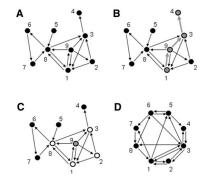
CS 4884: Small World of Brain Networks



T. M. Murali

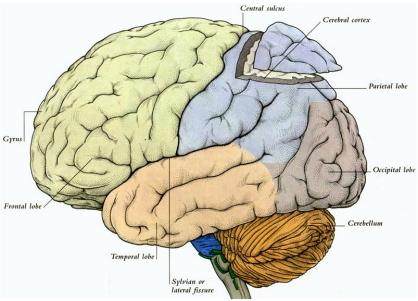
February 13, 2020

Motivation

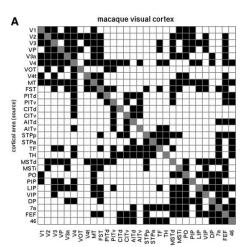
- The Watts-Strogatz paper set off a storm of research.
- It has 41,500 citations. Even in 2004, it had more than 2,100 citations.
- The C. elegans neuronal network is small-world.

Do mammalian brain networks have the small world property?

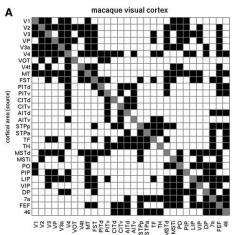
Visual and Cerebral Cortices



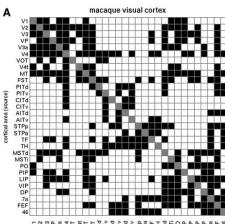
Visual and Cerebral Cortices



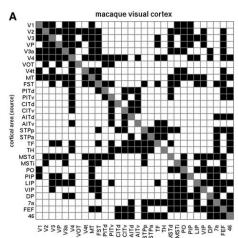
 Each row (efferent) and column (afferent)



- Each row (efferent) and column (afferent) corresponds to a brain region.
- The value in a cell is

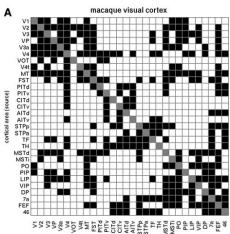


- Each row (efferent) and column (afferent) corresponds to a brain region.
- The value in a cell is $c_{ij} = 1$, if there is a published neural pathway from region i to region j and $c_{ij} = 0$ otherwise.



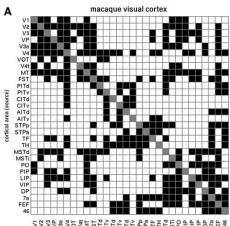
LEGOOFALL SE

- Each row (efferent) and column (afferent) corresponds to a brain region.
- The value in a cell is $c_{ij} = 1$, if there is a published neural pathway from region i to region j and $c_{ij} = 0$ otherwise.
- Matrix is asymmetric.
 Corresponds to



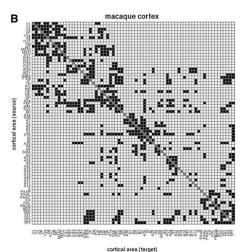
TOOAALL SETTINE

- Each row (efferent) and column (afferent) corresponds to a brain region.
- The value in a cell is $c_{ij} = 1$, if there is a published neural pathway from region i to region j and $c_{ij} = 0$ otherwise.
- Matrix is asymmetric.
 Corresponds to an unweighted, directed graph.



- Each row (efferent) and column (afferent) corresponds to a brain region.
- The value in a cell is $c_{ij} = 1$, if there is a published neural pathway from region i to region j and $c_{ij} = 0$ otherwise.
- Matrix is asymmetric.
 Corresponds to an unweighted, directed graph.
- n = 30, m = 311. (The authors use N for the number of nodes and K for the number of edges.)

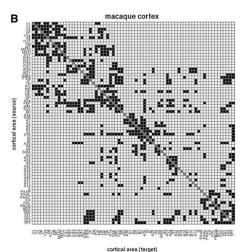
Datasets: Macaque Cerebral Cortex



• n = 71, m = 746.

