. \JJ
ELSEVIER

Available online at www.sciencedirect.com

sc.ENCE@D.“m

Operations Research Letters 31 (2003) 12-20

Operations
Research
Letters

www.elsevier.com/locate/dsw

On Steiner trees and minimum spanning trees in hypergraphs

Tobias Polzin®*, Siavash Vahdati Daneshmand®

@ Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg 85, 66123, Saarbriicken, Germany
b Theoretische Informatik, Universitidt Mannheim, Mannheim, Germany

Received 7 March 2002; received in revised form 11 July 2002; accepted 6 August 2002

Abstract

The bottleneck of the state-of-the-art algorithms for geometric Steiner problems is usually the concatenation phase, where
the prevailing approach treats the generated full Steiner trees as edges of a hypergraph and uses an LP-relaxation of the
minimum spanning tree in hypergraph (MSTH) problem. We study this original and some new equivalent relaxations of this
problem and clarify their relations to all classical relaxations of the Steiner problem. In an experimental study, an algorithm
of ours which is designed for general graphs turns out to be an efficient alternative to the MSTH approach.

(© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Steiner problem; Relaxation; Linear programming

1. Introduction

The Steiner problem is the problem of connecting
a set of terminals (vertices in a weighted graph or
points in some metric space) at minimum cost. This
is a classical ./"2-hard problem with many important
applications (see [2]).

For geometric Steiner problems, an approach based
on full Steiner trees has been successful [13]. In geo-
metric Steiner problems, a set of points (in the plane)
is to be connected at minimum cost according to some
geometric distance metric. The resulting interconnec-
tion, a Steiner minimal tree (SMT), can be decom-
posed into its full Steiner trees by splitting its inner
terminals (a full Steiner tree (FST) is a tree with no
inner terminals, i.e., all terminals have degree 1). The
FST approach consists of two phases. In the first phase,
the FST generation phase, a set of FSTs is generated

* Corresponding author.
E-mail address: polzin@mpi-sb.mpg.de (T. Polzin).

that is guaranteed to contain an SMT. In the sec-
ond phase, the FST concatenation phase, one chooses
a subset of the generated FSTs whose concatenation
yields an SMT. Although there are point sets that give
rise to an exponential number of FSTs in the first
phase, usually only a linear number of FSTs are gen-
erated, and empirically the bottleneck of this approach
has usually been the second phase, where originally
methods like backtracking or dynamic programming
have been used. A breakthrough occurred as Warme
[12] observed that FST concatenation can be reduced
to finding a minimum spanning tree in a hypergraph
whose vertices are the terminals and whose hyper-
edges correspond to the generated FSTs. Although the
minimum spanning tree in hypergraph (MSTH) prob-
lem is ./"Z-hard, a branch-and-cut approach based on
the linear relaxation of an integer programming formu-
lation of this problem has been empirically successful.

In this paper, we first compare the mentioned re-
laxation to some other, new relaxations of the MSTH
problem. We show that all these relaxations are

0167-6377/03/$ - see front matter (©) 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-6377(02)00185-2

mailto:polzin@mpi-sb.mpg.de

T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20 13

equivalent (yield the same value), and thereby refute
a conjecture in the literature that a (straightforward)
directed version of the original relaxation might be
stronger. Then, we compare these relaxations with
other relaxations which are based directly on formu-
lations of the Steiner problem in graphs. Note that
the union of (the edge sets of) the FSTs generated
in the first phase is a graph and the FST concatena-
tion problem reduces to solving the classical Steiner
problem in this graph. In [6], we already constructed
a hierarchy of all classical and some new relaxations
of the Steiner problem; here we clarify the place of
the MSTH-based relaxations in this hierarchy. Fi-
nally, we perform an experimental study, both on the
quality of the relaxations and on FST concatenation
methods based on them, leading to the result that a
program package of ours [7,8,10], which is designed
for general networks, is an efficient alternative to the
MSTH-based method. Although the approach used
by us was known, previous attempts had led to the
assumption that it is unlikely to become competitive
to the MSTH approach [12].

1.1. Definitions

The Steiner problem in networks can be stated as
follows (see [2] for details): Given an (undirected,
connected) network G = (V, E, ¢) (with vertices V' =
{v1,...,0,}, edges E and edge weights ¢, > 0 for all
ecE)and asetR, () # R C V, of required vertices
(or terminals), find a minimum weight tree in G that
spans R (an SMT). If we want to stress that v; is a
terminal, we will write z; instead of v;.

