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Summary of Course Thus Far

History of neuroscience

Graphs (Definitions, basic concepts, Euler tours)

Brain graphs (types of nodes and edges, experimental methods,
Chapter 2)

Brain connectivity matrices and node degrees (Chapters 3 and 4)

Shortest paths (Chapter 7.1 and 7.2)

Clustering coefficient and small world networks (Chapter 8.2)
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Plan till Spring Break

Clustering coefficient is a local measure of graph density.

Small world measures capture global features of graphs.

Are there intermediate notions of graph density?

Subgraphs that represent backbones of network topology
(components, shortest paths, cores, Chapter 6.1, 6.2, 7.1, February 20
and 25)

Modularity (Chapter 9.1, February 25, 27, March 3, 5)
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Plan after Spring Break

Schedule meetings with project groups during class time in my office.

Number of meetings per group will depend on number of groups.

Poster preparation for VTURCS Symposium on April 28.
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A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

Distance δ(u, v) between two nodes u and v is the minimum number
of edges in any u-v path.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

Distance δ(u, v) between two nodes u and v is the minimum number
of edges in any u-v path.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

Distance δ(u, v) between two nodes u and v is the minimum number
of edges in any u-v path.

A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

Distance δ(u, v) between two nodes u and v is the minimum number
of edges in any u-v path.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

Distance δ(u, v) between two nodes u and v is the minimum number
of edges in any u-v path.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.

A strongly connected component of a directed graph G = (V ,E ) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.
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Largest Component in Brain Graphs

Phase transition for appearance of large component in E-R graphs.

Add edges in decreasing order of weight.
Plot the size of the largest weakly connected component.
Size of the largest component increases rapidly as a function of
increasing network density.
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Random and Targeted Attack on Brain Networks

Remove nodes randomly.

Targeted attack: Remove nodes in decreasing order of degree.

Pr{degree = k} ∼ k−γ ∼ k−γe−k/kc

Degree distribution of the brain is broad-scale: characterized by an
exponentially-truncated power law.

Concentration of links on hub nodes is weaker in a broad-scale
network compared to a scale-free network.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Random and Targeted Attack on Brain Networks

Remove nodes randomly.
Targeted attack: Remove nodes in decreasing order of degree.

Pr{degree = k} ∼ k−γ ∼ k−γe−k/kc

Degree distribution of the brain is broad-scale: characterized by an
exponentially-truncated power law.
Concentration of links on hub nodes is weaker in a broad-scale
network compared to a scale-free network.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Random and Targeted Attack on Brain Networks

Remove nodes randomly.
Targeted attack: Remove nodes in decreasing order of degree.

Pr{degree = k} ∼ k−γ ∼ k−γe−k/kc

Degree distribution of the brain is broad-scale: characterized by an
exponentially-truncated power law.
Concentration of links on hub nodes is weaker in a broad-scale
network compared to a scale-free network.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Graph Measures Based on Shortest Paths

Characteristic path length l(G ) is the average shortest path length
between all pairs of nodes in G . δ(u, v) = shortest path length from
u to v .

l(G ) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

δ(u, v)

Global efficiency eglob(G ) is the average of the reciprocal of the
shortest path length between all pairs of nodes in G .

eglob(G ) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

1

δ(u, v)

Local efficiency eloc(v) of a node v is the average of the reciprocal of
the shortest path length between all pairs of neighbours of v in G .

eloc(v) =
1

d(v)(d(v)− 1)

∑
u,v∈N(v)

u 6=v

1

δ(u, v)
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Efficiency in Brain Networks

Functional connectivity networks from fMRI data in young (black) and old
(orange) human volunteers.
x-axis is fraction of possible edges as threshold on edge weight varies.
y -axis is global (left) and local (right) efficiency.
Small world networks are both locally and globally efficient.
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Motivation for Modules

Connected components offer a fairly coarse description of the core of
a network.

Most brain networks contain one large component that spans most
nodes.

Therefore, analysis of connected components does not identify sets of
nodes/edges that act as critical backbones or information-processing
cores.
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Core-Periphery Architecture

Core nodes should occupy a topologically central position in the
network.

Nodes in the core should be highly interconnected with each other.

Peripheral nodes should be moderately connected to core nodes, but
sparsely interconnected with each other.

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Defining Modules
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How do we define a module in an undirected graph?
In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
clique or complete subgraph if for every pair of nodes u, v ∈ C , (u, v)
is an edge in E .

I A clique C is maximal if no node outside C can be added to it, i.e., for
every node x ∈ V − C , x is not connected to at least one node in C .

I A clique C is maximum if there is no clique C ′ in G with more nodes
than C .
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Computing a Maximum Clique
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Maximum Clique
Given an undirected, unweighted graph G (V ,E ),
compute the largest clique in G .

Computing a maximum clique is NP-hard.
Any algorithm that can provably compute the maximum clique is
likely to have a running time that is exponential in the size of the
graph.
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Computing a Maximal Clique
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Maximal Clique
Given an undirected, unweighted graph G (V ,E ),
compute a maximal clique in G .

1 Select an arbitrary node v and add it to S (the clique we will output).
2 If there is a node u in V − S that is connected to every node in S ,

add u to S .
3 Repeat the previous step until no such node u is found.
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Running Time to Compute a Maximal Clique
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1 Select an arbitrary node v and add it to S (the clique we will output).

2 If there is a node u in V − S that is connected to every node in S ,
add u to S .

O(n|S |) checks for edge existence.

3 Repeat the previous step until no such node u is found.

O(n|S |2)
checks for edge existence.
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Clique Decomposition
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What do we do after computing a maximal clique?

Delete nodes in that clique from the graph and repeat.
The resulting set of cliques forms a clique decomposition of G .
Sequence of cliques found depends on order of processing nodes.
There is no notion of correctness here since we defined what we compute
(the clique decomposition) based on an algorithm we specified.
Will every edge in G be in some clique in the decomposition? Can a node be
in multiple cliques?

No, to both questions.
Modification: After finding a clique, delete only the edges in it.
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Structural Connectivity at the Mesoscale

Use retrograde tract tracing. Determine edges coming into node representing area
of injection from “labelled” nodes representing neurons that the tracer reaches.
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Structural Connectivity at the Mesoscale

Injection is at X : w(Y ,X ) = number of neurons labelled inY
total number of labelled neurons

T. M. Murali February 20 and 23, 2020 Components and Cores



Components Cliques Cores

Structural Connectivity at the Mesoscale

Example of connectivity matrix.
Edge weights range over six orders of magnitude.
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Cliques in Macaque Cerebral Cortex Connectome

29-node directed graph representing connectome of the cerebral cortex
of the macaque; only considering nodes with tracer injection points.
Computed all 13 maximum cliques, each of which had 10 nodes.

Union of cliques formed a dense subgraph among 17 nodes.
I Network among these 17 nodes had density of 0.92.
I Network between 17 nodes and remaining 12 nodes had density of 0.54.
I Network among 12 nodes had density of 0.49.
I Evidence of core-periphery structure.
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Motivation for k-Cores

Definition of a clique is very restrictive.

Most real networks have small maximal cliques.

Not very informative of connectome structure.
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In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
k-core if every node u ∈ C is connected in G to at least k nodes in C .

What is largest the 1-core of G?

G itself (without any nodes of
degree zero).

Does this graph have a 4-core?
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Problems related to k-cores
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k-core Existence

Given an undirected, unweighted graph G (V ,E ) and an integer k ,
compute the k-core with the largest number of nodes in G , if it
exists.

Largest k-core
Given an undirected, unweighted graph G (V ,E ),
compute the largest value of k for which G contains a k-core.
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Algorithm for k-Core Existence
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Repeatedly delete all nodes of degree < k until

every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Repeatedly delete all nodes of degree < k until every remaining node
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Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Correctness of k-Core Existence Algorithm

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k.

Why should the resulting graph H be a k-core?

Why should the resulting graph H be the k-core with the largest
number of nodes?

Proof by contradiction.
I Suppose there is a k-core H ′ with more nodes than H.
I Then H ∪ H ′ is also a k-core.
I Moreover, no node in H ′ will be deleted by the algorithm.

How do we implement k-core algorithm efficiently?
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Cores vs. Cliques
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A clique with k nodes is a (k − 1)-core.
Can we use the k-core algorithm to find maximum cliques?

Idea: Compute the largest value of k for which a k-core H exists. If H is a
clique, it must be the largest clique (of size k + 1) in the graph.
Flaw is that H may not be a clique, in general. The largest clique may be
disjoint from H or be a subgraph of H.
Moreover, the maximum clique may have l nodes while there may be a
k-core where k > l − 1, e.g., k = 3 and l = 3. Create such an example.
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k-Core Decomposition

Label each node by the k-core to which it belongs.
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k-Core Decomposition of C. Elegans Connectome

Based on out-degree: Sensory neurons comprise the innermost cores.

Based on in-degree: Motor neurons comprise the innermost cores.
Neurons in lateral ganglion present innermost in-cores and out-cores
⇒ they represent hubs that link sensory and motor function.
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s-Core Decomposition of Human Connectome

Structural connectivity
from diffusion tensor
imaging.

Connectome is the
average of 21 individuals.

Extend k-core algorithm
to weighted networks.

Thalamus relays sensory information and acts as a center for pain perception.
Precuneus is involved in self-referential processing, imagery and memory, and
its deactivation is associated with anaesthetic-induced loss of consciousness.
Putamen is interconnected with many other structures and influences many
types of motor behaviors.
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