Analysis of Algorithms

T. M. Murali

August 26, 31, 2021
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

Goal

Develop algorithms that provably run quickly and use low amounts of space.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- *Input size* = number of elements in the input.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size \(n \), as a function of \(n \).
- *Input size* = number of elements in the input. *Values* in the input do not matter, except for specific algorithms.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.
Polynomial Time

- Brute force algorithm: Check every possible solution.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given \(n \) numbers, permute them so that they appear in increasing order.

- Try all possible \(n! \) permutations of the numbers.
- For each permutation, check if it is sorted.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- Try all possible $n!$ permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- Try all possible $n!$ permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!

- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

Poll
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- Try all possible $n!$ permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- Try all possible $n!$ permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!

- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition

An algorithm is *efficient* if it has a polynomial running time.
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting:
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $10n \log_2 n$.
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $10n \log_2 n$.
- How can make statements such as the following, in order to compare the running times of different algorithms?
 - $100n \log_2 n \leq n^2$
 - $10000n \leq n^2$
 - $5n^2 - 4n \geq 1000n \log n$
"10000n ≤ n^2"
“10000n ≤ n²”

10000n vs. O(n²)

Graph showing the comparison between 10000n and n² for different values of n.
Upper Bound

Definition

Asymptotic upper bound: A function \(f(n) \) is \(O(g(n)) \) if

\[
\text{for all } n \geq n_0, \quad f(n) \leq c \cdot g(n).
\]

The graph illustrates the comparison between \(10000n \) and \(n^2 \) as \(n \) increases. The function \(10000n \) is shown in blue, and \(n^2 \) is shown in red. As \(n \) grows, \(10000n \) grows much faster than \(n^2 \), demonstrating the concept of asymptotic upper bound.
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exists a constant $c > 0$ such that for all n, $f(n) \leq c g(n)$.

10000n is $O(n^2)$,
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, $f(n) \leq c g(n)$.

![Graph showing $10000n$ is $O(n^2)$](image-url)
Upper Bound

Definition

Asymptotic upper bound: A function \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), \(f(n) \leq c g(n) \).
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$,
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$, $c = 1$, $n_0 = 1500$
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$, $c = 100$, $n_0 = 1$
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if for all $n \geq n_0$, we have $f(n) \geq c \cdot g(n)$.
Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exists constant $c > 0$ such that for all n, we have $f(n) \geq cg(n)$.
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

![Graph comparing $n \log_2 n/10$ and $\Omega(n)$](Poll)
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

$n \log_2 n/10$ and $\Omega(n)$, $c = 1/10$, $n_0 = 2$
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

$n \log_2 n/10$ is $\Omega(n)$, $c = 1$, $n_0 = 1024$
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions:
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$.

> T. M. Murali August 26, 31, 2021 Analysis of Algorithms
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n\log n/10$, i.e., $n\log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: \(n \) is a lower bound for \(n \log n/10 \), i.e., \(n \log n/10 = \Omega(n) \). This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of \textit{bubble sort} is \(\Omega(n^2) \).
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e.,
$$n \log n/10 = \Omega(n).$$
This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g.,
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.
Meaning of “Lower Bound” in Different Contexts

- **Mathematical functions:** n is a lower bound for $n \log n / 10$, i.e.,
 $$n \log n / 10 = \Omega(n).$$
 This statement is purely about these two functions. Not in the context of any algorithm or problem.

- **Algorithms:**
 - The lower bound on the running time of *bubble sort* is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.

- **Problems:**
 - The *problem of sorting* n numbers has a lower bound of $\Omega(n \log n)$.
Meaning of “Lower Bound” in Different Contexts

- **Mathematical functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- **Algorithms:**
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.

- **Problems:**
 - The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: \(n \) is a lower bound for \(n \log n / 10 \), i.e., \(n \log n / 10 = \Omega(n) \). This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is \(\Omega(n^2) \). There is some input of \(n \) numbers that will cause bubble sort to take at least \(\Omega(n^2) \) time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.

- Problems:
 - The problem of sorting \(n \) numbers has a lower bound of \(\Omega(n \log n) \). For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take \(\Omega(n \log n) \) steps.
 - The stable matching problem has a lower bound of \(\Omega(n^2) \).
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: \(n \) is a lower bound for \(n \log n / 10 \), i.e., \(n \log n / 10 = \Omega(n) \). This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is \(\Omega(n^2) \). There is some input of \(n \) numbers that will cause bubble sort to take at least \(\Omega(n^2) \) time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.

- Problems:
 - The problem of sorting \(n \) numbers has a lower bound of \(\Omega(n \log n) \). For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take \(\Omega(n \log n) \) steps.
 - The stable matching problem has a lower bound of \(\Omega(n^2) \). For any algorithm, there is at least one input for which the algorithm will take \(\Omega(n^2) \) steps, even if all the preference matrices are already stored in memory (Ng and Hirschberg, SIAM J. Comput., 1990).
Definition

Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

Abuse of notation: say $g(n) = O(f(n))$, $g(n) = \Omega(f(n))$, $g(n) = \Theta(f(n))$.

T. M. Murali
August 26, 31, 2021
Analysis of Algorithms
Definition

Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

- In all these definitions, c and n_0 are constants independent of n.
- Abuse of notation: say $g(n) = O(f(n))$, $g(n) = \Omega(f(n))$, $g(n) = \Theta(f(n))$.
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
Similar statements hold for lower and tight bounds.

If k is a constant and there are k functions $f_i = O(h)$, $1 \leq i \leq k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

If $f = O(g)$, then $f + g = \Theta(g)$.
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
Properties of Asymptotic Growth Rates

Dropping argument \(n \) on this slide for visual clarity.

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h) \), \(1 \leq i \leq k \), then

\[
f_1 + f_2 + \ldots + f_k = \]
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then

 $$f_1 + f_2 + \ldots + f_k = O(h).$$
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then
 \[f_1 + f_2 + \ldots + f_k = O(h). \]
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then

 $$f_1 + f_2 + \ldots + f_k = O(h).$$

- If $f = O(g)$, then $f + g = \Theta(g)$.

T. M. Murali August 26, 31, 2021 Analysis of Algorithms
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$O(n^{1.59})$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>$\log_a n$</td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td></td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 +qn + r$</td>
<td>$\Theta(n^2)$</td>
<td></td>
</tr>
<tr>
<td>$pn^2 +qn + r$</td>
<td>$O(n^3)$?</td>
<td></td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_in^i$</td>
<td>$O(n^{1.59})$</td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td></td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td></td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.

T. M. Murali August 26, 31, 2021 Analysis of Algorithms
Examples

<table>
<thead>
<tr>
<th>(f(n))</th>
<th>(g(n))</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pn^2 + qn + r)</td>
<td>(\Theta(n^2))</td>
<td>(n^2 \leq n^3), if (n \geq 1)</td>
</tr>
<tr>
<td>(pn^2 + qn + r)</td>
<td>(O(n^3) ?)</td>
<td>(n^2 \leq n^3), if (n \geq 1)</td>
</tr>
<tr>
<td>(\sum_{0 \leq i \leq d} a_i n^i)</td>
<td>(\Theta(n^d))</td>
<td>(n^2 \leq n^3), if (n \geq 1)</td>
</tr>
<tr>
<td>(O(n^{1.59}))</td>
<td>Polynomial time?</td>
<td>Polynomial time?</td>
</tr>
<tr>
<td>(\log_a n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(O(n^d) \) is the definition of *polynomial time*.

\[\text{Polynomial time?} \]

\[\Theta(n^2) \]

\[O(n^3) ? \]

\[\Theta(n^d) \]
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.

Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>If $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td>Yes, for any pair of constants $a, b > 1$</td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p n^2 + q n + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$p n^2 + q n + r$</td>
<td>$O(n^3)$?</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td>Yes, for any pair of constants $a, b > 1$</td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
- For every constant $x > 0$, $\log n = O(n^x)$, e.g., $\log n = n^{0.00001}$.

T. M. Murali August 26, 31, 2021 Analysis of Algorithms
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td>Yes, for any pair of constants $a, b > 1$</td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
- For every constant $x > 0$, $\log n = O(n^x)$, e.g., $\log n = n^{0.00001}$.
- For every constant $r > 1$ and every constant $d > 0$, $n^d = O(r^n)$, e.g., $n^3 = O(1.1^n)$.

T. M. Murali August 26, 31, 2021 Analysis of Algorithms
Different functions of n

- n
- $n \log n$
- n^2
- n^3
- 2^n

The graph shows how different functions of n grow as n increases. The functions are compared visually, with each function represented by a different line color.
More functions of n
Running time is at most a constant factor times the size of the input.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list.
Running time is at most a constant factor times the size of the input.

- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list. “Median-of-medians” algorithm.
- Sub-linear time.
Running time is at most a constant factor times the size of the input.

Finding the minimum, merging two sorted lists.

Computing the median (or kth smallest) element in an unsorted list. “Median-of-medians” algorithm.

Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.
Any algorithm where the costliest step is sorting.
Enumerate all pairs of elements.
- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest.
Enumerate all pairs of elements.

Given a set of n points in the plane, find the pair that are the closest. Surprising fact: will solve this problem in $O(n \log n)$ time later in the semester.
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a *clique* of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

- Some subgraphs can have high potential for virus transmission.
- Does a graph have a *clique* of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?

$O(n^k)$ Time

![Graph with nodes and edges illustrating computational tractability and asymptotic order of growth.](image)

- **Poll** Running time is $O(k^2 (n^k)) = O(n^k)$.
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a *clique* of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge? How do we find such a clique?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a \textit{clique} of size \(k \), where \(k \) is a constant, i.e. there are \(k \) nodes such that every pair is connected by an edge? How do we find such a clique?

Algorithm: For each subset \(S \) of \(k \) nodes, check if \(S \) is a clique. If the answer is yes, report it.

\[O(n^k) \text{ Time} \]
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a clique of size k, where k is a constant, i.e., there are k nodes such that every pair is connected by an edge? How do we find such a clique?

Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes, report it.

Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.
Beyond Polynomial Time

- What is the largest size of a clique in a graph with n nodes?
What is the largest size of a clique in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has a clique of size i. Output largest clique found.
What is the largest size of a clique in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has a clique of size i. Output largest clique found.

What is the running time?
What is the largest size of a clique in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has a clique of size i. Output largest clique found.

What is the running time? $O(n^22^n)$.