We also look at a reformulation of this problem us-
ing the (bi-)directed version of the graph, because it
yields stronger relaxations: Given G=(V, E,c) and R,
find a minimum weight arborescence in G= (V,4,c)
(A4 = {[vi,v;], [vj,v:] | (vi,v;) €E}, ¢ defined accord-
ingly) with a terminal (say z;) as the root that spans
Ry =R\ {z}.

A Steiner tree T for a subset S C R is called an FST
if all terminals in S are leaves of 7. Let F be the set
of FSTs constructed in the FST generation phase. By
identifying each FST T € F with its set of terminals,
we get a hypergraph H = (R, F'). For each FST T, let
cr be the sum of its edge weights. Any FST T can
be rooted from each of its & leaves, leading to a set
of directed FSTs {71,...,fk}. We denote the set of

directed FSTs generated from F in this way by F. In
the following, we use the term FST both for the tree T
and the corresponding hyperedge in A, the meaning
should be clear from the context.

A cut in G = (V,4,¢) (or in G = (V,E,c)) is de-
fined as a partition C = {W, W} of V () C W C
Vi V=WUW). Weuse (W) to denote the set of arcs
[vi,v;] €4 with v; € W and v; € W. For simplicity, we
write 6~ (v;) instead of 6~ ({v;}). The sets 61 (W) and,
for the undirected version, 5() are defined similarly.
The corresponding notions for a hypergraph H=(R, F')
are defined similarly; here we use A instead of J (for
example, A(S) :={T€F |TNS#0,TNS #0}).

For every integer program P, LP denotes the linear
relaxation of P. For any (integer or linear) program Q,
v(Q) denotes the value of an optimal solution for Q.
We compare relaxations using the predicates equiva-
lent and (strictly) stronger: We call a relaxation R,
stronger than a relaxation R, if the optimal value of
R; is not less than that of R, for all instances of the
problem. If R, is also stronger than R;, we call them
equivalent, otherwise we say that R, is strictly stronger
than R,. If neither is stronger than the other, they are
incomparable.

2. MSTH: Formulations and relaxations

We begin with a formulation of Warme [12] for the
MSTH problem

PFST . Z CTXT — min,
TeF

> (T = DXy =|R| -1, (1a)
TeF

> (TNS| - DXy <|S| -1
T, TNS#D

(0 #S CR), (1b)
Xre{0,1} (T€EF). (1¢)

Lemma 1. Any feasible solution of Pgsr describes
a spanning tree for the hypergraph (R,F) and vice
versa.

14 T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20

Proof. A proof (with slightly different syntax) is
given in [12]. [

Using the directed counterpart of F' and following
the same line as for minimum spanning trees for usual
graphs in [5], we get the following integer program:

Pt : Z CpXy — min,
TeF
> (T = xp =R — 1, (2a)
TeF
Y xp=1 (z€R), (2b)
T,Ted—(z)

> AT NS =1 <[S| -1

T, TNS#0
(0 #S CR), (2¢)
xz€{0,1} (T€F). (2d)

It is easy to see that Pr¢y is a valid formulation of the
MSTH problem.

Lemma 2. LPpq; is equivalent to LPgsr.

Proof. The equivalence can be shown by a (proper)
choice of the variables representing each FST T and
corresponding directed FSTs T Loeens T + such that X7 =
xz, + - +xz, . The basic ideas are similar to those in
the proof of Lemma 6 in [6]. O

Now consider the following cut formulation of the
MSTH problem:

Prsc : Z cyXy — min,
TeF
AT = Dz =R - 1, (32)
TeF
Z xz=1 (21 €8S, SNRy #0), (3b)
T,Tea=(S)
x;€{0,1} (T€F). (3¢)

It can be verified (for example by following the proof
of the next lemma) that Pggc is a valid formulation of
the MSTH problem.

Lemma 3. LPy; is equivalent to LPgsc.

Proof. First observe that for any x feasible for LPgsc
summing (3b) for all z, € R; we have

RI—1< > >0 x5 < (leaves(T)))z

Z€RTea—(z,) T

=Y (T =y (4)
T

Together with (3a) this means that x satisfies (2b). It
follows that Sz 4., X7 = 0.