T. M. Murali February 13, 2020 Small World of Brain Networks

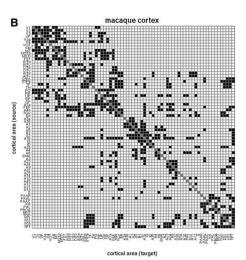
Datasets: Macaque Cerebral Cortex



• n = 71, m = 746.

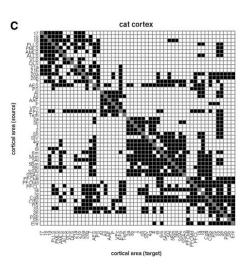
T. M. Murali February 13, 2020 Small World of Brain Networks

Datasets: Macaque Cerebral Cortex



- n = 71, m = 746.
- What is the relation between this graph and the one for the macaque visual cortex? Most of the edges in the previous graph are in this one.

Datasets: Cat Cerebral Cortex



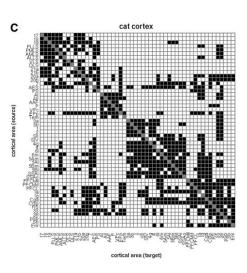
• n = 52, m = 820.

Datasets: Cat Cerebral Cortex



- n = 52, m = 820.
- What approximation did the authors make?

Datasets: Cat Cerebral Cortex



- n = 52, m = 820.
- What approximation did the authors make? Discarded density information.
- We will ignore density-based connectivity data sets.

Reference Cases

• "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 - n)$, while omitting self-connections."

Reference Cases

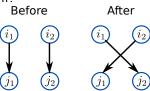
• "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2-n)$, while omitting self-connections." Analogous to the E-R model with $p=m/(n^2-n)$.

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2-n)$, while omitting self-connections." Analogous to the E-R model with $p=m/(n^2-n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached."

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." Essentially the same as the W-S ring network with k=m/n.

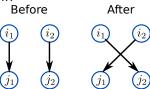
- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2-n)$, while omitting self-connections." Analogous to the E-R model with $p=m/(n^2-n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." Essentially the same as the W-S ring network with k=m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..."

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." Essentially the same as the W-S ring network with k=m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..." Does this method preserve in- and out-degrees? How many edge flips should we perform?



Reference Cases

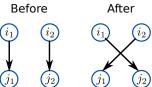
- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2-n)$, while omitting self-connections." Analogous to the E-R model with $p=m/(n^2-n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." Essentially the same as the W-S ring network with k=m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..." Does this method preserve in- and out-degrees? How many edge flips should we perform?



• Degree-preserving lattice matrix:

Reference Cases

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2-n)$, while omitting self-connections." Analogous to the E-R model with $p=m/(n^2-n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." Essentially the same as the W-S ring network with k=m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..." Does this method preserve in- and out-degrees? How many edge flips should we perform?



 Degree-preserving lattice matrix: Very poorly specified. Will need to read the code to understand.

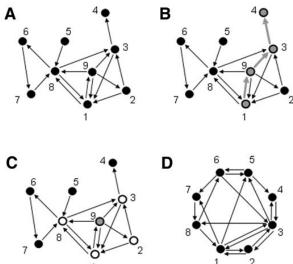
• What are the measures used?

- What are the measures used?
 - ▶ The average shortest path length I(G), called λ in this paper.
 - ▶ They introduce a new term, $\lambda(v)$, which is the average distance between v and every other node in G.

- What are the measures used?
 - ▶ The average shortest path length I(G), called λ in this paper.
 - ▶ They introduce a new term, $\lambda(v)$, which is the average distance between v and every other node in G. Ambiguous: do they mean distances to v or distances from v?

- What are the measures used?
 - ▶ The average shortest path length I(G), called λ in this paper.
 - ▶ They introduce a new term, $\lambda(v)$, which is the average distance between v and every other node in G. Ambiguous: do they mean distances to v or distances from v?
 - ▶ Clustering coefficient, c(v), called "cluster index" and denoted by $\gamma(v)$ in this paper.

