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Abstract

Regulatory networks that control gene expression are important in diverse biological contexts including stress response and
development. Each gene’s regulatory program is determined by module-level regulation (e.g. co-regulation via the same
signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach,
Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes
while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-,
regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs
regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while
additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional
behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory
modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription
factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are
enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally
related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-
module methods to reveal new insights into transcriptional regulation in stress and development.
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Introduction

Regulatory networks that connect regulators (signaling proteins

and transcription factors) to target genes are core information

processing components in cells and control what genes must be

expressed when [1–3]. Eukaryotic regulatory networks have several

organizational properties: (1) regulatory networks are modular,

enabling multiple genes to be simultaneously regulated through

the same regulatory mechanisms [4,5], (2) individual genes are

often regulated by multiple transcription factors that combinato-

rially bind to promoters of genes [6–9]. Activation of upstream

signaling proteins and their downstream transcription factors alters

global gene expression in dynamic ways and often, upstream

regulators are themselves regulated, via feedback and feed-forward

loops [2,10]. These dynamic patterns can be readily quantified

through advances in regulatory genomics, enabling us to describe

cellular states by signature patterns of expression and chromatin

modifications. Computational reconstruction of regulatory net-

works provide a powerful approach to dissect these states relying

on the premise that the expression patterns of genes encoding

upstream regulators are predictive of the expression of other target

genes of that signaling system [11–16]. A major challenge that

remains is to combine these regulatory network properties of

individual genes and sets of genes in a module to build predictive

models of system state.

Computational methods for network reconstruction can be

broadly classified into two groups: (1) per-gene methods

(Figure 1B), which infer a regulatory network one gene at a

time [17–21], and (2) per-module methods [14,22,23]

(Figure 1C), which infer a regulatory network by grouping

similarly expressed genes into modules and inferring a single

regulatory program for the module. While the per-gene methods

can infer precise regulatory logic of every gene, considering each

gene separately ignores the modular organization of networks.

On the other hand, per-module approaches learn concise and

modular structures, but they simplify the regulatory network by

requiring all genes in the module to have the same regulatory

program. This simplification comes at the cost of important

regulatory information at individual genes, such as variations in

transcription factor interactions due to gene-specific promoter

architecture. Thus, while per-module approaches succeed in

identifying regulators that affect larger module-level behavior,
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they cannot identify the regulators that are important from an

individual genes perspective because they do not incorporate

gene-specific parameters.

We propose a novel regulatory network reconstruction

approach, Modular regulatory network learning with per gene informa-

tion, MERLIN, that combines the strengths of per-gene and

per-module network inference methods (Figure 1D). Specifi-

cally, our approach learns separate regulatory programs for

each gene, but constrains the network using a probabilistic

graphical model such that genes in the same module have

similar, but not identical, regulatory programs. Furthermore the

algorithm learns both the network structure and network

parameters that can be used to predict expression in a test

condition.

Comparison of our approach to state of the art per-gene and

per-module methods clearly identified the strengths of our

approach in accurately recovering both edge and module-based

regulatory information. We applied our method to published

transcriptome measurements of yeast stress responses [24] and a

new human embryonic stem cell differentiation dataset. In both

processes, MERLIN inferred transcription factors and signaling

proteins that work in concert to regulate the same module,

allowing us to predict the upstream signaling networks that

function together in the cell. We identify regulatory networks

recapitulating the combinatorial transcriptional control of amino

acid metabolism genes [7,24], and additionally implicate the

HOG1 MAP kinase to be the upstream regulator of numerous

modules associated with osmotic and cell wall stress. In humans,

we predict regulators from major signaling pathways including

Notch and Hedgehog pathways for modules associated with the

maintenance of pluripotency and with the onset of cellular

differentiation.

Results

MERLIN: An approach to capture per-gene and per-
module regulatory information

A mathematical model of a regulatory network has two

components: the structure specifies the regulators of a target gene,

and the logic, encoded in mathematical functions, describes the sign

and magnitude of individual and combinations of regulators that

specify the expression of that gene. Several different mathematical

functions could relate the expression of the upstream regulators to

the mRNA level of a target, e.g. boolean functions, differential

equations, probabilistic functions. The MERLIN approach is

based on a probabilistic graphical model representation of a

regulatory network (Figure 1A) [17,21,25,26]. Within our

probabilistic graphical model, both genes and their regulators

(which can be targets as well) are represented as random variables

whose associated probability distributions represent the range of

values a gene can take in different microarray or RNA-seq

experiments. In probabilistic graphical models, the mathematical

functions relating the level of a regulator to the level of a gene is a

conditional probability distribution, specifying the probability of a

target gene to take a specific expression value given the expression

values of its regulators. We use a conditional Gaussian model for

the conditional distribution, with mean of the Gaussian derived as

a linear function of the expression levels of the regulators (See

Materials and Methods).

We assume that we have measured expression levels of both

gene targets and encoded regulators under multiple conditions,

and regulators and target genes co-vary under different conditions.

To reconstruct the regulatory network from given gene expression

data we need to infer both the structure as well as parameters of

the mathematical functions. Our network inference approach,

MERLIN, combines the two popular strategies of expression-

based network inference approaches described above: per-gene

[18,19], and per-module [14] approaches. MERLIN learns the

gene-specific regulatory programs while imposing a module

constraint as a probabilistic prior. Instead of selecting regulators

independently for each gene g, the prior enables us to take into

account regulators that are predicted to regulate other genes co-

expressed with g in the same module. In this way we impose a

‘‘soft’’ module constraint so that two genes in a module are favored

to have similar but not necessarily identical regulators as in a per-

module approach.

The MERLIN learning algorithm begins with a set of modules,

which are typically defined by an expression-based clustering step,

and a set of candidate regulators of gene expression (e.g. all

transcription factors, kinases, phosphatases annotated in an

organism). It then iterates over two steps (Figure 1E): (a) a

regulator identification step, and (b) a module inference step. In

the regulator identification, the modules are kept fixed and the

regulator sets of each gene are identified by adding new regulators

that reduce the prediction error of a gene g’s expression value

from the expression values of the regulators, while using a

probabilistic ‘‘module’’ prior on the graph that favors regulators

regulating other genes in g’s module, (Materials and Methods).

The prior enables us to favor graph structures that are more

modular. In the module inference step, genes are grouped into

modules using co-expression and co-regulation based on the

inferred set of regulators for a pair of genes. Co-expression is

measured by the Pearson’s correlation between two gene

expression profiles. Co-regulation is measured by the similarity

of inferred regulators for each gene (Materials and Methods).

The algorithm repeats these two phases of the algorithm until

convergence. In addition to the module prior, we also use a model

Author Summary

The state of a cell is largely determined by the genes the
cell expresses. Transcriptional control of gene expression is
exerted by transcription factor proteins that bind to
regulatory regions of genes and affect their expression.
Transcriptional programs have a modular organization
enabling multiple genes to be coordinately regulated, and
at the same time are fine-tuned for each gene through
interactions of transcription factors with a gene’s regula-
tory region. Transcription factors are themselves controlled
by upstream signaling proteins, that in turn can be
transcriptionally controlled. This complex process of gene
expression control is described by a regulatory network
that captures who regulates whom. A key challenge in
systems biology is to reconstruct regulatory networks that
capture precise gene-specific regulatory information, as
well as the modular organization of transcriptional
programs. We developed a novel regulatory network
inference approach, MERLIN, Modular regulatory network
learning with per gene information. When applied to
examine transcriptional responses in two distinct process-
es, stress response and cellular differentiation, MERLIN
accurately reconstructed regulatory programs of individual
genes while revealing regulatory module organization and
predicted upstream signaling proteins for regulatory
modules. MERLIN is applicable to different environmental,
developmental and disease contexts to dissect regulatory
programs and ultimately build network-based predictive
models of cellular states.

Module Constraints of Gene Regulatory Programs

PLOS Computational Biology | www.ploscompbiol.org 2 October 2013 | Volume 9 | Issue 10 | e1003252



complexity prior that penalizes excessive parameters in the model

(for example, due to a large number of regulators). Such a

complexity prior avoids over-fitting the model to the data. Both

the structure complexity prior and the module prior are controlled

by user-defined parameters, and can be flexibly adjusted to control

how strongly we want to impose each prior.

MERLIN accurately infers per-gene regulatory programs
as well as module-level organization on both simulated
ground truth and real expression data

We compared the quality of networks inferred by MERLIN to

those inferred from three other algorithms using several criteria

defined below. The algorithms include a linear regression per-gene

network inference method (LINEARREGR), GENIE3 a state-of-

the-art per-gene network inference algorithm [19], and Module

networks (MODNET) from Segal et al. [14]. The LINEARREGR

approach that we used is a special case of MERLIN where we set

the module prior to zero; this served as the baseline to study the

gain in performance by adding the ‘‘module’’ constraint in our

MERLIN approach. We also considered a Bayesian network as a

baseline (Figure S1), but the performance was much worse than

any of the methods above.