Now consider any x that is feasible for LPgsT or
LPgsc; we will show that in either case x is feasible
for both. For any partition SUS = R, we have

> (TS| =1z

T,TNS#0

= Z (|leaves(T) N S|+|root(T) N S| — 1)xz

T, TNS#0
()
= Z |leaves(T') N Sx; — Z X7
T, TNS#D T, TNS#£0,root(T)ES
(6)
=X, > w- > % (7)
Z€S Ted—(z) T, TeA—(S)
=[SnR|- > xp (8)
T, Ted—(S)

Now there are two cases:

(I) z; €8:
ooATns|—xp=1IS|= > xp (9
T, TNS#0 T, Ted—(S)

This means that x satisfies (2¢) if and only if it satisfies
(3b).

T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20 15

(Il) z; € S:

> (TS| =1z

T, TNS£0

=IS|—1- Y x (10)

T, Tea= ()
So x satisfies (2¢), because it is nonnegative. [J

Note that we have actually proved a slightly
stronger result: The sets of feasible solutions (and
corresponding polyhedra) are identical for both relax-
ations. With respect to optimal solutions, our assump-
tion that the edge costs are positive leads directly to
the observation that D 7, X7 = 0. A more de-
tailed analysis (similar to our proofs of Lemmas 8
and 9 in [6] for the dicut relaxation in graphs) leads
to the observation that for any optimal solution for
LPpsc without (3a) and for every z; € Ry, it holds:
Zfer(z,)xf = 1. So dropping the constraints (3a)
does not change the optimal solution value of LPggc.

3. Relation to the relaxations of the Steiner
problem in graphs

The directed cut formulation of the Steiner problem
was stated for the first time in [15] (the undirected
version was already introduced by Aneja [1]):

Pc: Z €4y, — min,

acA
Yoovazl (2 €S SNRAD), (11a)
aco—(S)
. €{0,1} (a€A). (11b)

Lemma 4. LPggc is (strictly) stronger than LPc.

Proof. Letx be an optimal solution of LPgsc. For each
arc a € A that is a part of directed FSTs T.,....T,,
let y, := xz + - +xz,. It is easy to verify that
v is feasible for LPc and yields the same value as
v(LPgsc). The following example shows that v(LPgsc)
can indeed be larger than v(LPc). L[

Fig. 1. Example with v(LPc) < v(LPrsc) = v(Pgsc).

Example 1. The network in Fig. 1 with z; as the root
(filled circles represent terminals) and (directed) FSTs
(z1 = 51 =), (21 — 82 — z3), (21 — s1 —
53 — s4 — z) and (z1 — s — §3 — 54 — 23)
gives an example for v(LPc) < v(LPpsc): v(Ppsc) =
U(LPFSC) = 8, U(ch) =17.5.

Example 2. By turning s3 to a terminal we get an
example with v(LPpsc) < v(Ppsc): v(Ppsc) is still
8; but v(LPpsc) is now 7.5 (by setting to 0.5 the
x-values for the FSTs (z1,s1,53,22), (21,52,53,23) and
(83,54,22,23)).

Note also that this is an example where the choice of
FSTs in the first phase influence the value of LPggc: If
only the FSTs (z1, 51, 52), (21,51,53), (21,52,23), (21, 52,
s3) and (s3,54,22,23) are generated in the first phase
(an SMT can be constructed by concatenation of the
second and last FST), then v(LPgst) = v(Pgrst) = 8.
Note also that v(LPc) = 7.5 in both cases.

The relaxation LP¢ can be strengthened by addi-
tional groups of constraints like the following one
from [3], which we call flow-balance constraints:

Y < D va WEV\R). (11c)

a€d—(v;) acot(v;)

In [6], we prove that these constraints indeed lead to
a strictly stronger relaxation, which we call LPc pg.

Lemma 5. LPggc is (strictly) stronger than LPc g.

16 T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20

Proof. Consider a vertex v; € V'\R. Any directed FST
T containing an arc a € 9~ (v;) includes also at least
one arc a € 67 (v;), so the same construction as in the
proof of Lemma 4 leads to a y which also satisfies the
constraints (11c). The following example shows that
v(LPgsc) can indeed be larger than v(LPcipg). [

Example 3. By adding a terminal z4 to the network
in Fig. 1 and connecting it to s3 with an edge of cost 1
we get an example for v(LPcipp) < U(LPpsc) if z; is
chosen as the root: v(Pgsc) =v(LPrsc)=9, v(LPc)=
8.5.