Computing I(G) and c(G) for Directed Graphs



• Appropriately generalise definitions for undirected graphs.

Scaling I(G) and c(G)

- Random networks and ring lattices lie at opposite ends of a spectrum.
- Authors sought to measure to which extreme connectomes were closer.

Scaling I(G) and c(G)

- Random networks and ring lattices lie at opposite ends of a spectrum.
- Authors sought to measure to which extreme connectomes were closer.

$$I_{
m scl}(G) = rac{I(G) - I_{
m random}}{I_{
m lattice} - I_{
m random}}$$
 $c_{
m scl}(G) = rac{c(G) - c_{
m random}}{c_{
m lattice} - c_{
m random}}$

• What values will a small world network have for these quantities?

Scaling I(G) and c(G)

- Random networks and ring lattices lie at opposite ends of a spectrum.
- Authors sought to measure to which extreme connectomes were closer.

$$I_{
m scl}(G) = rac{I(G) - I_{
m random}}{I_{
m lattice} - I_{
m random}}$$
 $c_{
m scl}(G) = rac{c(G) - c_{
m random}}{c_{
m lattice} - c_{
m random}}$

• What values will a small world network have for these quantities? Small $I_{scl}(G)$ and large $c_{scl}(G)$.

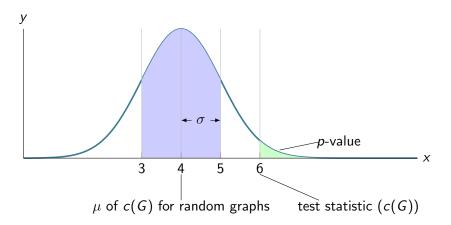
Results for I(G) and c(G)

Table 1. Path Length (λ, λ_{scl}) and Cluster Index (γ, γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71,746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *		
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars. Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C), $R_{\rm N,K}$ = random, $L_{\rm N,K}$ = lattice, Rio_{N,K}, Lio_{N,K} = random, lattice matrices with in-degree and out-degree distribution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio, or Lio matrices marked by "*" are ν =0.001, the remaining comparisons are ν =<0.05.

Statistical Significance



T. M. Murali February 13, 2020 Small World of Brain Network

Results for I(G) and c(G)

Table 1. Path Length (λ, λ_{scl}) and Cluster Index (γ, γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

opology	λ	γ	λ_{scl}	$\gamma_{\it scl}$
IVC	1.7256	0.5313	0.2188	0.5645
30,311	1.6680 (0.0038)*	0.3616 (0.0048) *		
30,311	1.9313 (0.0018)*	0.6622 (0.0000) *		
io _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
io _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
1C	2.3769	0.4614	0.1927	0.6117
71,746	2.0310 (0.0051)*	0.1497 (0.0030) *		
71,746	3.8262 (0.0099)*	0.6593 (0.0002) *		
io _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
io _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
C	1.8114	0.5514	0.2498	0.6292
52.820	1.7014 (0.0013)*	0.3103 (0.0026) *		
52,820	2.1418 (0.0024)*	0.6933 (0.0000) *		
io _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
io _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars. Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C), $R_{\rm N,K}$ = random, $L_{\rm N,K}$ = lattice, Rio_{N,K} = random, lattice matrices with in-degree and out-degree distribution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio, or Lio matrices marked by "** are y=0.001, the remaining comparisons are y=0.05.

Results for I(G) and c(G)

Table 1. Path Length (λ, λ_{scl}) and Cluster Index (γ, γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Connection matrices of Cortica Content adimays						
Topology	λ	γ	λ_{scl}	γ_{scl}		
MVC	1.7256	0.5313	0.2188	0.5645		
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *				
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *				
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *				
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)				
MC	2.3769	0.4614	0.1927	0.6117		
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *				
	3.8262 (0.0099)*	0.6593 (0.0002) *				
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *				
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *				
CC	1.8114	0.5514	0.2498	0.6292		
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *				
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5			
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *				
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)				

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars. Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C), $R_{\rm N,K}$ = random, $L_{\rm N,K}$ = lattice, Rio_{N,K} = random, lattice matrices with in-degree and out-degree distribution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio, or Lio matrices marked by "** are y=0.001, the remaining comparisons are y=0.05.