We used both simulated gene expression data where the ground

truth of the networks generating the data were known, as well as

real gene expression data where the ground truth networks are not

known. Simulated data was generated for networks of different

number of genes, n = 100, 200, 300, 400, 500, 1000 genes using

Figure 1. Per-gene and per-module regulatory network inference approaches. A. Modeling transcriptional regulatory networks as a
probabilistic graphical model. Shown is a cartoon of a gene promoter HSP12, with two regulators that bind to its promoter to regulate its level.
Regulatory networks are represented using a directed graph specifying who regulates whom, with arrows from regulators to target genes. The
network logic of how the regulator levels predicts the target gene expression level is modeled through conditional probability distributions in a
probabilistic graphical model. B. Per-gene regulatory network learning. Regulators for each gene are inferred independently. C. Per-module network
inference. Regulators are inferred for each module. All genes in the same module have the same parameters. D. Per-gene module constrained
network learning used in MERLIN. Gene-specific regulatory programs are inferred while imposing module constraints to enable genes in the same
module to share regulators. E. MERLIN learning framework for inferring regulatory module networks. The algorithm starts with an initial set of
expression clusters and candidate regulators and iterates between learning regulatory programs for each gene, and revisiting the module
membership. The final inferred network is the output of MERLIN comprising the per-gene regulatory programs and the module membership of each
gene.
doi:10.1371/journal.pcbi.1003252.g001

Module Constraints of Gene Regulatory Programs
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GeneNetWeaver (GNW) [27]. This simulator takes networks as

inputs and uses stochastic differential equations to generate

simulated expression data. The simulated data had 100, 200,

300, 400, 500 and 1,000 measurements generated by perturbing

one node and propagating the system to steady state. The

simulated networks were generated so that they were modular,

that is, genes in the same module tended to share more regulators

than genes in different modules (Materials and Methods).

We defined three criteria to compare the inferred networks: (a)

Edge-based comparison used fold enrichment and the area

under the precision-recall curve (AUPR) [28], to assess edge

overlap between the simulated ground truth network and inferred

networks (Figure 2A, Figure S1A, Materials and Methods),

(b) Regulator-based comparison measured the number of

regulators whose targets significantly matched between the true

and inferred networks (FDRv0:05, Figure 2B), (c) Module-
based comparison measured how many regulators associated

with modules in the ground truth networks matched regulators

associated with these modules in the inferred networks

(Figure 2C). The AUPR edge-based comparison requires a

ranking of edges and does not require us to specify a particular

cutoff. The edge-based fold enrichment, regulator- and module-

based measures require use to define a network. Because GENIE3

does not provide a discrete network but rather a ranking of all

edges, and since the edge ranking does not translate into edge

confidence, we considered networks with the top 20% or the top

40% edges from the GENIE3 output.

On simulated data MERLIN outperformed LINEARREGR

and MODNET using edge-, regulator- and module-based metrics

(Figure 2A–C), suggesting that adding a module prior is

beneficial for inferring better networks. MERLIN was significantly

better than GENIE3 using fold enrichment (t-test p-value ,0.003),

and both approaches were at par using AUPR (Figure 2A, t-test

p-value = 0.5), suggesting an overall improved performance

than GENIE3. On both regulator- and module-based metrics

GENIE3’s performance depended greatly on the threshold used to

define a network; in no case was it better than MERLIN, but

significantly worse on the module-regulator relations than

MERLIN (t-test p-value ,0.04). We were surprised to see that

MODNET did not perform well on the simulated network

datasets. This is likely due to the extremely sparse networks

MODNET infers. We observe a more comparable performance,

although still low, when considering the yeast regulatory networks.

We next compared the network inference algorithms using a

well-studied yeast dataset from Gasch et al [24] comprising 2,355

genes and 466 candidate regulators catalogued in Segal et al. [14],

where regulators included both transcription factors as well as

signaling proteins such as kinases or phosphatases (Figure 3A).

Because the ground truth network is not available, we assessed the

quality of the inferred networks based on their overlap with other

reconstructions of yeast transcriptional regulatory networks using

ChIP-chip [6,9], ChIP-exo [29], evolutionary conservation [30],

and curated TF motifs from protein binding microarrays [31].

These networks include edges with some experimental evidence to

suggest the presence of a regulatory edge: (a) Gordan, network

derived from motif instances from position weight matrices from

protein binding arrays followed by manual curation [31], (b)

Harbison et al.’s ChIP-chip data considering the exponential

(Harbison exp) and other conditions (Harbison other) separately

[6], (c) A recent ChIP-chip data under normal (Venter 25C) and

heat shock (Venter 37C) conditions from Venter et al. [9], (d)

Yeastract, a public database comprising regulatory edges based on

ChIP-chip, and factor knockout [32], (e) Rhee, high-resolution

ChIP-exo neworks from Rhee et al for four transcription factors

[29], (f) MacIsaac, a network which combined ChIP-chip data [6],

and evolutionary conserved transcription factor motif instances to

derive a regulatory edge between a transcription factor and a

target gene [30]. While these networks are not perfect in reflecting

the ground truth of the yeast regulatory network because ChIP-

chip or -seq networks are condition-specific and the conditions do

Figure 2. Comparison of MERLIN against per-gene and per-module network inference algorithms using simulated data. A.
Comparison based on fold enrichment of true edges in the inferred network. The cartoon illustrates that this metric compares each edge in isolation.
The fold enrichment is positive, and higher it is the better the inferred network in terms of the true edges recovered, and the false edges not inferred.
B. Fraction of regulators whose targets in the true network are significantly overlapping with its targets in the inferred network (higher is better). The
cartoons shows that this metric compares a set of genes, namely, the targets of a regulator. Each network had different numbers of total regulators,
NET100: 11, NET200: 22, NET300: 33, NET400: 44, NET500: 55, NET1000: 111, which we used to obtain a fraction of regulators in each network. C.
Overlap as measured by F-score between regulator-module relationships in the true network and regulator-module relationships from the inferred
networks. The cartoon shows this metric compares networks based on the regulators associated with known modules. F-score ranges from 0 to 1,
and the closer it is to 1 the better the performance.
doi:10.1371/journal.pcbi.1003252.g002

Module Constraints of Gene Regulatory Programs
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not overlap completely with the conditions from which we have

mRNA data, an enrichment in these edges provides support of our

inferred networks. Furthermore, the MacIsaac et al. network was

used as the gold standard yeast regulatory network by the

DREAM consortium [20]. A comparison based simply on the

number of edges in the networks showed that MODNET inferred

the most sparse network (Figure 3A), including 3,185 connecting

1,821 genes and 60 regulators, whereas the GENIE3 networks had

the most edges (20,000 at top 20%). The size of the networks

inferred by MODNET (3,185), MERLIN (6,319) and LINEAR-

REGR (6,860) most closely matched the size of the MacIsaac

network (4,153 edges).

Using edge-based measures we found that the network inferred

by MERLIN had the highest fold enrichment with the different

networks compared to the other methods (Figure 3B) (t-test p-

value ,0.003). Interestingly, none of the inferred networks were

enriched in Venter et al’s network measured in exponentially

growing cells, but exhibited enrichment in the network measured

in heat shock stress, suggesting all methods can capture condition-

specific edges to some extent, and are also internally consistent

with each other. Comparisons using regulator-based measures

showed that MERLIN’s inferred network was as good or better

than other inferred networks exhibiting overlap of ChIP-chip

targets of as many regulators as any other method (Figure 3C).

For module-based comparisons (Figure 3D), since true modules

were not known, we used curated gene sets as modules. This

included Gene Ontology Slim terms [33] and Yeastcyc bio-

chemical pathways downloaded from the Saccharomyces Genome

Database [34]. We treated the MacIsaac network as the true

network and compared the number of regulator-module relation-

ships from the MacIsaac network with those from the inferred

regulatory networks. We found that in all measures MERLIN was

better or as good as other methods with only a slight decrease in

enrichment for the Ecocyc pathways. In all these measures the

relative performance of MODNET was closer to the other

networks compared to simulated networks.

As a final comparison, we asked whether the modules inferred

by MODNET and MERLIN represented targets of specific TFs

by examining each module for enrichment of a TFs’ ChIP-based

targets in the module. This analysis was possible only for

MODNET and MERLIN which infer modules but not for any

of the per-gene methods. We found both MODNET and

MERLIN modules were enriched for the ChIP targets of a large

number of transcriptions (Figure 3A, column 5). This suggests

that the module information captured in both MERLIN and

MODNET represent co-regulated sets of genes, and allows us to

gain new insight into the module-level properties of networks that

are not evident in the per-gene methods.

Overall, we find that MERLIN performs as well or better than

other methods on different types of metrics. Per-gene methods did

Figure 3. Comparison of MERLIN against per-gene and per-module network inference algorithms using a large compendia of gene
expression data in yeast stress response. A. Shown are the various network statistics of the inferred networks. The last column in the table
shows the number of regulators with targets significantly overlapping between ChIP targets and modules. B. Comparison based on fold enrichment
of physical regulatory edges measured using various experimental methods such as ChIP-chip, in the inferred networks. The more red, the higher the
fold enrichment and the better the inferred network is able to capture these physical interactions. The columns correspond to the different
experimentally derived networks: ChIP-chip (Harbison, Venters), ChIP-exo (Rhee), and protein binding microarrays followed by manual curation
(Gordan). C. Number of regulators whose targets in the true network are significantly overlapping with its targets in the inferred network. D. Overlap
as measured by 2log(pval) between regulator-module relationships in the ChIP-chip network from MacIsaac et al. A module here corresponds to
either a Yeastcyc pathway or set of genes annotated with a particular GO slim process term.
doi:10.1371/journal.pcbi.1003252.g003

Module Constraints of Gene Regulatory Programs
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not reveal any module structure and thus assessing whether TF’s

targets were associated in modules was not possible. The per-

module method, MODNET, performed poorly on edge-based

metrics, but had better performance on the yeast regulatory

network which had more genes (although we cannot rule out that

simulated networks are not perfect). Thus MERLIN combines the

strengths of both the per-gene and per-module network inference

methods, inferring high quality reconstructions of individual

regulatory edges, as well as high confidence target sets localized

to specific modules.