Since LPcrp is (strictly) stronger than all but two
relaxations of the Steiner problem in [6], LPggc is
strictly stronger than them too. The two remaining
ones are the linear relaxations of the two-terminals for-
mulation P,7 and the common-flow formulation Pg-
(see [6] for definitions).

Lemma 6. LPgsc is incomparable to LPr or LPp».

Proof. The lemma follows from the following two
examples. [

Example 4. The network in Fig. 1 with s3 set
to terminal gives an example with v(LP,r) =
v(LPr2) > v(LPgsc): As described in Example 2,
U(Lppsc) = 75, but U(LPQT) = U(LPFZ) =8.

Example 5. The network in Fig. 1 with s; set to
terminal and used as the root gives an example for
U(LPy7) =v(LPp2) < v(LPpsc): U(LPyr) =v(LPp2)=
7.5, but v(Pgsc) = v(LPpsc) = 8 if we assume that
the following FSTs are generated in the first phase:
(53,51,21,22), (53,52,21,23), (83,54,22) and (s3,54,23).
Note again the influence of the first phase: If the FST
(s3,4,22,23) was also generated, v(LPgsc) would be
7.5, too.

However, there are also examples such that
v(LPpsc) = v(Ppsc) > v(LPp2) even if all possible
FSTs are generated in the first phase.

4. Experimental study

In this section, we compare the empirical behaviour
of the MSTH-based relaxation LPrst and an exact

Table 1
Comparison of LPrgt and LPc

Instance group LPgst LP¢c

Gap (%) Time (s) Gap (%) Time (s)

ES1000FST 0.0078 99.2 0.0079 80.1
TSPFST 0.009803 129.6 0.009806 28.6

algorithm based on it with the classical directed cut
relaxation LP¢ and an exact algorithm which uses this
relaxation. For the first approach, we use GeoSteiner
3.1 [14], a software package developed by Warme,
Winter and Zachariasen for solving Euclidean and
rectilinear Steiner problems and the MSTH problem.
GeoSteiner is by far the most efficient code for these
problems. Note also that the results of the version
3.1 of GeoSteiner are significantly better than the al-
ready published results [12,13] of former versions.
For the second approach, we use a software package
developed by us [8] (here called simply STEINER),
which is designed for treating the Steiner problem
in general networks. As test data, we use the “ge-
ometric graph” instances from the library SteinLib
[4]. These graphs are produced by applying the FST
generation phase of GeoSteiner to some point sets
which are either randomly generated (ES-instances
from OR-Library) or originate from some applica-
tion (TSP-instances from TSP-LIB). For the compar-
isons, we have excluded those instances that could
not be solved by GeoSteiner in one day; results of
our program on such instances are given separately in
Table 2. The FST generation phase (followed by a
pruning phase to reduce the number of FSTs) de-
livers both a hypergraph H = (R, F') corresponding
to the generated FSTs (which is the input for the
MSTH-based concatenation phase of GeoSteiner) and
a graph G = (V,E) corresponding to the union of
their edge sets (which is the input for our network
SMT-algorithm).

All tests were performed on a PC with an AMD
Athlon XP 1800+ (1.53 GHz) processor and 1 GB
of main memory, using the operating system Linux
2.4.9. We used the gee 2.96 compiler and CPLEX 7.0
as LP-solver.

In Table 1, we compare the average gaps to integer
optimum and computation times for the relaxations

T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20 17

Table 2
Instances not solved by GeoSteiner in 1 day

Instance Size Optimum STEINER
[R| 14 |E| Time (s) Nodes

es10000 10,000 27,019 39,407 716,174,280 758 1
11400 1400 2694 4546 17,980,523 118 1
13795 3795 4859 6539 25,529,856 139 1
fnl4461 4461 17,127 27,352 182,361 6148 1
pcb3038 3038 5829 7552 131,895 2.4 1
pla7397 7397 8790 9815 22,481,625 0.1 1
Table 3
Comparison of GeoSteiner (second phase) and STEINER on ES1000FST-instances
Instance Size Optimum GeoSteiner STEINER

IR |F| 14 |E| Time (s) Nodes Time (s) Nodes

es1000fst01 1000 2052 2865 4267
es1000£st02 1000 1943 2629 3793
es1000£st03 1000 2004 2762 4047
es10001st04 1000 2024 2778 4083
es1000£st05 1000 1976 2676 3894
es100015t06 1000 2033 2816 4164
es1000£st07 1000 1897 2604 3756
es10001st08 1000 2047 2836 4210
es1000£st09 1000 2091 2846 4187
es10001st10 1000 1894 2546 3620
es1000fst11 1000 2026 2763 4038
es10001st12 1000 2136 2992 4500
es1000fst13 1000 1886 2532 3615
es10001st14 1000 2049 2840 4200
es1000fst15 1000 2032 2735 4001

Averages:

230,535,806 12.78 3 11.55 1
227,886,471 9.38 1 7.79 1
227,807,756 115.00 1 11.29 1
230,200,846 8.41 1 12.52 1
228,330,602 64.23 1 8.50 1
231,028,456 409.78 10 16.13 1
230,945,623 87.67 1 4.80 1
230,639,115 111.38 1 12.32 1
227,745,838 18.03 3 12.72 1
229,267,101 112.97 5 4.76 1
231,605,619 19.58 3 8.13 1
230,904,712 484.46 2 16.47 1
228,031,092 3.07 1 4.62 1
234,318,491 791.82 13 14.92 1
229,965,775 10.82 1 7.59 1
150.6 10.3

LPpst and LPc. We used GeoSteiner for LPpst by
taking v(LPrst) as the value of the last linear program
before any branching was performed. Studying the
data (detailed results on single instances can be found
in [9]), one observes:

e Both relaxations yield almost always the same
value. Only on a couple of instances, LPgsr is
tighter than LP¢ by a relatively small margin.

e Both relaxations are fairly tight on the considered
instances. The average gap to integer optimum is in
both cases less than 0.01%.

e The average running times for computing v(LPc¢)
have been smaller, but this does not say much

about which method is faster on a specific
instance.

In Tables 3 and 4, we compare the running times of
GeoSteiner and STEINER for the exact solution of the
test instances. We also give the number of nodes in
the branch-and-cut or branch-and-bound tree. Study-
ing the tables, one observes:

e STEINER is in average and in most cases faster
than GeoSteiner. There are a couple of instances
where STEINER needs some seconds more than
GeoSteiner. On the other hand, STEINER is faster
by some orders of magnitude than GeoSteiner on

18

Table 4

Comparison of GeoSteiner (second phase) and STEINER on TSPFST-instances

T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20

Instance Size Optimum GeoSteiner STEINER
|R| |F| 14 |E| Time (s) Nodes Time (s) Nodes

a280 280 311 314 328 2502 0.03 1 0.01 1
att48 48 101 139 202 30,236 0.02 1 0.30 1
att532 532 1065 1468 2152 84,009 195.72 1 3.74 1
berlin52 52 78 89 104 6760 0.01 1 0.01 1
bier127 127 213 258 357 104,284 0.08 1 0.02 1
d1291 1291 1361 1365 1456 481,421 0.40 1 0.01 1
d1655 1655 1879 1906 2083 584,948 3.30 1 0.04 1
d19s 198 232 232 256 129,175 0.03 1 0.01 1
d2103 2103 2196 2206 2272 769,797 1.07 1 0.02 1
d493 493 966 1055 1473 320,137 261.32 1 0.58 1
d657 657 1176 1416 1978 471,589 312.40 3 1.51 1
dsj1000 1000 1884 2562 3655 17,564,659 15.71 1 1.47 1
eill01 101 295 330 538 605 0.30 1 0.83 1
eil51 51 138 181 289 409 0.11 1 1.63 1
eil76 76 196 237 378 513 0.09 2 0.58 1
11577 1577 2839 2413 3412 19,825,626 34.64 1 0.99 1
fl417 417 872 732 1084 10,883,190 7.01 13 0.85 1
gil262 262 447 537 723 2306 0.53 1 0.06 1
kroA100 100 165 197 250 20,401 0.01 1 0.02 1
kroA150 150 296 389 562 25,700 0.18 1 0.69 1
kroA200 200 389 500 714 28,652 0.19 1 0.24 1
kroB100 100 180 230 313 21,211 0.06 1 0.05 1
kroB150 150 297 420 619 25,217 0.13 1 0.42 1
kroB200 200 369 480 670 28,803 0.22 1 0.62 1
kroC100 100 190 244 337 20,492 0.05 1 0.10 1
kroD100 100 166 216 288 20,437 0.03 1 0.02 1
kroE100 100 176 226 306 21,245 0.04 1 0.13 1
lin105 105 190 216 323 13,429 0.29 1 0.12 1
1in318 318 589 738 1279 39,335 15.26 4 0.43 1
linhp318 318 589 678 1030 39,335 15.19 4 0.40 1
nrwl379 1379 3590 5096 8105 56,207 16410.99 32 150.14 1
po54 654 760 777 867 314,925 0.15 1 0.01 1
pebl1173 1173 1708 1912 2223 53,301 2.77 1 0.11 1
pcb442 442 494 503 531 47,675 0.07 1 0.01 1
pr1002 1002 1392 1474 1717 243,176 0.70 1 0.05 1
prl07 107 110 111 110 34,850 0.01 1 0.01 1
pri24 124 147 154 165 52,759 0.01 1 0.01 1
pr136 136 227 196 250 86,811 0.07 1 0.01 1
prl44 144 184 221 285 52,925 0.04 1 0.01 1
prl52 152 242 308 431 64,323 0.16 1 0.06 1
pr226 226 248 255 269 70,700 0.06 1 0.01 1
pr2392 2392 3311 3398 3966 358,989 6.35 1 0.06 1
pr264 264 280 280 287 41,400 0.03 1 0.01 1
pr299 299 416 420 500 44,671 0.11 1 0.01 1
pr439 439 551 572 662 97,400 0.55 1 0.01 1
pr76 76 138 168 247 95,908 0.04 1 0.02 1
rat195 195 435 560 870 2386 0.09 1 0.95 1
rat575 575 1482 1986 3176 6808 1.75 1 19.26 1
rat783 783 1784 2397 3715 8883 5.90 1 17.57 1
rat99 99 200 269 399 1225 0.06 1 0.11 1
rd100 100 168 203 257 764,269,099 0.02 1 0.01 1

T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20 19

Table 4 (continued)

Instance Size Optimum GeoSteiner STEINER
IR |F| 14 |E| Time (s) Nodes Time (s) Nodes

rd400 400 747 1001 1419 1,490,972,006 0.62 1 1.49 1
111849 11,849 13,780 13,963 15,315 8,779,590 1100.43 9 0.64 1
11304 1304 1514 1562 1694 236,649 0.51 1 0.04 1
11323 1323 1545 1598 1750 253,620 1.01 1 0.01 1
11889 1889 2247 2382 2674 295,208 1.56 1 0.22 1
15915 5915 6540 6569 6980 533,226 76.48 10 0.09 1
15934 5934 6739 6827 7365 529,890 41.29 3 0.09 1
st70 70 107 133 169 626 0.01 1 0.01 1
ts225 225 224 225 224 1120 0.01 1 0.01 1
tsp225 225 240 242 252 356,850 0.02 1 0.01 1
ul060 1060 1708 1835 2429 21,265,372 61.70 65 1.09 1
ul432 1432 1431 1432 1431 1465 0.02 1 0.01 1
uls9 159 180 184 186 390 0.01 1 0.01 1
ul817 1817 1830 1831 1846 5,513,053 0.08 1 0.01 1
u2152 2152 2166 2167 2184 6,253,305 0.23 1 0.02 1
u2319 2319 2318 2319 2318 2322 0.03 1 0.01 1
u574 574 877 990 1258 3,509,275 0.59 1 0.17 1
u724 724 1093 1180 1537 4,069,628 1.42 1 0.22 1
vm1084 1084 1474 1679 2058 2,248,390 1.71 1 0.37 1
vm1748 1748 2488 2856 3641 3,194,670 7.07 3 1.98 1
Averages: 261.8 3.0

the more time-consuming instances. For example,
to solve the instance es10000fst from SteinLib
(the largest instance of this type ever solved),
GeoSteiner (actually, an unreleased version of
it) needs months of cpu-time, whereas STEINER
needs less than 15 min. Also, all previously un-
solved geometric instances in SteinLib could be
solved by STEINER in relatively small time (see
Table 2).

e GeoSteiner uses branching on 18 of the 86 tested
instances, whereas STEINER has used branching
on none of the considered instances.

e GeoSteiner needs always more time for exact so-
lution than for the computation of v(LPgst), since
it begins the concatenation phase mainly with the
computation of the latter value. This is not the case
for STEINER, since it begins with applying reduc-
tion methods and uses the relaxation LP¢ (or some
extended variants of it) as explicit linear programs
(if at all) only in the advanced stages of the solution
process (see [7,8,10,11]).