Results for I(G) and c(G)

Table 1. Path Length (λ, λ_{scl}) and Cluster Index (γ, γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71.746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52.820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars. Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C), $R_{\rm N,K}$ = random, $L_{\rm N,K}$ = lattice, Rio_{N,K} = random, lattice matrices with in-degree and out-degree distribution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio, or Lio matrices marked by "** are y=0.001, the remaining comparisons are y=0.05.

Results for I(G) and c(G)

Table 1. Path Length (λ, λ_{scl}) and Cluster Index (γ, γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71.746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71,746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	> 0.5
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars. Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C), $R_{\rm N,K}$ = random, $L_{\rm N,K}$ = lattice, Rio_{N,K}, Lio_{N,K} = random, lattice matrices with in-degree and out-degree distribution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio, or Lio matrices marked by "*" are ν =0.001, the remaining comparisons are ν =<0.05.

Results for I(G) and c(G)

Table 1. Path Length (λ, λ_{scl}) and Cluster Index (γ, γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
	1.6680 (0.0038)*	0.3616 (0.0048) *	0.2100	0.3643
R _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71,746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	> 0.5
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars. Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C), $R_{\rm N,K}$ = random, $L_{\rm N,K}$ = lattice, Rio_{N,K}, Lio_{N,K} = random, lattice matrices with in-degree and out-degree distribution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio, or Lio matrices marked by "*" are ν =0.001, the remaining comparisons are ν =0.05.

- Values of I(G) and c(G) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.

- Values of I(G) and c(G) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.
- Values of I(G) for connectomes are closer to random networks than to ring networks.
- Values of c(G) for connectomes are closer to ring networks than to random networks.

- Values of I(G) and c(G) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.
- Values of I(G) for connectomes are closer to random networks than to ring networks.
- Values of c(G) for connectomes are closer to ring networks than to random networks.
- These differences are not due to the degree distributions but due to some other intrinsic properties of the connectomes.

- Values of I(G) and c(G) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.
- Values of I(G) for connectomes are closer to random networks than to ring networks.
- Values of c(G) for connectomes are closer to ring networks than to random networks.
- These differences are not due to the degree distributions but due to some other intrinsic properties of the connectomes.
- Caveats:
 - p-values are likely to be underestimated. They should be estimated from empirical distributions built from many more random samples.
 - ▶ No indication of correction for testing multiple hypotheses.
 - ▶ No p-value associated with the scaled values of I(G) and c(G).

 Desire a single, scalar quantity that captures to what degree a network has the small world property.

 Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{\mathsf{random}}}{I(G)/I_{\mathsf{random}}}$$

 Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{\mathsf{random}}}{I(G)/I_{\mathsf{random}}}$$

• What should $\sigma(G)$ be for a network with the small world property?

 Desire a single, scalar quantity that captures to what degree a network has the small world property.

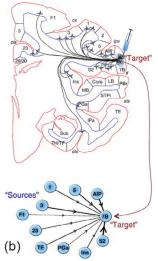
$$\sigma(G) = \frac{c(G)/c_{\mathsf{random}}}{I(G)/I_{\mathsf{random}}}$$

• What should $\sigma(G)$ be for a network with the small world property? $c(G) > c_{\text{random}}$ and $I(G) > I_{\text{random}}$, so $\sigma(G) \approx 1$ or $\sigma(G) > 1$.

Is Small-Worldness Universal in Connectomes?

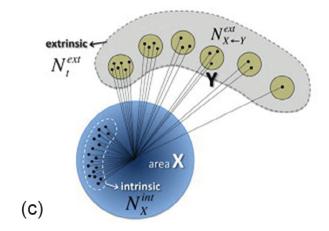
- How does small-worldness emerge in connectomes?
- Do all connectomes have the small-world property?