Dissecting yeast stress responses using MERLIN
We next used MERLIN results from the Gasch et al data [24] to

study the regulatory network from a module point of view and to

gain additional insight into the regulation of yeast stress responses.

We focused our attention on 106 modules with five or more genes,

which together encapsulated 80% of the genes in the original

dataset (Figure 4A,B).

MERLIN identified tightly co-expressed modules with

distinct regulatory programs exhibiting coherent biological

function. First we asked whether MERLIN modules are indeed

coherent groups of co-expressed and co-regulated genes by

measuring: (a) the average Pearson’s correlation for pairs of genes

within a module (Figure 4C), (b) regulatory modularity

(Figure 4D), which quantifies how different the regulatory

programs are of one module compared to other modules

(Materials and Methods). Correlation and regulatory modu-

larity measures are always between 21 to 1 for each module, with

a positive number indicating that genes in a module are tightly co-

expressed and have distinct regulatory programs, respectively. We

found that genes within modules indeed are tightly co-expressed

(average Pearson’s correlation .0.5 for 82% of modules) and have

high regulatory modularity (AVG~0:15+0:1STD), confirming

that genes in a module share many more regulators with genes

within the module than with genes not in the module.

Next, we evaluated whether modules are biologically meaning-

ful by testing whether the modules were enriched for genes

annotated with specific Gene Ontology (GO) processes [33] (FDR

corrected hypergeometric test, FDR,0.05, Table S1), targets of

transcription factors based on ChIP-chip assays or genes with

upstream sequence-specific binding motifs. The majority of the

modules (63 of 96) were enriched either for genes of the same GO

process, ChIP-chip targets of TF, or genes with sequence-specific

motif instances of a TF. This enrichment together with the high

Pearson’s correlations between gene expression profiles assigned to

each module suggests that modules inferred by MERLIN are co-

expressed gene regulons that capture biological meaningful

relationships among genes in a module.

Using the inferred regulatory network and module member-

ships, we derived a regulator-module relationship network if the

regulator’s predicted ‘‘targets’’ (defined here merely as the genes

whose expression was predicted by the regulators expression

pattern) were enriched in a given module (FDR,0.05). This

network connected 175 different regulators to one or more of 96

modules (Figure 4A,B). We found the modules varied greatly in

size, ranging from 5 to 117 genes with a median size of 11 genes.

For each module we computed a ‘‘module in-degree’’ defined as

the number of regulators whose targets were significantly enriched

in the module. The module in-degree grew with the module size

for most modules (Figure 4E,F, Pearson’s correlation of 0.81),

which is significantly higher than what is observed in random

clustering (average Pearson’s correlation = 0:34+0:267STD, z-

test p-value ,1E-33). This suggests that the high in-degree is

perhaps because these modules have more regulators associated

with them (but perhaps also influenced by ascertainment bias).

However, there were exceptions to this trend. For example

Module 2 (enriched for genes involved in cell-wall organization),

Module 83 (amino acid biosynthesis genes) and Module 30

(respiration genes) had the largest number of associated regulators

but only 42, 45 and 64 genes, respectively. The high number of

regulators associated with these modules might represent complex

combinatorial regulation or distinct condition-specific regulatory

programs that operate under distinct situations, discussed more

below. Other modules with the enrichments are available at our

web-supplement http://pages.discovery.wisc.edu/,sroy/merlin.

Combinatorial regulation specifies distinct module

expression patterns despite shared regulators. Several

regulators were associated with a large number of genes in the

MERLIN-inferred network, that is they had large out-degrees (e.g.

Gcn20: 123 genes, Ime4: 82 genes, Met32: 81 genes) compared to

the average (27+15:9STD), (Figure 4H). Because a regulator

can influence gene expression differently depending upon the

other regulators associated with these genes, we asked whether the

targets of a given regulator were localized to a single module or

whether they were distributed across different modules. First we

identified the number of modules to which the regulator was

associated (based on statistical enrichment of the regulator’s

predicted targets in the module, FDR,0.05). A large fraction of

regulators (41.7%, 73 of 175) were associated with at least two

modules, with a maximum of six modules linked to a given

regulator (Figure 4G). The number of associated modules was

only moderately correlated with the number of gene targets of a

regulator (Figure 4G), e.g. the 40 Bas1 targets were distributed

into six modules, while the 123 Gcn20 targets were distributed in

four modules (Figure 4H).

There are two possibilities for why a regulator’s predicted

targets belong to different modules: either those modules are

distinguished by dramatically different expression patterns across

the diverse stress experiments, or they are distinguished by distinct

set of predictive regulator sets even if their expression patterns are

similar (but not identical). To systematically test these possibilities

we computed the Silhouette index for each module, which

measures how different a module’s expression is compared to

other modules. A positive Silhouette index for a module suggests

that the expression of the module is distinct in expression from

other modules. The Silhouette index was significantly higher than

random clusters (KS test p-value ,1E-38), however, the Silhouette

indices for individual modules was low. In particular, while a third

of modules had positive Silhouette indexes, the remaining two

thirds of the modules had negligible or negative Silhouette scores

indicating that the modules share some similarity in expression

patterns. This observation in concert with the high regulatory

modularity measure and high co-expression within each module

suggests that distinct regulatory programs are associated with

modules that are similar, but not identical, in expression pattern.

An example of this situation is seen for the Met32 transcription

factor, a key regulator of sulfur metabolic genes that was associated

with several different modules. All of these modules were enriched

for amino acid pathway genes, but the modules exhibited different

expression patterns in subsets of the diverse stress experiments

(Figure 5). Genes in Modules 83, 21, and 3 were characterized by

strong induction during amino acid starvation, conditions under

which cells attempt to generate their own amino acids [24].

However, the modules were distinguished under other conditions:

whereas genes in Module 83 were also induced under long-term

nitrogen and carbon starvation, genes in Module 3 were

additionally induced in response to the oxidizing drug menadione.

In contrast, Module 57 genes were strongly repressed under amino

Module Constraints of Gene Regulatory Programs
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Figure 4. Global organization of yeast stress response network revealed by MERLIN. A. Major patterns of expression in each module
inferred by MERLIN. Each row represents the mean of the expression profile of a module. The rows are ordered based on hierarchical clustering of the
means of the modules followed by an optimal leaf ordering of the rows so that rows that are the most similar to each other are closest. B. Shown are
the regulators and modules with edges from regulators to target modules (squares). The size of the module is indicated by the number of genes in
each module. The color and the ordering of the module nodes is according to the number of regulators associated with each module. C. Histogram
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acid and nitrogen starvation - this module included specialized

amino acid transporters that are known to be repressed upon

general amino acid starvation [8].

Beyond expression, the modules were particularly differentiated

in terms of the inferred regulatory networks. In addition to Met32,

genes in Module 83 and Module 3 were associated with other

regulators that are known to combinatorially interact in the sulfur

regulatory network, including Met4, Met28, Met31 and Cbf1 [7].

In addition, many genes were associated with Gcn4, which induces

these genes in response to general amino acid starvation [35]. In

contrast, Module 21 was associated with Met32 and the Bas1

transcription factor, which regulates purine biosynthesis genes –

indeed, this module was enriched for purine genes that are

induced during amino-acid starvation along with amino acid

genes. Finally, genes in Module 57 were associated with Met32

and the nitrogen-responsive regulator Dal80, and enriched for the

known targets of the Stp2 and Stp4, which regulate expression of

amino acid transporters. In this case, the expression of Met32 is

predictive of the repression of the specialized amino-acid

transporters in the module, which are functionally related to but

anti-correlated with Met32 targets.

MERLIN identifies upstream signaling networks linked

to stress-activated expression programs. Many of the

modules identified by MERLIN were associated with upstream

signaling proteins as well as transcription factors. Of the 96

modules, 45 were associated with both transcription factors and

signaling proteins while 28 were associated only with signaling

proteins (Figure 6). In several cases, MERLIN identified subunits

of signaling complexes (for example Cka1 and Ckb2 subunits of

the CK2 kinase in Module 36, and Reg2 and Gac1 subunits of the

Glc7 phosphatase in Module 39) or regulators responding to

similar conditions (such as osmotic stress regulators Sho1, Mck1,

Hog1, Ypk1, Msn1, and Sko1 in Modules 2, 19 and 37).

To more broadly study these relationships, we asked if the set of

regulators selected for each module exhibited functional relation-

ships. Indeed, we found several modules whose implicated

regulators (either via MERLIN or ChIP-target enrichment) were

enriched for genes whose proteins display more genetic or physical

interactions among each other than expected by random (Table 1,

Materials and Methods). This result strongly suggests the

presence of functional relationships between implicated regulators.

One such example included Modules 2, 19 and 37 that

exhibited somewhat distinct expression patterns but were associ-

ated with regulators from the Hog1 signaling pathway, which

regulates cell cycle progression and the response to high osmolarity

[36] (Figure 6). The regulators predicted for Module 2 also

included several cell-cycle regulators, including cyclins Pcl10,

Cln1, Cln2, and Clb2, G1-specific transcription factors Swi4 and

Swi6, and Wsc2 and Cdc42, which respond to cell wall or

cytoskeletal defects and were enriched for Hog1 signaling pathway

genes (See Materials and Methods, hypergeomteric p-value

,0.02). Indeed, Module 2 was enriched for cell wall genes

including those regulated by the cell cycle. Module 37 was also

associated with Hog1 as well as stress-activated transcription

factors Msn1, Usv1, Tye7 and stress-activated kinases Cmk2 and

Mck1 (the latter of which we found regulates many Hog1 targets

upon osmotic stress (Gasch lab, unpublished). This network also

included phosphatase Ppt1, recently shown to dephosphorylate

Cmk2 [37], and the 14-3-3 protein Bmh1 - both regulate stress-

activated transcription factors [38–40]. Module 19’s members

were moderately enriched for Hog1 signaling pathway genes, and

was predicted to be regulated by Sho1 and Sko1, both acting

downstream of Hog1 [36]. Other modules whose upstream

regulators showed abundant interactions included genes involved

in a wide variety biological processes including amino acid

metabolism (Module 83), respiration (Module 30), and, protein

modification, transport and localization (Modules 36 and 72). The

enrichment of genetic interactions suggests that such signaling

proteins are likely upstream regulators of transcriptional regulators

associated with these modules.

MERLIN identifies regulatory modules exhibiting waves
of transcriptional changes during differentiation neural
progenitor cells

To test our approach on another dataset, we applied MERLIN

to infer transcriptional regulatory networks in a very different

biological context: during differentiation of human embryonic

stem cells to neural progenitor cells. Four time courses were

available that represent the first seven or eleven days of

differentiation from the pluripotent state (either ES or iPS cells)

to states that represent early neural precursor cell types. Each cell

line was treated by two different conditions to induce neural

differentiation (Materials and Methods). The final states are

not likely identical in all four time courses, but they share many

characteristics and all are representative of early neural differen-

tiation, so we concatenated them into a single dataset. To study

the interplay between transcription factors and signaling proteins

during differentiation, we included as regulators, transcription

factors from a recent comparative study of human and mouse

from [41] and proteins annotated as phosphatases and kinases

from Uniprot [42]. After initial data pre-processing to remove

unchanging genes (Materials and Methods), we gave as input

to MERLIN 5670 genes and 823 regulators (535 transcription

factors and 288 phosphatases and kinases). We focused on the high

confidence MERLIN-inferred network of 4647 genes, 90% of

which were organized into 94 modules, with at least 5 member

genes, associated with 326 regulators. We examined these modules

for biological function based on enrichment of genes annotated

with Gene Ontology processes [33], genes annotated in pathways

in the Molecular Signature Database (MSigDB, [43]), ChIP-seq

targets of transcription factors from ENCODE [44], and motif

instances of transcription factors in DNAse1 hypersensitive sites

[45]. We discuss these results below (detailed module profiles and

enrichment analysis are available from the web-supplement

http://pages.discovery.wisc.edu/,sroy/merlin).

Transcriptional behavior during differentiation is

captured by two large modules associated with ES state

of average Pearson’s correlation between each pair of genes assigned to a module. Majority of the modules have greater than 0.5 correlation
suggesting genes in a module are co-expressed. D. Histogram of regulatory modularity of a module measuring the extent to which genes from the
same module share predicted regulators versus between genes from different modules. High regulatory modularity suggests genes in the same
module share more regulators than genes that are not in the same module. E. The distribution of the number of regulators per module F. Scatter
plot of module size (number of genes assigned to a module) versus the number of regulators associated with a module based on enrichment of its
predicted targets in the module. Module indegree and module size are linearly related (R2~0:64). Outlier modules with more regulators than
expected by a linear fit to the module size are indicated on the plot. G. Distribution of the number of modules associated with a regulator. H. Scatter
plot of the number of modules associated with a regulator based on its predicted target set enrichment versus the number of target genes predicted
to be regulated by the regulator.
doi:10.1371/journal.pcbi.1003252.g004
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maintenance and neural differentiation. The majority of the

transcriptional changes are captured in two large modules,

Module 1 with 1177 genes, and Module 7 with 974 genes

(Figure 7A). Genes in Module 1 were highly expressed early in

the response (up to day 4) and repressed after that. Genes in this

module were enriched for general metabolic processes (carboxylic

metabolic and oxoacid metabolic process), growth, and cell cycle

(G1/S transition) (Table S2). In contrast, genes in Module 7 were

Figure 5. Amino acid starvation modules associated with Met32 and other amino acid bio-synthesis regulators. Modules predicted by
MERLIN to be associated with Met32 exhibit distinct patterns of expression. Shown are four modules that each have Met32 as an inferred regulator
based on gene expression. Cyan represents expression-regulators, teal represents ChIP-chip targets of regulators whose ChIP-chip targets are
enriched in the module, purple represents targets that have a motif sequence of a regulator. Only regulators that are enriched in this module are
shown. For each module, the heatmap is separated into the expression of the genes in the module and expression of the regulators selected by
MERLIN.
doi:10.1371/journal.pcbi.1003252.g005
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associated with an opposite pattern of initial repression in the

earlier time points (up to day 4) and upregulation at later time

points. Several lines of evidence, in addition to the opposite

temporal dynamics, suggested that Module 1 is associated with the

maintenance of the ES pluripotent state, whereas Module 7 is

associated with neural fate specification. First, genes associated

with maintenance of the ES state such as POU5F1 are represented

in Module 1. Second, Module 1 is enriched for ChIP seq-based

targets of several factors, obtained from the ENCODE project

[44], associated with the maintainance of pluripotency (NANOG,

YY1 [46,47], GABPA, ATF3, FDR,4.91E-4) and components of

general transcription machinery (TAF1, TAF7, TBP, FDR,1E-

12). Knockdown of several TFIID components was recently shown

to interfere with pluripotency maintenance and obstruct repro-

gramming of differentiated cells to induced pluripotent state [48].

Third, 16 of POU5F1’s 23 MERLIN predicted targets

(Figure 7B), and 11 of DUSP5’s 12 targets (7C), two factors

critical for pluripotency [49], were present in this module, further

asserting that this module represents the ES-state maintenance

genes. Fourth, Module 7’s genes are associated with neural-

specific functions such as nervous system development, neurogen-

esis (FDR,0.05) suggesting these genes are neural lineage specific

genes. Finally, using a recent set of lineage specific genes, we

found Module 1 to be enriched for the ES-specific and

Mesendoderm, an early differentiation time point, genes

(FDR,1E-51), and Module 7 to be enriched for the neural

lineage-specific genes [50] (FDR,1E-75), further supporting the

different embryonic stages associated with these modules.

Linking signaling proteins with transcription factors in

ES cell differentiation. MERLIN predicted numerous regula-

tors associated with these modules including both transcription

factors and signaling proteins. As in the yeast stress response

dataset we asked if these regulator sets were enriched for protein-

protein or genetic interactions. Regulators associated with

Modules 1, 7 and 70 are indeed enriched for protein-protein but

not genetic interactions, suggesting more direct interactions

Figure 6. Interplay of transcription factors and signaling proteins in specifying the regulatory programs of modules. A. Shown are
the fraction of modules that are regulated by TFs alone, signaling proteins alone or both B. Shown are the co-regulatory, genetic and protein-protein
interactions between regulators associated with HOG1 associated modules. HOG1 is a protein kinase involved in osmotic stress and cell wall
organization. HOG1 is predicted to be a regulator for Modules 2 and 37, and is known to be directly upstream of SKO1 which is predicted to regulate
genes in Module 19. Co-regulatory relations are inferred between two regulators if they share common targets. Genetic and protein-protein
interactions are obtained from BioGRID [66].
doi:10.1371/journal.pcbi.1003252.g006
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among these regulators. In particular, regulators predicted by

MERLIN for Module 7 identified several striking connections

between major signaling pathways to transcription factors

associated with cellular differentiation in different lineages. For

example, MERLIN predicted GLI1, GLI3, MAML3 and RAI1 as

regulators associated with Module 7, which interact physically [41]

and are associated with the Hedgehog signaling pathway (GLI1,

[51]), Notch signaling pathway (MAML3, [52]) and retinoid acid

signaling pathway (RAI1, [53]). Hedgehog signaling in the floor

plate during neural development is mediated by GLI1 [51]. Notch

and retinoid acid signaling play important roles in neural

development [54,55]. The MERLIN identified regulators also

include the transcription factors, MLLT3 myeloid differentiation

[56] and BCOR associated with tissue homeostasis, [57] that

exhibit protein interactions with nuclear receptors (NR3C1 [58],

and NRIP1) which interact with retinoids to regulate cell

differentiation [59].

Fine-grained modules associate oncogenes as potential

drivers of neural differentiation. While the majority of the

transcriptional response was captured by modules 1 and 7, we

found several smaller modules that exhibited patterns of more

complex temporal dynamics (Figure 8B–E). This included

modules that exhibited up regulation at both early and late time

points (Modules 117, 118, 41, 136, 94, Figure 8B–E). Several of

these modules (Modules 93, 131) were also enriched for gene sets

associated with skin tumour (Module 131, FDR,0.002) and

prostate cancer (Module 93, FDR,0.03) obtained from Molecular

Signature Database (MSigDB [43], Table S3). Interestingly some

of the regulators associated with these modules based on ChIP-seq,

DNAse1 filtered motif instances [45], or MERLIN are oncogenes

(JUND, KLF4, MYC CTBP2, FDR,0.05). KLF4 and MYC are

often used to reprogram cells back to the ES state [60]. It is

conceivable that oncogenes are important both for early and later

differentiation events. Oncogenes are highly upregulated during

the early stages of axolotl limb regeneration presumably to allow

reorganization of transcriptional programs [61].

Another set of modules exhibited an initial and late downreg-

ulation and an upregulation at intermediate states, opposite of the

above modules (Figure 8F,G). One such module, Module 144,

was enriched for an MSigDB gene set associated with high CpG

density and the H3K27me3 mark in promoters (FDR,0.02). It

has been shown that high CG and histone marks are associated

with genes that are active in earlier developmental stages [50].

Finally, there were some modules that exhibited very delayed

upregulation (Module 135), and were predicted to be under

retinoic acid control. Retinoic acid signaling is thought to be

involved in many aspect of development including neural

differentiation [55].

In summary, using MERLIN we identified both regulators and

modules describing different temporal patterns of transcriptional

behavior. Several of the modules were associated with signature

patterns observed in cancer cells or were enriched for motif targets

Table 1. Yeast regulatory modules with regulators enriched with physical or genetic interactions.

Module ID #genes TF Signaling ChIP Annotation

19 114 KAR4, RSC3, SNF4, MET18,
SWI6, SKO1, HAL9

SHO1, GCN20, PRR1, YPK1,
MCK1

ABF1 glycerolipid biosynthesis, protein
transport and localization

2 42 SWI4, STE12, ASH1, SWI6,
DIG1

GAL83, PCL10, CDC42,
CLN1, WSC2, RGS2, CLN2,
CLB2, HOG1

GZF3, GAL80 protein glycolsylation, fungal cell
wall organization

83 45 PDR3, UGA3, LYS14, MET32,
GAT1, MET28, YAP5, IME1,
DAL80, HIR2

MET32, GCN4, GLN3, CBF1,
ARG81, MET4, DAL82, TYE7,
MET31

sulfur and methionine
metabolism, serine and aspartate
amino acid metabolism

68 13 ASH1 STE2, SIC1 SWI5, STE12, ACE2, MCM1,
FKH2

cell wall organization and
bioenesis, cytokinesis

100 7 KAR4 STE2 STE12, DIG1 response to pheromone, sexual
reproduction

30 64 YHP1, GCN4, YFL052W,
GSM1, HAP4, GAL80, WTM1,
AFT2, ARR1

REG2, PCL7, FAR1, GAC1 HAP3, HAP2, SKN7, SIP4,
HAP4, HAP1, MOT3, HAP5,
AFT2, ROX1

purine metabolism and
mitochondrial ATP synthesis,
respiration, purine nucleotide
metabolic process

31 22 GIS1, GCN4, BAS1 PPH3, YVH1 ribosome biogenesis, RNA
metabolism

34 14 SWI5 CDC20, CDC5 SWI4, STE12, FKH1, SWI6,
MCM1, FKH2, NDD1

cell division, cell cycle, M phase

36 96 SNF4, IME4, SKO1 RDI1, CKB1, CKA1, CNB1,
ARP9, PLP25

protein transport and localization

37 29 UGA3, MSN1, TYE7, USV1 HOG1, BMH1, PPT1, MCK1,
CMK2

GCR2, TYE7 glycolysis, gluconeogenesis

44 62 OPI1, MET18 GCN1,PPT1 protein localization and
transport, RNA transport

53 15 RDS1, STB5, YAP1, YJL206C SGD1 YAP6, MSN4, YAP1, MSN2, YAP7 alcohol dehydrogenase genes

72 13 SHP1, SLT2, CNB1 REB1, RPN4 proteolysis, ubiquitin dependent
protein catabolism

Each row corresponds to a Module. The first row specifies the Module ID, the second column has the module genes, the third column has the TF regulators predicted by
MERLIN, the fourth column has the signaling proteins predicted by MERLIN, the fifth column has regulators predicted based on ChIP-chip, and the last column has a
summary of the Gene Ontology terms associated with each module.
doi:10.1371/journal.pcbi.1003252.t001
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Figure 7. Application of MERLIN to differentiation time course of human ES to neural precursor cells identifies two large modules
with opposite patterns of expression. A. Shown are the two modules, Modules 1, and 7, that exhibit characteristic temporal patterns of
expression together with their predicted regulators from MERLIN and regulators whose ChIP-seq targets are enriched in the module. Known
pluripotency maintenance regulators (POU5F1), and predicted neural fate driver genes are shown in larger fonts. B. Predicted targets of POU5F1
using MERLIN. * denotes membership in Module 1, which we associate with maintenance of ES state. MERLIN can infer both repressive and activating
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of oncogenes, which can be tested as drivers of neural

differentiation.

Discussion

Per-gene methods for reconstructing gene regulatory networks

do not exploit modular organization of regulatory networks,

whereas per-module methods do not have the resolution for

capturing gene-specific regulatory information. Our novel ap-

proach, MERLIN, combines the strengths of both per-gene and

per-module network inference methods by inferring the regulatory

programs for each gene and also capturing the modular structure

of the regulatory network. On both simulated and real expression

data MERLIN correctly inferred precise regulatory programs

associated with individual genes and also captured modular

organization of regulatory networks that provide new insight into

relationships between TF and target genes, e.g. CCDC11 and POU5F1. We also show ChIP-seq (Red column, NANOG-ChIP, [44]) and ChIP-chip
datasets (Magenta columns, SOX2-OCT4-NANOG targets from Boyer et al., [71]) C. Predicted targets of DUSP5 using MERLIN. Some DUSP5 targets are
also occupied by NANOG transcription factor.
doi:10.1371/journal.pcbi.1003252.g007

Figure 8. Modules expression patterns inferred by MERLIN on the human ES cell differentiation time course into neural progenitor
cells. A. Each row corresponds to the mean expression profile of one module. The rows are ordered based on hierarchical clustering of the means of
the modules followed by an optimal leaf ordering of the rows so that rows that are the most similar to each other are closest. This ordering enables
us to see a gradual change in the different temporal dynamics captured in the MERLIN modules. B–G. Selected modules associated with complex
temporal patterns. Cyan represents targets (rows) of regulators (columns) predicted by MERLIN, Teal represents ChIP-seq targets, and Purple
represents presence of motif instance of a transcription factor 62 kb around the Transcription Start Site (TSS) of a gene. B–E Modules associated with
upregulation at the beginning and end of the time course whose members are also associated with oncogenes such as KLF4, MYC, JUND, and CTB2.
F–G Modules associated with initial and late downregulation. G. Shown are the genes of module 144 which is enriched for genes exhibiting high
CpG density in promoters in Neural Progenitor cells as annotated in MSigDB [43].
doi:10.1371/journal.pcbi.1003252.g008
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the dynamics and regulation of transcriptional responses in our

studied biological contexts.

MERLIN strikes a balance between gene-specific and
module-level regulatory information in the same
algorithm

We found that while GENIE3, a state-of-the-art per-gene

method performed well using edge-based metrics, when applied to

yeast, it did not perform as well on module-based measures. In

contrast, MODNET, a state-of-the-art module-based method,

performed poorly using edge-based measures, but performed

better on module-based measures. This improvement in perfor-

mance was due to the module information allowing us to restrict

ourselves to targets that are co-expressed in a module and thereby

exhibit coherent function. Indeed identifying co-expressed sets of

genes is a pre-requisite to identifying meaningful cis-regulatory

elements enriched with a set of genes. A per-gene method does not

provide such information making it difficult to identify the

regulatory modules comprising genes sets that are co-regulated

by multiple regulators. MERLIN’s strengths are in its ability to

combine the complementary advantages of both classes of

methods. An additional advantage of MERLIN is that it is based

on a probabilistic graphical model, which infers network

parameters in addition to structure. Our preliminary work on

assessing expression prediction on a holdout set shows that

MERLIN outperforms LINEARREGR on more genes than it is

outperformed, suggesting that incorporating the module con-

straints can also benefit the predictive power of the model (Figure
S2).

MERLIN is widely applicable to biological processes with
different dynamics

Our application of MERLIN to the yeast stress response data

and the human embryonic stem cell differentiation data reveals its

ability to dissect the transcriptional regulatory programs especially

in large datasets that measure diverse conditional responses. In

particular, in the human embryonic stem cell differentiation data,

the module with genes that are up-regulated in the later time

points but not in the earlier (ES) time points had little or no

enrichment in the ChIP-seq targets. Incidentally, ChIP-seq

datasets were generated in the H1-ES (human embryonic stem

cells) cell line, and the modules in which there was enrichment

comprised genes that were most expressed in the earlier time

points that reflect a more ES-like state. MERLIN therefore

captures context-specific regulatory interactions. Such interactions

are most enlightening for modules exhibiting induced expression

in conditions or tissues that have not been studied in great detail,

perhaps due to under-sampling of these biological responses. Even

in the yeast stress response data, which is a very well studied

dataset, we derived new insight into the role of HOG1 and the

downstream modules that might be regulated through intermedi-

ate transcription factors as we discuss below.

Our ability to capture these regulatory networks likely centers

on the inherent feedback and feed-forward loops in eukaryotic

transcriptional responses: genes encoding signaling proteins are

often themselves targets of the pathways they encode. In other

cases, genes encoding regulatory proteins (especially negative

regulators) are augmented in anticipation of their future need;

nonetheless, their expression patterns remain predictive of

physiologically related genes. These features are likely to be

common to many different responses across diverse organisms.

An important difference between the yeast and the human

dataset was the number of biological conditions the genes were

measured in. In particular, in yeast we had more than a dozen

environmental perturbations whereas in human we had four

relatively similar kinds of perturbations. While the relatively

uniform nature of expression dynamics in this dataset enables us to

identify the major patterns of expression as two large modules,

adding more diverse perturbations can help us identify smaller

fine-grained modules as in the yeast dataset that are easier to

interpret biologically and for follow-up studies with smaller

functional assays.

Extensions to MERLIN
There are several directions of future work associated with

MERLIN. An immediate step is to more accurately model

expression levels from next-generation sequencing data by

considering conditional negative binomial or Poisson distributions

[62]. MERLIN can be easily applied to other regulatory genomics

datasets including global chromatin states that are becoming

increasingly available using approaches similar to Marbach et al

[63], taking a weighted union of different MERLIN inferred

networks. Another, perhaps more principled, way of integrating

such datasets would be through extending MERLIN’s prior to

incorporate more detailed features of the promoter architecture of

a gene such as sequence-specific motifs and nucleosome occupan-

cies. On a related note, it is possible to combine different types of

proteomic datasets within the MERLIN framework, e.g. using

measured protein levels of transcription factors and signaling

proteins and existing physical interactions to predict the mRNA

levels of genes. Such extensions can likely better capture the

transcription factors based on ChIP-chip than what we are able to

do based on expression alone that might miss changes such as

post-translational modifications on the regulators. Specifically

focusing on temporal dynamics, one direction of research is to

predict the expression state based on observations made at a

previous state, which can model delays in transcriptional

responses. MERLIN can also be extended to capture non-linear

relationships between a target and a regulator expression profile.

This can be done using a random forest regression approach

which has the additional advantage that the trees can be gleaned

to identify combinatorial rules of regulatory logic or through an S-

system model that models both non-linear and temporal dynamics

[16].

The increasing abundance of environment-specific, tissue-

specific and disease-specific transcriptional profiles, especially for

poorly characterized organisms, makes our ability to infer

regulatory networks especially important. Approaches such as

MERLIN that identify the gene-specific regulatory information for

individual genes, while revealing the global modular organization

of regulatory networks can significantly advance our understand-

ing of wiring and combinatorial regulation of transcriptional

responses governing cellular states.

Materials and Methods

Details of the MERLIN algorithm
The MERLIN approach is based on a probabilistic graphical

model of network inference where the goal is to infer regulatory

networks by maximizing the likelihood of observed expression data

given a network structure [14,25]. We use a similar notation as

described by Segal et al [14]. Let X~fX1, � � � ,Xng denote the set

of random variables, each taking a value xi from the domain

Val(Xi). Each variable, Xi in turn represents the ith gene or a

regulator and there are total n genes. Thus Val(Xi) is a possible

expression level of a gene measured in a microarray or from an

RNA-seq experiment (See data pre-processing for more details of
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what we mean by level). A subset of variables R(X where

R~fR1, � � � ,Rkg denote the candidate regulators. We assume

that we have a set of gene expression measurements for the n genes

denoted by D~fx1, � � � ,xDDDg, where xd~fxd
1 , � � � ,xd

ng denotes

the joint assignment of expression values for all n genes in the dth

sample.

The model that MERLIN learns has three components:

fG,M,Hg. G denotes the unknown regulatory network of interest

describing the regulatory relationships between genes and

regulators. Note that a regulator itself is also a gene and we can

infer its regulators as well. M~fM1, � � � ,Mng denotes the set of

module memberships of each gene, where Val(Mi)[f1, � � � ,mg
and m denotes the total number of modules. H~fh1, � � � ,hNg
denotes the set of parameters, with each hi denoting the

parameters of the conditional distribution, P(Xi DRi), of a target

gene Xi and its regulators, Ri. Several forms are possible for hi.

For example if we assume Xi is a linear combination of the levels

of the regulators, hi is the set of regression coefficients for each

regulator selected for a gene. If we want to capture non-linear

relationships, we can use a regression tree, where hi would

represent a collection of means and variances of a target gene at

each leaf node. As we discuss in the score below, we assume that

Xi and its regulators are distributed according to a multivariate

Gaussian.

Score in MERLIN. Given D, the set of candidate regulators

R, and an initial assignment of modules Minit our goal is to infer

the regulatory network G, H and new module assignments M.

Note the number of modules specified in Minit might not be the

same as the number of modules specified in M. To infer the

unknowns in our model we use a score based approach in a

Bayesian framework. We treat G, H and M as random variables

and we wish to find the posterior probability of these unknown

variables. Our score Score(G,M,H) is proportional to the posterior

probability of these unknowns logP(G,H,MDD). By Bayes rule

P(G,H,MDD)!P(DDG,H,M)P(HDG)P(GDM)P(M). Thus our score

is

Score(G,M,H)~logP(DDG,H,M)P(HDG,M)P(GDM)P(M):

Here P(DDG,H,M) is the data likelihood, and P(HDG,M)
P(GDM)P(M) corresponds to the model prior. We assume that

P(M) is a uniform prior and does not influence the score. Given a

G we set H to its maximum likelihood settings. The quantity that

we need to define is P(GDM), the graph prior. It is in this quantity

that we incorporate our module constraint. We write P(GDM) as a

product over regulatory edges that are present (Xj?Xi[G) and

edges that are absent (Xj?Xi=G) in the graph G, that is

P(GDM)~ PXj?Xi[G P(Xj?Xi DMi) PXj?Xi=[G 1{P(Xj?Xi DMi),

where Xi corresponds to a target gene and Xj[R is a regulator.

The probability of an edge P(Xj?Xi DMi) is written as a logistic

prior
1

1zexp({(pzr � fij))
, where p and r are hyper-parameters

and fij is an edge-specific feature measuring the extent to which

regulator Xj regulates other genes in Xi’s module, Mi. p controls

the sparsity of the graph and r controls the affect of the module

prior. For any edge Xj?Xi and fixed r � fij , the more negative p,

the smaller the value of P(Xj?Xi), whereas the larger the value p

the higher the value of P(Xj?Xi). For a very negative value of p,

the data likelihood has to improve by a much greater margin for

an edge to be added into the network. Thus, the more negative the

p the more sparse is the network.

Given a module assignment and a graph at a particular learning

iteration, k, fij is the ratio,
dk

jMi

dk
j

, where dk
jMi

is the number of

predicted targets of Xj in Xi’s module in iteration k, and dk
j is the

total number of predicted targets of Xj . We rewrite the graph prior

part of the score as a product over the regulatory edges associated

with each variable, Xi:

P(G)~ P
n

i~1
P

Xj[Ri

P(Xj?Xi DMi)

 !
P

Xj[R\Ri

1{P(Xj?Xi DMi)

 !
,

where Ri is the set of regulators associated with gene i in G. We

denote the term inside the product as P(Ri?Xi DMi) to denote the

subgraph induced by Xi and it’s regulators, Ri.

The likelihood LL~PDDD
d~1 P(xd DG,H,M) also can be written as

a product over each variable, where each term in the product

specifies the contribution of a variable to the overall likelihood part

of score. The graph G itself is a dependency network which allows

us to capture cycles, thus LL is the pseudo likelihood. LL~

Pn
i~1 P

DDD
d~1 P(Xi~xd

i DRi~xd
Ri

,hi), where Ri is the set of

regulators associated with gene i in G, hi are the parameters

associated with the conditional distributions P(Xi DRi), and xd
Ri

are

values assigned to Ri in the dth data sample. We denote the

likelihood contribution of each variable as LLi~PDDD
d~1 P

(Xi~xd
i DRi~xd

Ri
,hi). We assume that P(Xi,Ri) are distributed

according to a DRi Dz1-dimensional Gaussian. This Gaussian is

estimated for each Xi and candidate Ri pair. We convert the joint

Gaussian into a conditional Gaussian with parameters, miDRi
and

SiDRi
as described in Lauritzen [64]. Thus hi~fmiDRi

,SiDRi
g. We

have found that our approach of using the multivariate Gaussian

works better than the standard linear regression approach because

it takes into account the dependencies among the co-variates.

Because both the likelihood and structure prior decompose over

individual variables, we can write the score over the full graph as

sum over variables: Score (G,H,M)~
P

i Score (Ri?Xi,hi,Mi)

~
P

i log(LLi)zlog(P(Ri?Xi DMi))ð Þ.
MERLIN learning algorithm. The algorithm (Algorithm

1 in Text S1) begins with a set of modules Minit, which are

typically defined by an expression-based clustering step. It then

iterates over two steps (Figure 1): (a) identifying the regulators for

each gene given the current module assignments, and (b) re-

inferring the modules using both co-expression and the inferred

regulators for a pair of genes. It repeats these two phases of the

algorithm until convergence. During the regulator identification

step, the algorithm grows the regulator set of each gene based on

the improvement in prediction error of expression of a gene,

subject to a structure complexity prior that penalizes too many

regulators.

To infer the Ri for each gene we directly estimate the Markov

blanket of each gene, Xi, defined as the set of variables in Xi’s

immediate neighborhood and which render Xi independent of all

other variables. We constrain the members of the Markov blanket

to the set of regulatorsR. To identify Ri we use a greedy approach

that grows the regulator set (initially empty) for each gene Xi by

adding the next regulator which when added gives the greatest

score improvement. In particular, we optimize DSi~

Score(Ri?Xi,hi,Mi){Score(Ri|fXjg?Xi,hi,Mi), where Ri is

the current regulator set or Markov blanket of Xi. We add Xj only

if we observe an improvement in score. For each gene we begin

with an empty set Ri = Ø, and grow the set by considering

candidate regulators Xj[R, computing the score improvement on

Module Constraints of Gene Regulatory Programs

PLOS Computational Biology | www.ploscompbiol.org 15 October 2013 | Volume 9 | Issue 10 | e1003252



adding each Xj and picking the bXjXj that has the maximal score

improvement. To enable efficient computation of the graph prior,

we pre-compute this quantity for an empty graph, and update it as

we add edges during the learning process.

Once we finish the regulator selection phase for all genes, we

have for each gene, Xi, the weight wi of regression coefficients for

each Xj[Rj . We revisit the module memberships of all genes,

Mi[M, by computing a distance metric for all pairs of genes,

fXm,Xng, zmn~
rmnzjmn

2
, where rmn is 1{pmn and pmn is the

Pearson’s correlation between Xm’s expression Xn’s expression,

and jmn is the regulatory similarity of Rm and Rn and is given by

a modification of the Jaccard coefficient that takes into account

the sign and magnitude of each element in wm and wn. In

particular, let umn denote the indices of regulators associated

with Xm and Xn, and that wm(p) � wn(p)§0, then jmn~

1{

P
k[umn

0:5(wn(k)zwm(k))

DDwmDD1zDDwnDD1
. Here DDwDD1 implies the L1 norm

of vector w.

Once we have defined the pairwise distance metric for each pair

of genes we use a hierarchical clustering algorithm to define

modules, stopping when the smallest distance between any two

modules is greater than a given threshold, h. To efficiently do

hierarchical clustering, we use the min-heap datastructure and

merge nodes only if their distance is less than the threshold h. This

approach of defining modules allows us to use the data to define

the number of modules, and is not dependent excessively on the

initial set of modules. When the algorithm converges, we have for

each gene the module to which the gene belongs, as well as its

regulator program (both the regulators as well as the parameters

associated with each regulator). These steps are repeated until no

more moves on the network structure changes gives a significant

improvement in the likelihood score.

Software availability
The MERLIN code and additional results on the Gasch stress

data are available as a web-supplement at http://pages.discovery.

wisc.edu/,sroy/merlin.

Sensitivity of different parameters to performance of
MERLIN

There are three parameters in MERLIN that need to be

specified: (1) p controls the number of edges in the network, that is

the overall sparsity of the network, (2) r, controls the extent of

modularity in the network, (3) h is the cutoff for deciding at what

point we must stop the hierarchical clustering of the modules. To

determine how the parameters influence the final structure, we

carried out an extensive simulation experiment on networks of

different sizes N[f100,200,300,400,500g genes, and different

modular structures. We used GeneNetWeaver (GNW) [27] to

generate simulated expression data. We generated the structure of

these networks outside of GNW in order to impose different

extents of modularity by controlling a parameter q[f0:6,0:4g. We

partitioned the data into random non-overlapping modules, which

included both a set of target genes and a set of regulator genes. For

each edge we used q to probabilistically determine whether a

regulatory edge would be added between a target and regulator

gene with the same module membership, or different modules.

Thus a higher value of q would favor greater regulatory

modularity.

To assess the quality of the inferred network structure, we used

F-score, which is defined as the harmonic mean of precision and

recall. Precision in turn is the ratio of the true positives to the

number of edges inferred, and recall is the ratio of the true

positives to the total number of edges in the true network. The

F-score gives us a single number that assesses the quality of the

inferred network. The closer F-score is to 1, the better the

performance. We also computed module statistics to assess the size

and coverage of genes in each module: (a) number of good-sized

modules, where a good-sized module must have at least 5 genes,

(b) percentage of total genes that are in the good-sized modules.

Ideally we would be able to include as many genes as possible in

these good sized modules without losing biological coherence.

We found that the most important parameter that affected F-

score was p, which controls the total number of edges in the

network (Figure S3, S4). This was true for both the high

modularity (q~0:6) and low modularity (q~0:4) networks. For all

networks of different sizes the optimal value as determined by the

best F-score was {1. We also tried to pick p based on the cross-

validation error, and picked p~{5 to have the lowest cross-

validation error, but had considerably lower performance as

measured by F-score. For a fixed p, the other parameters had less

affect on the F-score. The value of h controlled the number of

modules, with small values of h producing too many small clusters

(,5 genes) and large values of h producing very large clusters

(Figure S5). In general, the optimal value of h ranged from

0:6{0:7, regardless of low or high modularity networks. Finally

for a given h, higher values of r parameter tended to increase the

number of good sized modules (at least five genes) and also the

coverage of genes in these modules. The value of r also affected the

structure recovery. In particular for h~0:6 for the network with

500 nodes, a value of r~4 to r~8 had a greater preference of low

r for the low modularity networks. This suggests that this

parameter can effectively capture modular networks, however

not very high values of r are required to do so.

Finally, we studied the effect of the r parameter on the

modularity of the network (Figure S6). Because the networks we

infer are directed regulatory networks, standard measures of

modularity which are defined for undirected graphs were not

sufficient. We defined a measure of regulatory modularity (defined

below) that measures the extent of shared regulators of genes in a

module compared to shared regulators with genes outside a

module. We find that as we increase r, the estimated modularity of

the network increases, but asymptotes after r = 8.

Data pre-processing
We applied MERLIN to two transcriptomic datasets, one in

yeast [24], and one in human (Manuscript in preparation, some of

the data was released in [50]). The yeast expression data was

obtained from Gasch et al [24] and comprised 173 microarray

measurements. The data was pre-processed by Segal et al, to

remove genes that did not change significantly producing a total of

2,235 genes of which 135 genes were signaling proteins and 186
were transcription factors. We replaced missing values of a gene

with its mean from other samples where its expression was

available.

For the human data, we had RNA-seq read counts from four

time courses, two each for two cell lines: human ES line H1 and

human iPS cell line DF19.7. We assembled these reads into a per

gene count using RSEM [65] and transformed the counts, cd
i for

each gene i in the dth sample as yd
i ~log(cd

i z1). Next we

computed the mean of each time course and subtracted the mean.

Thus each expression level in the RNA-seq data, xd
i ~yd

i {byiyi,

where byiyi denotes the mean from a time course. The data were thus

zeromean transformed for each time course separately. While this

transformation does not account for the over-dispersed nature of
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RNA-seq data, we found that clustering the RNA-seq data using a

Gaussian mixture gave us good performance as measured by Gene

Ontology enrichment. Extending MERLIN to handle the ‘‘count’’

nature of RNA-seq data to reconstruct networks is an area of

future work. After this we filtered out genes that changed less than

61 in all time points. This produced a total of 5670 genes, of

which 535 were transcription factors and 288 were either a kinase

or phosphatase as annotated in Uniprot.

To apply MERLIN to each of these data sets we started with

five random initializations. For the yeast data we split the data into

five equal folds and learned models on four fifths of the data, and

repeated this five times. A high confidence network was that which

had an edge in three of the five random initializations. For the

human data since we did not have as much data as in yeast, we

used the entire data, but generated different MERLIN networks

by starting with five different random initializations of clusterings

Minit. We created a high confidence network by considering edges

that were present in all five random initializations. MERLIN was

applied on the different datasets using r~4, h~0:6 and p~{5.

We selected these settings based on our experiments on simulated

data where we found that the optimal values of modularity ranged

between r~4 to r~8.

Regulatory modularity
We defined regulatory modularity for a set of modules, M and a

regulatory network G in the following manner. First, for any pair of

genes, Xi, Xj in the modules, we compute a regulatory similarity,

sij as
rijffiffiffiffiffiffiffiffiffiffiffi

ri � rj
p , where rij is the number of shared regulators between

Xi and Xj , and ri and rj are the number of regulators for Xi and

Xj respectively. Regulatory modularity for a module Mk[M is

defined as fk{gk, where fk~

P
i,j[Mk

sij

nk

2

� � where DMk D~nk, and

gk~

P
i,k;Xi[Mk ,Xj[M\Mk

sij

nk � n’k
, where n’k~DMD{nk. fk thus measures

the within module regulatory similarity, and gk measures the

regulatory similarity between genes in module m and all other

genes. The denominators serve to normalize the gk and fk

measures such that they are always between 0 and 1. The

regulatory modularity for a module ranges between 21 and 1.

Enrichment of genetic and protein-protein interactions
For each module with p regulators (including ChIP-enriched

regulators), we extracted the number of genetic interactions from

the BioGRID database [66]. Next from our candidate set of

regulators, we extracted a random set of regulators of size p and

also obtained the number of genetic interactions among proteins

in the random set. We repeated the random set selection 100

times, and estimated a mean and standard deviation on the

number of edges expected by chance. We next computed a z-score

using this background distribution. We considered a regulator set

to have significant number of interactions if the z-score was greater

than 1. We repeated this process for protein protein interactions as

well.

