\sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \ge \sum_{t \in U} c_t = \sum_{S_i \in \mathcal{C}} w_i = w.$

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^* .
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^* ?

• Since
$$\mathcal{C}^*$$
 is a set cover, $\sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \ge \sum_{t \in U} c_t = \sum_{S_i \in \mathcal{C}} w_i = w.$

• In the sum on the left, S_j is a set in \hat{C}^* (need not be a set in C). How large can total cost of elements in such a set be?

- Suppose \mathcal{C}^* is the optimal set cover: $w^* = \sum_{S_j \in \mathcal{C}^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^* .
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^* ?

• Since
$$\mathcal{C}^*$$
 is a set cover, $\sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \ge \sum_{t \in U} c_t = \sum_{S_i \in \mathcal{C}} w_i = w.$

- In the sum on the left, S_j is a set in \hat{C}^* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k , suppose we can prove $\sum_{t \in S_k} c_t \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k .

- Suppose \mathcal{C}^* is the optimal set cover: $w^* = \sum_{S_j \in \mathcal{C}^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^* .
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^* ?

• Since
$$\mathcal{C}^*$$
 is a set cover, $\sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \ge \sum_{t \in U} c_t = \sum_{S_i \in \mathcal{C}} w_i = w.$

- In the sum on the left, S_j is a set in \hat{C}^* (need not be a set in \hat{C}). How large can total cost of elements in such a set be?
- For any set S_k , suppose we can prove $\sum_{t \in S_k} c_t \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k .

• Then
$$w \leq \sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \leq \sum_{S_j \in \mathcal{C}^*} \alpha w_j = \alpha w^*$$
, giving an algorithm with

approximation factor α .

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_i \in C^*} w_j$.
- Goal is to relate total weight of sets in \mathcal{C} to total weight of sets in \mathcal{C}^* .
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^* ?

• Since
$$\mathcal{C}^*$$
 is a set cover, $\sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \ge \sum_{t \in U} c_t = \sum_{S_i \in \mathcal{C}} w_i = w.$

- In the sum on the left, S_i is a set in \mathcal{C}^* (need not be a set in \mathcal{C}). How large can total cost of elements in such a set be?
- For any set S_k , suppose we can prove $\sum_{t \in S_k} c_t \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k .

• Then
$$w \leq \sum_{S_j \in \mathcal{C}^*} \left(\sum_{t \in S_j} c_t \right) \leq \sum_{S_j \in \mathcal{C}^*} \alpha w_j = \alpha w^*$$
, giving an algorithm with approximation factor α

approximation factor α .

 $\sum_{t\in S_k} c_t$ • For every set S_k in the input, goal is to prove an upper bound on

Upper Bounding Cost-by-Weight Ratio

- Consider *any* set *S_k* (even one not selected by the algorithm).
- How large can $\frac{\sum_{t \in S_k} c_t}{w_k}$ get?

Upper Bounding Cost-by-Weight Ratio

- Consider *any* set *S_k* (even one not selected by the algorithm).
- How large can $\frac{\sum_{t \in S_k} c_t}{w_k}$ get?
- The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

Solving $\mathcal{NP} ext{-Complete Problems}$ Si

Upper Bounding Cost-by-Weight Ratio

- Consider *any* set *S_k* (even one not selected by the algorithm).
- How large can $\frac{\sum_{t \in S_k} c_t}{w_k}$ get?
- The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

• Claim: For every set S_k , the sum $\sum_{t \in S_k} c_t \le H(|S_k|)w_k$.

Solving NP-Complete Problems Small

Vertex Covers T

Approx. Vertex C

er Load Balan

ig Knapsack

Set Cover

Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{t_1, t_2, \dots, t_d\}.$
- Order elements of S_k in the order they get covered by the algorithm (i.e., when they get assigned a cost by GREEDY-SET-COVER).

Solving NP-Complete Problems Small

Vertex Covers T

Approx. Vertex C

er Load Balan

g Knapsack

Set Cover

Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{t_1, t_2, \dots, t_d\}.$
- Order elements of S_k in the order they get covered by the algorithm (i.e., when they get assigned a cost by GREEDY-SET-COVER).

Proving $\sum_{t \in S_k} c_t \leq H(|S_K|) w_k$

What happens in the iteration when the algorithm covers element t_j ∈ S_k, j ≤ d?

Solving NP-Complete Problems S

Small Vertex Covers

ees Approx. Verte

Proving $\sum_{t \in S_k} c_t \leq H(|S_K|) w_k$

- What happens in the iteration when the algorithm covers element $t_j \in S_k, j \le d$?
- At the start of this iteration, R must contain $t_j, t_{j+1}, \ldots, t_d$, i.e., $|S_k \cap R| \ge d j + 1$. (R may contain other elements of S_k as well.)

Solving NP-Complete Problems Si

mall Vertex Covers

es Approx. Vertex

Proving $\sum_{t \in S_k} c_t \leq H(|S_K|) w_k$

- What happens in the iteration when the algorithm covers element $t_j \in S_k, j \le d$?
- At the start of this iteration, R must contain $t_j, t_{j+1}, \ldots, t_d$, i.e., $|S_k \cap R| \ge d j + 1$. (R may contain other elements of S_k as well.)
- Therefore, $rac{w_k}{|\mathcal{S}_k \cap R|} \leq rac{w_k}{d-j+1}.$

Solving NP-Complete Problems Si

mall Vertex Covers

Proving $\sum_{t \in S_k} c_t \leq H(|S_K|) w_k$

- What happens in the iteration when the algorithm covers element t_j ∈ S_k, j ≤ d?
- At the start of this iteration, R must contain $t_j, t_{j+1}, \ldots, t_d$, i.e., $|S_k \cap R| \ge d j + 1$. (R may contain other elements of S_k as well.)

• Therefore,
$$\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d-j+1}$$
.

- What cost did the algorithm assign to t_j ?
- Suppose the algorithm selected set S_i in this iteration...

$$c_{t_j} = rac{w_i}{|S_i \cap R|} \leq rac{w_k}{|S_k \cap R|} \leq rac{w_k}{d-j+1}.$$

Solving $\mathcal{NP} ext{-Complete Problems}$ Si

mall Vertex Covers

Proving $\sum_{t \in S_k} c_t \leq H(|S_K|) w_k$

- What happens in the iteration when the algorithm covers element t_j ∈ S_k, j ≤ d?
- At the start of this iteration, R must contain $t_j, t_{j+1}, \ldots, t_d$, i.e., $|S_k \cap R| \ge d j + 1$. (R may contain other elements of S_k as well.)

• Therefore,
$$\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d-j+1}.$$

- What cost did the algorithm assign to t_j?
- Suppose the algorithm selected set S_i in this iteration...

$$c_{t_j} = rac{w_i}{|S_i \cap R|} \leq rac{w_k}{|S_k \cap R|} \leq rac{w_k}{d-j+1}.$$

• We are done!

$$\sum_{t\in S_k} c_t = \sum_{j=1}^d c_{s_j} \le \sum_{j=1}^d \frac{w_k}{d-j+1} = H(d)w_k.$$

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we proved $w_j \ge \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \ge \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in \mathcal{C}} w_i = \sum_{t \in U} c_t$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j$$

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we proved $w_j \ge \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \ge \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.

• Combining with $\sum_{S_i \in \mathcal{C}} w_i = \sum_{t \in U} c_t$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j \geq \sum_{S_j \in \mathcal{C}^*} \left(rac{1}{H(d^*)} \sum_{t \in S_j} c_t
ight) \geq rac{1}{H(d^*)} \sum_{t \in U} c_t$$

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we proved $w_j \ge \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \ge \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.

• Combining with $\sum_{S_i \in \mathcal{C}} w_i = \sum_{t \in U} c_t$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j \geq \sum_{S_j \in \mathcal{C}^*} \left(\frac{1}{H(d^*)} \sum_{t \in S_j} c_t \right) \geq \frac{1}{H(d^*)} \sum_{t \in U} c_t = \frac{1}{H(d^*)} \sum_{S_i \in \mathcal{C}} w_i = w.$$

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we proved $w_j \ge \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \ge \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in \mathcal{C}} w_i = \sum_{t \in U} c_t$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j \ge \sum_{S_j \in \mathcal{C}^*} \left(rac{1}{H(d^*)} \sum_{t \in S_j} c_t
ight) \ge rac{1}{H(d^*)} \sum_{t \in U} c_t = rac{1}{H(d^*)} \sum_{S_i \in \mathcal{C}} w_i = w.$$

• We have proven that GREEDY-SET-COVER computes a set cover whose weight is at most $H(d^*)$ times the optimal weight.

er Load Balan

How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight Ω(log n) even though optimal weight is 2 + ε.
- More complex constructions show greedy algorithm incurs a weight close to H(n) times the optimal weight.

er Load Balan

How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight Ω(log n) even though optimal weight is 2 + ε.
- More complex constructions show greedy algorithm incurs a weight close to H(n) times the optimal weight.
- No polynomial time algorithm can achieve an approximation bound better than $(1 - \Omega(1)) \ln n$ times optimal unless $\mathcal{P} = \mathcal{NP}$ (Dinur and Steurer, 2014)

• General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).
- Euclidean TSP (distances defined by points in *d* dimensions): PTAS in $O(n(\log n)^{1/\varepsilon})$ time (Arora, 1997; Mithcell, 1999) (second algorithm is slower).

• 3-SUM: Given a set of *n* numbers, are there three elements in it whose sum is 0?

- 3-SUM: Given a set of *n* numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given *n* lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.

- 3-SUM: Given a set of *n* numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given *n* lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.

- 3-SUM: Given a set of *n* numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given *n* lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon > 0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O(2^{(1-\varepsilon)n} \operatorname{poly}(n))$ time.

- 3-SUM: Given a set of *n* numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given *n* lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon > 0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O(2^{(1-\varepsilon)n} \operatorname{poly}(n))$ time.
- Edit distance (sequence alighment) between two strings of length *n*:

- 3-SUM: Given a set of *n* numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given *n* lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon > 0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O(2^{(1-\varepsilon)n} \operatorname{poly}(n))$ time.
- Edit distance (sequence alighment) between two strings of length n: If it can be computed in $O(n^{2-\delta})$ time for some constant $\delta >$), then SAT with n variables and m clauses can be solved in $m^{O(1)}2^{(1-\varepsilon)n}$ time, for some $\varepsilon > 0$ (Backurs, Indyk, 2015).