Structural Connectivity at the Mesoscale: Macaque



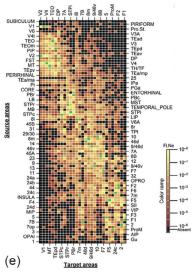
Use retrograde tract tracing. Determine edges coming into node representing area of injection from "labelled" nodes representing neurons that the tracer reaches.

Structural Connectivity at the Mesoscale: Macaque



Injection is at X: $w(Y,X) = \frac{\text{number of neurons labelled in } Y}{\text{total number of labelled neurons}}$

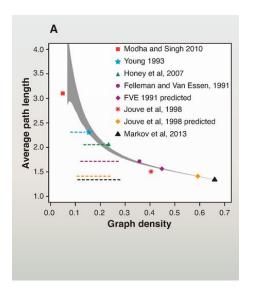
Structural Connectivity at the Mesoscale: Macaque



Example of connectivity matrix.

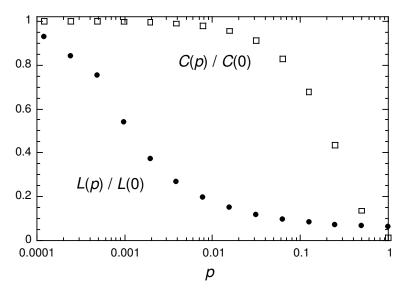
Edge weights range over six orders of magnitude.

Arguments Against Universality



Markov et al., Cortical high-density counterstream architectures. Science, 2013.

Arguments Against Universality



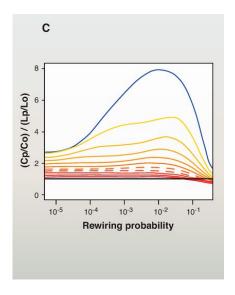
T. M. Murali February 13, 2020 Small World of Brain Networks

Arguments Against Universality



Markov et al., Cortical high-density counterstream architectures. Science, 2013.

Arguments Against Universality



Markov et al., Cortical high-density counterstream architectures. Science, 2013.

- Take edge weights into account!
- How do you define shortest paths?
- How do you define clustering coefficient?

- Take edge weights into account!
- How do you define shortest paths? Length of a path is the sum of the weights of the edges.
- How do you define clustering coefficient?

- Take edge weights into account!
- How do you define shortest paths? Length of a path is the sum of the weights of the edges.
- How do you define clustering coefficient?

$$c(v) = \frac{\sum_{u,t \in N(v)} \left(w_{uv} w_{tv} w_{tu}\right)^{1/3}}{\binom{d(v)}{2}}$$

- Take edge weights into account!
- How do you define shortest paths? Length of a path is the sum of the weights of the edges.
- How do you define clustering coefficient?

$$c(v) = \frac{\sum_{u,t \in N(v)} \left(w_{uv} w_{tv} w_{tu}\right)^{1/3}}{\binom{d(v)}{2}}$$

Table 1. Small-World Metrics.a

	Ma	Macaque		Mouse	
	Binary	Weighted	Binary	Weighted	
Γ	1.21±0.014	1.59 ± 0.007	1.31±0.004	1.76 ± 0.009	
Λ	1.00 ± 0.000	$\textbf{1.27} \pm \textbf{0.057}$	$\textbf{1.00} \pm \textbf{0.000}$	$\textbf{1.47} \pm \textbf{0.021}$	
σ	1.21 ± 0.014	$\textbf{1.25} \pm \textbf{0.071}$	1.31 ± 0.004	1.20 ± 0.019	
ф	N/A	0.574 ± 0.041	N/A	$\boldsymbol{0.800 \pm 0.002}$	

^aFor the macaque and mouse connectomes, we show the mean and standard deviation of the normalized clustering coefficient (Γ) , the normalized path length (Λ) , the small-world index (σ) , and the small-world propensity (ϕ) for both binary and weighted graphs.

T. M. Murali February 13, 2020 Small World of Brain Network: