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Milgram’s Experiment

The Science of Six Degrees of Separation (Video, 0’–3’40”)

Criticisms

Overestimates path lengths.

Underestimates path lengths.

Conclusions. Which is correct?

Some paths in social networks are short.

All paths between all pairs of nodes are short.

The average shortest path length is small. Average taken over all
pairs of nodes.

Burning question

How do networks with small average shortest path length arise?
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Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired to introduce
increasing amounts of disorder. We find that these systems can be
highly clustered, like regular lattices, yet have small characteristic
path lengths, like random graphs.

Specifically, we require n � k � ln(n) � 1, where k � ln(n)
guarantees that a random graph will be connected.
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Random Graps

What is a random graph?

How do we create a random unweighted, undirected graph on n
nodes?

Question is under-specified. There are many approaches:
1 Idea 1: From the set of all graphs of n nodes, pick one uniformly at

random.
2 Idea 2: Specify the number of edges m. From the set of all graphs of n

nodes and m edges, pick one uniformly at random.
3 Idea 3: Specify a probability 0 ≤ p ≤ 1. For every pair of nodes, add

an edge between the nodes with probability p.

T. M. Murali February 4 and 6, 2020 CS 4884: Computing the Brain



E-R Graphs W-S Graphs

Random Graps

What is a random graph?

How do we create a random unweighted, undirected graph on n
nodes?

Question is under-specified. There are many approaches:
1 Idea 1: From the set of all graphs of n nodes, pick one uniformly at

random.
2 Idea 2: Specify the number of edges m. From the set of all graphs of n

nodes and m edges, pick one uniformly at random.
3 Idea 3: Specify a probability 0 ≤ p ≤ 1. For every pair of nodes, add

an edge between the nodes with probability p.

T. M. Murali February 4 and 6, 2020 CS 4884: Computing the Brain



E-R Graphs W-S Graphs

Random Graps

What is a random graph?

How do we create a random unweighted, undirected graph on n
nodes?

Question is under-specified. There are many approaches:

1 Idea 1: From the set of all graphs of n nodes, pick one uniformly at
random.

2 Idea 2: Specify the number of edges m. From the set of all graphs of n
nodes and m edges, pick one uniformly at random.

3 Idea 3: Specify a probability 0 ≤ p ≤ 1. For every pair of nodes, add
an edge between the nodes with probability p.

T. M. Murali February 4 and 6, 2020 CS 4884: Computing the Brain



E-R Graphs W-S Graphs

Random Graps

What is a random graph?

How do we create a random unweighted, undirected graph on n
nodes?

Question is under-specified. There are many approaches:
1 Idea 1: From the set of all graphs of n nodes, pick one uniformly at

random.
2 Idea 2: Specify the number of edges m. From the set of all graphs of n

nodes and m edges, pick one uniformly at random.
3 Idea 3: Specify a probability 0 ≤ p ≤ 1. For every pair of nodes, add

an edge between the nodes with probability p.

T. M. Murali February 4 and 6, 2020 CS 4884: Computing the Brain



E-R Graphs W-S Graphs

Idea 1 for Creating Random Graphs

From the set of all graphs of n nodes, pick one uniformly at random.
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How many graphs can there be on n nodes?

I To make a graph, we have two options for each edge: include it or
exclude it.

I Therefore, there are 2(n
2) graphs possible on n nodes.

How do we implement Idea 1? How do we select one of these graphs
with probability 1

2(
n
2)

?

Explicitly construct all 2(n2) and then select one uniformly at random.

Running time is O(n22(n2)). Too slow!

For every pair of nodes, add an edge with probability 1/2. Running
time is O(n2).
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Properties of Random Graphs Created by Idea 1

From the set of all graphs of n nodes, pick one uniformly at random.

What is the expected degree of a node?

(n − 1)/2.

What is the expected number of edges in the graph?

n(n − 1)/4.

