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_ Datasets  Measures _______________________ Resuls
Motivation

@ The Watts-Strogatz paper set off a storm of research.

@ It has 41,500 citations. Even in 2004, it had more than 2,100
citations.

@ The C. elegans neuronal network is small-world.

Do mammalian brain networks have the small world property? )
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Visual and Cerebral Cortices

Central suleus

Cerebral cortex

Parietal lobe

Occipital lobe

Frontal lobe

Temporal lobe

Sylvian or
lateral fissure
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Visual and Cerebral Cortices
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Datasets: Macaque Visual Cortex

A macaque visual cortex

. e Each row (efferent) and column
(afferent)

cortical area (source)

cortical area (target)
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Measures Results

Datasets: Macaque Visual Cortex

A macaque visual cortex

e Each row (efferent) and column
(afferent) corresponds to a brain
region.

@ The value in a cell is ¢jj =1, if
there is a published neural
pathway from region /i to region
J and ¢jj = 0 otherwise.

cortical area (source)

e Matrix is asymmetric.
Corresponds to an unweighted,
directed graph.

e n =30, m=311. (The authors
use N for the number of nodes

cortcl ara trged and K for the number of edges.)
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Datasets: Macaque Cerebral Cortex

B macaque cortex
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Datasets: Macaque Cerebral Cortex

B macaque cortex
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i i @ What is the relation between
this graph and the one for the
macaque visual cortex? Most of
the edges in the previous graph
are in this one.
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Cat Cerebral Cortex

Datasets

cat cortex

e n=>52 m=_820.

TTT
T
T
T
i}

|

s

INEENNENEENES EESENNI

1
1

I
1

|
|

LT

T

ST D,

m
11
e, > N E 6 BT SO IR O, =
== R AR gS G%Emwmmq BRLRGRE
PPHM% < > @ ® e

(921n0s) vase [RIQIOD

&

T

TN
RN

R )
T

cortical area (target)

February 13, 2020

T. M. Murali



e n=>52 m=_820.

@ What approximation did the
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Datasets: Cat Cerebral Cortex
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@ What approximation did the
authors make? Discarded
- density information.
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Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”

T. M. Murali February 13, 2020



e Measures ___________________ Resuts
Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”
Analogous to the E-R model with p = m/(n® — n).

T. M. Murali February 13, 2020



Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”

Analogous to the E-R model with p = m/(n® — n).
o “Lattice matrices are generated by filling all entries of the connection
matrices directly adjacent to the main diagonal until the limit of m

connections is reached.”

T. M. Murali February 13, 2020



Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”
Analogous to the E-R model with p = m/(n® — n).

o “Lattice matrices are generated by filling all entries of the connection
matrices directly adjacent to the main diagonal until the limit of m
connections is reached.” Essentially the same as the W-S ring

network with k = m/n.

T. M. Murali February 13, 2020



Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”
Analogous to the E-R model with p = m/(n® — n).

o “Lattice matrices are generated by filling all entries of the connection
matrices directly adjacent to the main diagonal until the limit of m
connections is reached.” Essentially the same as the W-S ring
network with k = m/n.

@ Degree-preserving random matrix: “A pair of vertices ... is selected

T. M. Murali February 13, 2020



Measures

Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”
Analogous to the E-R model with p = m/(n® — n).

o “Lattice matrices are generated by filling all entries of the connection
matrices directly adjacent to the main diagonal until the limit of m
connections is reached.” Essentially the same as the W-S ring
network with k = m/n.

@ Degree-preserving random matrix: “A pair of vertices ... is selected
... Does this method preserve in- and out-degrees? How many edge

flips should we perform?
Before After

W G G ()
@ @ O @

T. M. Murali February 13, 2020



Measures

Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”
Analogous to the E-R model with p = m/(n® — n).

o “Lattice matrices are generated by filling all entries of the connection
matrices directly adjacent to the main diagonal until the limit of m
connections is reached.” Essentially the same as the W-S ring
network with k = m/n.

@ Degree-preserving random matrix: “A pair of vertices ... is selected
... Does this method preserve in- and out-degrees? How many edge

flips should we perform?
Before After

W G G ()
@ @ O @

@ Degree-preserving lattice matrix:
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Results

Reference Cases

@ “Random connection matrices are generated by assigning connections
with uniform probability m/(n? — n), while omitting self-connections.”
Analogous to the E-R model with p = m/(n® — n).

o “Lattice matrices are generated by filling all entries of the connection
matrices directly adjacent to the main diagonal until the limit of m
connections is reached.” Essentially the same as the W-S ring
network with k = m/n.