Comparison of network inference methods based on
edge and module-based metrics

We compared the performance of MERLIN on simulated

networks to the performance of three other algorithms using edge-

based, regulator-based and module-based metrics. These compar-

isons were done on simulated ground truth networks where the

true networks were known. We used GeneNetWeaver (GNW) to

generate simulated expression data [27] for networks of 100, 200,

300, 400, 500 and 1,000 nodes. GNW takes networks as inputs

and uses a stochastic differential equation model to generate

expression data. To generate data from GNW we used a similar

strategy as was used in the DREAM project on network inference

comparisons [20]. A set of measurements for all nodes was the

steady-state values reached when the system was perturbed by

simulating a gene knockout. All genes were knocked out, one at a

time, producing datasets of size 100, 200, 300, 400, 500 or 1,000

measurements for the networks of different sizes.

Edge-based metrics for comparing the network inference

algorithms. We first examined the agreement between the

ground truth networks of different sizes to the inferred networks

using standard precision-recall measures [28]. We computed the

area under the precision-recall curve (AUPR) for each method,

and used this as a metric to compare different methods on different

networks. The AUPR ranges between 0 and 1, and the closer it is

to 1, the better the inferred network in terms of the true edges

recovered, and the false edges not inferred. As AUPR requires a

continuously varying quantity we generated 100 random subsets of

the data and computed an edge confidence using networks

inferred on these 100 subsets.

In addition to AUPR we also compute the significance of

overlap of edges between true and inferred edges using a

hypergeometric p-value and a fold enrichment. In fact, on the

yeast network, AUPR was not informative due to the large

number of ‘‘false’’ edges. The fold enrichment is defined as a ratio
pfg

pbg
(also used in [63]), estimated from the same numbers used to

estimate the hypergeometric p-value. Namely, pfg~
k
n

and pbg~
m
N

,

where k is the number true positive edges, n is the total number of

edges inferred, m is the total number of edges in the true network,

and N is the total number of edges possible, when restricted to

common regulator and target nodes in the inferred and true

networks. The fold enrichment gave us a single measure to

compare both the simulated networks as well as the yeast network.

Regulator-based measures. In addition to edge-based

comparisons, we developed measures that compare the inferred

networks based on each regulator’s target sets. This is done by

considering one regulator at a time. For each regulator, A, we ask

whether its targets in the true network significantly overlap with its

targets in the inferred network. Significance of overlap is assessed

based on the hypergeometric distribution followed by a Benjamini-

Hochberg correction for multiple hypothesis testing. We use

FDR,0.05 to determine whether a regulator’s predicted and true

targets significantly overlap.

Module-based measures. To assess regulator-module rela-

tionships in the simulated datasets we used the modules that were

part of the ground truth simulation. We generated the ‘‘true’’

regulator-module graph by asking what regulators’ targets were

significantly over-represented (hypergeometric p-value with FDR

correction, FDRv0:05), in each module using the ‘‘true’’ network.

Such regulators were considered as the true regulators of the

module. Next we asked, using the inferred networks, what

regulators’ targets are significantly overrepresented in the modules

of the simulation. These gave us the predicted regulator-module

relationships. We measured precision (defined as the fraction of

predicted regulator-module relationships that were obtained from

the true network), recall (defined as the fraction of true regulator-

module relationships), and an F-score to summarize the precision

and recall.

Our module-based measures on the yeast expression data used

modules from GO slim annotations [33], or from the Yeastcyc

pathways downloaded from the Saccharomyces genome database

[34]. We next asked what transcription factors with ChIP-chip
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data identified in the MacIsaac et al network were enriched in

each of these modules. A regulator whose ChIP-chip targets are

enriched in a module is said to be associated with a module giving

us ‘‘true’’ regulator-module relationships. Next for an inferred

network we asked which regulators’ predicted targets were

enriched in each of these modules producing predicted regula-

tor-module relationships. We computed both F-score and the p-

value from a hypergeometric test of overlap between the true and

inferred regulator-module relationships. We report the hypergeo-

metric test p-value as this was more sensitive to the differences

between the algorithms on the real data. We generated our

Regulator- and Module-based scores on the MacIsaac et al

network only as this was the gold standard in the recent DREAM

competitions of network inference methods [20].

Enrichment analysis of modules using Gene Ontology
and transcription factor binding sites

To assess the biological meaning of modules inferred by

MERLIN we used gene set enrichment analysis of various

modules using the hypergeometric test followed by an FDR

correction method of Benjamini and Hotchberg. We considered

only modules of size at least 5 genes. These gene sets included

genes annotated with a Gene Ontology process [33] (yeast and

human), ChIP-chip or ChIP-seq targets of transcription factors

(yeast [30] and human [44]), gene sets from Molecular Signature

Database (MSigDB, humans [43]), or genes with motif instances in

DNase I hypersensitive sites (DHSs) [45]. To assess the association

of Modules 2, 19 and 37 in the Gasch stress data we obtained a

curated Hog1 signaling network from Tiger et al. [67] and

combined it with a curated gene set from Gasch lab (unpublished),

and asked whether any module members or the regulators of the

module were enriched in this list. Based on a hypergeometric test

of overlap we found regulators of Module 2 to be significantly

enriched (p-value ,0.02), and a lower stringency of (p-value ,0.3)

for the other modules. Module 19’s regulators were also enriched

for genes in this list (hypergeometric p-value ,0.13).

To map ChIP-seq and DNAse1 sites in the human dataset we

focussed on 62000 bps of the transcription start site (TSS) of a

gene, where the TSS coordinates were obtained from Gencode10

as used in the ENCODE project [68]. Motifs were obtained from

Jaspar [69], and DHSs were obtained from Thurman et al [45],

downloaded from http://ftp.ebi.ac.uk/pub/databases/ensembl/

encode/integration_data_jan2011/byDataType/openchrom/jan

2011/combined_peaks/. To find genes with motif instances of a

transcription factor we used the Finding Individual Motif

Occurrences (FIMO) from MEME suite [70] to scan the DHSs

with a q-value ,1E-5. To map a gene to a ChIP-seq peak of a

transcription factor we obtained peak calls from the ENCODE

project from http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/

integration_data_jan2011/byDataType/peaks/jan2011/spp/optimal/

hub/, and associated a gene to the transcription factor if its peak was

within 62000 bps of the TSS of the gene.

Supporting Information

Figure S1 Edge-based comparisons on simulated net-
works of different sizes using different per-gene and
per-module methods of network inference. A. Perfor-

mance measured using Area under the precision recall (AUPR)

curve. B. Performance measured using fold enrichment of

predicted network edges to true network edges, where fold

enrichment is defined as the ratio of the observed and expected

fraction of true edges.

(PDF)

Figure S2 Comparison of MERLIN to per-gene linear
regression approach based on prediction error. Shown

are the number of genes in which MERLIN is significantly

better or worse than the linear regression-based per-gene

approach. Prediction of expression is evaluated using Pearson’s

correlation between true and predicted expression of a gene

using five-fold cross validation. The Pearson’s correlation in the

five folds are used to test whether the correlations are

significantly higher or lower between two methods using a

one-sided t-test.

(PDF)

Figure S3 Effect of MERLIN hyper-parameter values on
network reconstruction performance for high modular-
ity networks. Shown are the F-scores for networks of different

sizes of high modularity for different parameter settings of sparsity

(p), module effect (r) and clustering threshold (h).

(PDF)

Figure S4 Effect of MERLIN hyper-parameter values on
network reconstruction performance for high modular-
ity networks. Shown are the F-scores for networks of different

sizes of low modularity for different parameter settings of sparsity

(p), module effect (r) and clustering threshold (h).

(PDF)

Figure S5 Effect of different parameters on network
structure recovery and module level statistics. Shown are

the F-scores on two sets of three networks with 100, 300 and 500

nodes, the top set has high modularity and the bottom set has low

modularity. The modularity during network generation was

controlled by a parameter specifying the probability with which

a target and regulator come from the same module. F-score and

module statistics are shown for different values of parameter

settings controlling sparsity (p), modularity (r) and the height of the

tree that determines modules during hierarchical clustering (h).

Two module level statistics are shown: number of modules (red-

white scale, upper diagonal); fraction of genes included in good-

sized modules (§5 genes, lower white-black triangle.

(PDF)

Figure S6 Effect of module effect hyper-parameter on
regulatory modularity of the inferred network. Shown are

measured regulatory modularity of the inferred network for

different values of the module effect parameter (r). Shown are the

estimated modularities in networks of different sizes (different

colors), at h~0:6 and p~{1. for a network which has a high

probability (0:6) of regulators and targets to come from the same

module (left), and for a network which has lower probability of

regulators and targets to come from the same module (0:4).

(PDF)

Table S1 Gene Ontology process enrichment for MER-
LIN modules on yeast stress data. This table lists the Gene

Ontology process enrichment for the modules/clusters inferred

using MERLIN on Gasch stress data. Each row corresponds to a

GO process and the columns correspond to the Module ID, term

name, p-value, FDR, Total genes with annotation, Number of

genes annotated with the term, Size of the module/cluster,

Number of genes annotated with the term in the cluster, fold

enrichment of the term in the cluster, the genes contributing to the

term enrichment.

(TXT)

Table S2 Gene Ontology process enrichment for MER-
LIN modules inferred on human ES cell differentiation
data. This table lists the Gene Ontology process enrichment for
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the modules inferred using MERLIN on the human ES cell

differentiation data. The file format is as in Table S1.

(TXT)

Table S3 MSigDB term enrichment for MERLIN mod-
ules inferred on human ES cell differentiation data. This

table lists the MSigDB term enrichment for the modules inferred

using MERLIN on the human ES cell differentiation data. The file

format is as in Table S1.

(TXT)

Text S1 Pseudo code and additional details of the
MERLIN algorithm.

(PDF)
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