On average, these graphs are very dense.
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Erdős-Rényi Graphs

A mathematician is a device for turning coffee into theorems.
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Erdős-Rényi Graphs

Idea 3: Specify a probability 0 ≤ p ≤ 1.
For every pair of nodes, add an edge between the nodes with probability p.

Series of papers in the 1960s setting the foundation of random graph
theory.

Framework for generating a random graph.

G (n, p): an undirected, unweighted graph (family) with n nodes.

To generate a graph in G (n, p):
I For each pair (u, v) of

(
n
2

)
node pairs, connect u and v by an edge with

probability p.

I How do you “do something” with probability p?
I Generate a random number x between 0 and 1 under the uniform

distribution. If x ≤ p, then “do something”, else “do the other thing”.

T. M. Murali February 4 and 6, 2020 CS 4884: Computing the Brain

On the evolution of random graphs, P. Erdős and A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61, 1960.
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Degrees and Connectivity in Erdős-Rényi Graphs

To generate a graph in G (n, p): For each pair (u, v) of
(n
2

)
nodes,

connect u and v by an edge with probability p.

How many edges does this graph have on average?

n(n − 1)p/2.

What is the expected degree of a node? (n − 1)p.
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Degree Distribution
What is the degree distribution of G (n, p)?

What is the probability that a node v has degree k?
I Connect (probability p) v to k neighbours out of n − 1 nodes and not

connect (probability 1− p) to the rest.
I Probability that v has degree k follows the binomial distribution

Pr(d(v) = k) =

(
n − 1

k

)
pk(1− p)n−k−1

0 20 40 60 80 100

0.0

0.1

0.1

0.2

p = 0.05
p = 0.1
p = 0.3
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Binomial Identities

∑
k

(
n − 1

k

)
pk(1− p)n−k−1 =

n−1∑
k=0

Pr(d(v) = k)

(
p + (1− p)

)n−1
= 1

Simply stating the degree of a node must take exactly one value
between 0 and n − 1.

∑
k

k

(
n − 1

k

)
pk(1− p)n−k−1 =

n−1∑
k=0

k Pr(d(v) = k)

(n − 1)p = E [d(v)]

The expected degree of a node is (n − 1)p.

The expected number of edges in G (n, p) is n(n − 1)p/2.
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The expected degree of a node is (n − 1)p.

The expected number of edges in G (n, p) is n(n − 1)p/2.
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E-R Graphs W-S Graphs

Guarantee that a Random Graph is Connected

Specifically, we require n � k � ln(n) � 1, where k � ln(n)
guarantees that a random graph will be connected.
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Consider the evolution of G (n, p) as p increases.

When p is close to 0, graph has many small connected components.

When p is close to 1, graph is very dense (has almost all the edges).

When do all nodes in the graph become connected into one
component?

The Science of Six Degrees of Separation (Video, 3’40”–4’49”)
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E-R Graphs W-S Graphs

Phase Transitions

Value of p Property of G (n, p)

p = 0

Has no edges

p < (1−ε)
n

All connected components are of size log n.

p > (1+ε)
n

Has a unique connected component containing a positive
fraction of the nodes (giant component)!

p < (1−ε) ln n
n

Has at least one isolated node.

p > (1+ε) ln n
n

Is connected! k in Watts-Strogatz is np.

The average shortest path length is ln n
ln(1+ε)+ln ln n

.

Path lengths are logarithmic in the number of nodes!

p = 1

Is a complete graph.

Statements hold with high probability, e.g., if p > (1+ε) ln n
n , then

Pr{G (n, p) is not connected } ≈ 1

enε
.
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E-R Graphs W-S Graphs

Clustering Coefficient
1

2 3

4 5 6

7

8

9

10

11

12

13

Measures the extent of clusters/cliques around a node, on average.
Clustering coefficient c(v) for a node v is the fraction of pairs of its
neighbours that are themselves connected.
Clustering coefficient c(G ) of a graph G is the average of the
clustering coefficients of its nodes.

I Note that I am using lowercase c (since c is a number), whereas the
paper uses uppercase C .

I Technically, c(v) should have the graph G as an argument, but we will
be sloppy and ignore it.

What is the clustering coefficient of a lattice? A complete graph? 0
and 1, respectively.
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E-R Graphs W-S Graphs

Clustering Coefficient of an Erdős-Rényi Graph

Assume p > (1+ε) ln n
n .

We know that the average shortest path length in G (n, p) is ≈ ln n
ln(1+ε) .

What is the clustering coefficient of G (n, p)?
I A node u has (n − 1)p nodes on average.
I What is the probability that two neighbours v and w are connected? p!
I Hence, the clustering coefficient of G (n, p) is p < 1.
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E-R Graphs W-S Graphs

Motivation

Consider two measures for a graph G :
I l(G ), the average shortest path length in G .
I c(G ), the clustering coefficient of G .

G (n, p), p > (1+ε) ln n
n :

l(G ) =
ln n

ln np
(small) c(G ) = p (small)

Regular ring graph: n nodes in a ring, each node connected to the
next k/2 nodes appearing in clockwise order around the ring.

l(G ) =

n/2k (large)

c(G ) =

≈ 3/4 (large)

Real world networks have small average shortest path lengths (like
G (n, p)) but large clustering coefficients (like ring graph).
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E-R Graphs W-S Graphs

Watts-Strogatz Model

The Science of Six Degrees of Separation (Video, 4’49”–8’08”)

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Three parameters: n, number of nodes; k: degree of each node; p:
rewiring probability. This p is different from the p in E-R graphs.

Rewire regular ring graph in k/2 rounds. In round j ,
1 For each node i , consider edge (i , i + j).

2 Pick a candidate node l uniformly at random between 1 and n.
3 With probability p, replace (i , i + j) with (i , l) if

i 6= l and (i , l) not
already in graph.

T. M. Murali February 4 and 6, 2020 CS 4884: Computing the Brain

https://www.youtube.com/watch?v=TcxZSmzPw8k
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E-R Graphs W-S Graphs

l and c for Watts-Strogatz Graphs

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

l(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

l(0) =

n/2k c(0) = ≈ 3/4

Ring lattice is large-world and highly clustered.

l(1) = ln n/ ln k c(1) = k/n

Random ring graph is small-world but poorly clustered.

Are there values of p for which l(p) is small but c(p) is large?
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E-R Graphs W-S Graphs

l and c for Watts-Strogatz Graphs
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E-R Graphs W-S Graphs

Observations

l(p) becomes small due to the addition of a small number of
“long-range” edges.

These short cuts connect nodes that would otherwise be very far
apart.

Non-linear effect on l(p): Short cuts also contract the distance
between neighbours of the connected nodes, their neighbours, and so
on.

Linear effect on c(p): Removal of an edge from a node’s
neighbourhood has a linear effect on c(p).

At the local level, transition to a small world is almost undetectable.

Do real-world networks have small l and large c?
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E-R Graphs W-S Graphs

Actor Network

Node ≡ Actor
Edge ≡ Collaboration
Edge weight ≡ 1
n =

225, 226

m =

(225, 226× 61)/2 = 6, 869, 393
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E-R Graphs W-S Graphs

Power Network

Node ≡

Generators, transformers, and substations

Edge ≡

High-voltage transmission line

Edge weight ≡

1

n =

4, 941

m =

(4, 941× 2.67)/2 = 6, 596
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E-R Graphs W-S Graphs

C elegans connectome

Node ≡

Neuron

Edge ≡

Synpase

Edge weight ≡

1

n =

282

m =

(282× 14)/2 =
1974
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E-R Graphs W-S Graphs

C elegans connectome

Node ≡ Neuron
Edge ≡ Synpase
Edge weight ≡ 1
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E-R Graphs W-S Graphs

Real-world Networks are Small World

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Filmactors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

The pattern in Nature’s networks (Video, 3 min 25 sec)
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https://www.youtube.com/watch?v=Lq5hlsJAOfc
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