5. Concluding remarks

The main subject of this paper has been study-
ing, both theoretically and empirically, different ap-
proaches for the second phase of the FST method for
Steiner problems. The experimental results show the
potential of our program STEINER for this phase.
But it should not be conceived as a competitor for
GeoSteiner for solving geometric Steiner problems
from scratch; GeoSeiner remains the most efficient
package for these problems. Considering the second
phase, a combination of the two approaches could be
even more successful. The program STEINER does
not use the knowledge of individual FSTs. As an al-
gorithm for the concatenation phase, STEINER could
profit from the fact that for each FST, either all or no
edges can be chosen. This can be helpful for example
for the computation of lower bounds, where variables
could correspond to (directed) FSTs instead of sin-
gle arcs, while keeping the fast method for constraint
generation based on minimum cuts in usual graphs.

20 T. Polzin, S.V. Daneshmand | Operations Research Letters 31 (2003) 12-20

Also, the reduction methods could benefit from this
information: Once it is established that an edge can
be excluded, all FSTs which contain that edge can be
discarded. On the other hand, GeoSteiner could profit
from different components of STEINER, especially its
sophisticated reduction techniques.

References

[1] Y.P. Aneja, An integer linear programming approach
to the Steiner problem in graphs, Networks 10 (1980)
167-178.

[2] FK. Hwang, D.S. Richards, P. Winter, The Steiner Tree
Problem, in: Annals of Discrete Mathematics, Vol. 53,
North-Holland, Amsterdam, 1992.

[3] T. Koch, A. Martin, Solving Steiner tree problems in graphs
to optimality, Networks 32 (1998) 207-232.

[4] T. Koch, A. Martin, SteinLib, http://elib.zib.de/steinlib/
steinlib.php, 2001.

[5] T.L. Magnanti, L.A. Wolsey, Optimal trees, in: M.O.
Ball, et al. (Eds.), Handbooks in Operations Research and
Management Science, Vol. 7, Elsevier Science, Amsterdam,
1995 (Chapter 9).

[6] T. Polzin, S. Vahdati Daneshmand, A comparison of Steiner
tree relaxations, Discrete Appl. Math. 112 (2001) 241-261.

[7] T. Polzin, S. Vahdati Daneshmand, Extending reduction
techniques for the Steiner tree problem: a combination of
alternative- and bound-based approaches, Research Report

MPI-1-2001-1-007, Max-Planck-Institut fiir ~Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany, 2001.

[8] T. Polzin, S. Vahdati Daneshmand, Improved algorithms for
the Steiner problem in networks, Discrete Appl. Math. 112
(2001) 263-300.

[9] T. Polzin, S. Vahdati Daneshmand, On Steiner trees and
minimum spanning trees in hypergraphs, Research Report
MPI-1-2001-1-005, Max-Planck-Institut fiir Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany, 2001.

[10] T. Polzin, S. Vahdati Daneshmand, Partitioning techniques
for the Steiner problem, Research Report MPI-1-2001-1-006,
Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg 85,
66123 Saarbriicken, Germany, 2001.

[11] T. Polzin, S. Vahdati Daneshmand, Using (sub)graphs
of small width for solving the Steiner problem,
Research Report MPI-1-2002-1-001, Max-Planck-Institut fiir
Informatik, Stuhlsatzenhausweg 85, 66123 Saarbriicken,
Germany, 2002.

[12] D.M. Warme, Spanning Trees in Hypergraphs with
Applications to Steiner Trees, Ph.D. Thesis, University of
Virginia, 1998.

[13] D.M. Warme, P. Winter, M. Zachariasen, Exact algorithms
for plane Steiner tree problems: a computational study, in:
D-Z. Du, J.M. Smith, J.H. Rubinstein (Eds.), Advances in
Steiner Trees, Kluwer Academic Publishers, Dordrecht, 2000,
pp. 81-116.

[14] D.M. Warme, P. Winter, M. Zachariasen, GeoSteiner 3.1.
http://www.diku.dk/geosteiner/, 2001.

[15] R.T. Wong, A dual ascent approach for Steiner tree problems
on a directed graph, Math. Programming 28 (1984) 271-287.

http://elib.zib.de/steinlib/
mailto:steinlib.php
http://www.diku.dk/geosteiner/

	On Steiner trees and minimum spanning trees in hypergraphs
	Introduction
	Definitions

	MSTH: Formulations and relaxations
	Relation to the relaxations of the Steiner problem in graphs
	Experimental study
	Concluding remarks
	References