@ Degree-preserving random matrix: “A pair of vertices ... is selected
... Does this method preserve in- and out-degrees? How many edge

flips should we perform?
Before After

W G G ()
@ @ O @

@ Degree-preserving lattice matrix: Very poorly specified. Will need to
read the code to understand.
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» The average shortest path length /(G), called X in this paper.
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e T
Graph Measures

@ What are the measures used?

» The average shortest path length /(G), called X in this paper.

» They introduce a new term, A(v), which is the average distance
between v and every other node in G. Ambiguous: do they mean
distances to v or distances from v?

» Clustering coefficient, c(v), called “cluster index" and denoted by y(v)
in this paper.
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Computing /(G) and ¢(G) for Directed Graphs
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@ Appropriately generalise definitions for undirected graphs.
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@ Random networks and ring lattices lie at opposite ends of a spectrum.

@ Authors sought to measure to which extreme connectomes were
closer.
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e
Scaling /(G) and ¢(G)

@ Random networks and ring lattices lie at opposite ends of a spectrum
@ Authors sought to measure to which extreme connectomes were
closer.

/scl(G) — I(G) —

/random
Ilattice -

Irandom

CscI(G) _ C(G) — Crandom

Clattice — Crandom

@ What values will a small world network have for these quantities?
Small k(G) and large csi(G).

T. M. Murali February 13, 2020



LoD Meme
Results for /(G) and ¢(G)

Table 1. Path Length (&, A_,) and Cluster Index (y, y,) for Large-Scale
Connection Matrices of Cortico-Cortical Pathways

Topology A Y M Vsl
MVC 1.7256 0.5313 0.2188 0.5645
R 16680 (0.0038)") 0.3616 (0.0048) *

[T 19313 (0.0018)" 0.6622 (0.0000) *

Riogg 1 16880 (0.0033)* 0.4305 (0.0059) *

Liog 5y, 1.8190 (0.0391) 0.6214 (0.0243)

MC 2.3769 0.4614 0.1927 0.6117
Ry 746 2.0310 (0.0051)* 0.1497 (0.0030) *

Lyt 746 3.8262 (0.0099)" 0.6593 (0.0002) *

Ri0, 746 21159 (0.0133)* 0.2409 (0.0047) *

Lio,, 746 2.8901 (0.1173)* 0.8992 (0.0211) *

CcC 1.8114 0.5514 0.2498 0.6292
Ry 120 17014 (0.0013)* 0.3103 (0.0026) *

Lus a0 21418 (0.0024)" 0.6933 (0.0000) *

Rios, 40 17217 (0.0037)* 0.4023 (0.0030) *

Liog; g9 1.8570 (0.0283) 0.5893 (0.0172)

Measures for reference cases represent means and standard deviations (in brackets) for 10 exemplars.
Topologies: MVC = macaque visual cortex (Fig. 1A), MC = macaque cortex (Fig. 1B), CC = cat cortex (Fig. 1C),
RN,K = random, LN/K = lattice, RioN'K, LioNll< = random, lattice matrices with in-degree and out-degree distri-
bution preserved. Statistical significance for all comparisons between cortical matrices and random, lattice, Rio,
or Lio matrices marked by “*” are p<0.001, the remaining comparisons are p<0.05.
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Statistical Significance

- (J —>\
/ ____—p-value
3 4‘1 5 6

w of ¢(G) for random graphs  test statistic (c(G))
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LoD Meme
Observations on /(G) and ¢(G)

@ Values of /(G) and c(G) for connectomes are higher than for random
networks with the same number of nodes and edges; difference is
statistically significant.

@ Conversely, these values for connectomes are lower than for ring
networks with the same number of nodes and edges; difference is
statistically significant.
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Measures

Observations on /(G) and ¢(G)

Values of /(G) and ¢(G) for connectomes are higher than for random
networks with the same number of nodes and edges; difference is
statistically significant.
Conversely, these values for connectomes are lower than for ring
networks with the same number of nodes and edges; difference is
statistically significant.
Values of /(G) for connectomes are closer to random networks than
to ring networks.
Values of ¢(G) for connectomes are closer to ring networks than to
random networks.
These differences are not due to the degree distributions but due to
some other intrinsic properties of the connectomes.
Caveats:
> p-values are likely to be underestimated. They should be estimated
from empirical distributions built from many more random samples.
» No indication of correction for testing multiple hypotheses.
» No p-value associated with the scaled values of /(G) and ¢(G).
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Computing Small-Worldness

@ Desire a single, scalar quantity that captures to what degree a
network has the small world property.
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R R e s
Computing Small-Worldness

@ Desire a single, scalar quantity that captures to what degree a
network has the small world property.

o C(G)/Crandom

J(G) N /(G)//random

@ What should o(G) be for a network with the small world property?
c(G) > Gandom and I(G) > handom, s0 0(G) =~ 1 or o(G) > 1.
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OED Oxford English Dictionary
itive record of the English language

Help on Dictionary Entry | Print | Save | Email | Cite

Textsize: A/ A | Thisisanew

connectome, n. entey (OED Third

View as: Outline | Full entry Quotations: Show all| Hide all Keywords:on|ori |~ Edition, March
2019).
Pronunciation: Brit. [/ ka'nektaum/, Entry history.
Entry profle

US. @)/ka'nek,toum,
Origin: Formed within English, by compounding. Etymons: coxsect v., <ox comb. form.

Etymology: < coxNEcr v. + -0z comb. form.

Thesaurus »

The network of nerve cells and their connections found in =
ategories »

the brain or other part of the nervous system; a description
or map of such a network.

2005 0. Sporxs et al. in PLoS Computational Biol. (e-journal, accessed 31 July 2018) 1
o245/ The purgose ofhis ariele s o disouss eseach strsegiessimed ata
the network of el
connections forming the human brain. We propose to call this ataset the human

‘connectome.
2008 Science 11 July 184/3 The ‘connectome’ of the human cortex has been produced
by an international team of brain scientists and imagers.
2012 Guardian 8 May i0/3 The first detailed connectomes are expected to be
completed, and made publicly available for scientists to work on, later this year.
2018 E. C. GoLorreLD Bioinspired Devices vi. 202 The rapid increase in synaptic
density, as well as the elongation of axons at around twenty-six weeks, may
initiate connectome formation.
Hide quotations)

@ How does small-worldness emerge in connectomes?
@ Do all connectomes have the small-world property?
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LoD Meme
Structural Connectivity at the Mesoscale: Macaque

( R

Use retrograde tract tracing. Determine edges coming into node representing area
of injection from “labelled” nodes representing neurons that the tracer reaches.
T. M. Murali February 13, 2020




Structural Connectivity at the Mesoscale: Macaque

5 l-_ " " 1
S intrinsic

H H . . __ number of neurons labelled inY
Injectlon is at X: W(Y7 X) " total number of labelled neurons
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LoD Meme
Structural Connectivity at the Mesoscale: Macaque

ssPacfoes

SUBICULUM
Vi

Example of connectivity matrix.
Edge weights range over six orders of magnitude.
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Arguments Against Universality

A

= Modha and Singh 2010

+ Young 1993

4 Honey et al, 2007

® Felleman and Van Essen, 1991
+ FVE 1891 predicted

# Jouve et al, 1998

+ Jouve et al, 1998 predicted

A Markov etal, 2013

Average path length
n
o

00 01 02 03 04 05 06 07
Graph density

Markov et al., Cortical high-density counterstream architectures. Science, 2013.
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Arguments Against Universality
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Markov et al., Cortical high-density counterstream architectures. Science, 2013.
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Arguments Against Universality
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Markov et al., Cortical high-density counterstream architectures. Science, 2013.
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Arguments For Universality

@ Take edge weights into account!

@ How do you define shortest paths?

@ How do you define clustering coefficient?
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R R e s
Arguments For Universality

@ Take edge weights into account!

@ How do you define shortest paths? Length of a path is the sum of the
weights of the edges.

@ How do you define clustering coefficient?

S eenty) (W e wea)

o= (%)
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R R e s
Arguments For Universality

@ Take edge weights into account!

@ How do you define shortest paths? Length of a path is the sum of the
weights of the edges.

@ How do you define clustering coefficient?

S eenty) (W wea)

c(v) =

()
2
Table |. Small-World Metrics.?
Macaque Mouse

Binary Weighted Binary Weighted
T 1.21+£0.014 1.59+0.007 1.31+£0.004 1.76 +0.009
A 1.00 £0.000 1.27+£0.057 1.00+0.000 1.47 +0.021
G 1.21£0.014 1.25+0.071 1.31+0.004 120+0.019
o N/A 0.574+0.041 N/A 0.800+0.002

?For the macaque and mouse connectomes, we show the mean and standard deviation of the normalized clustering coefficient (1'), the
normalized path length (A), the small-world index (), and the small-world propensity () for both binary and weighted graphs.
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