Analysis of Algorithms

T. M. Murali

August 26, 31, 2021

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

Goal

Develop algorithms that provably run quickly and use low amounts of space.

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- *Input size* = number of elements in the input.

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n as a function of n.
- Input size = number of elements in the input. Values in the input do not matter, except for specific algorithms.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.

• Brute force algorithm: Check every possible solution.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- ▶ Try all possible *n*! permutations of the numbers.
- ► For each permutation, check if it is sorted.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- ▶ Try all possible *n*! permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- ▶ Try all possible n! permutations of the numbers.
- For each permutation, check if it is sorted.
- ▶ Running time is $n \times n!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

- ▶ Try all possible n! permutations of the numbers.
- ► For each permutation, check if it is sorted.
- ▶ Running time is $n \times n!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- ▶ Try all possible *n*! permutations of the numbers.
- For each permutation, check if it is sorted.
- ▶ Running time is $n \times n!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition

An algorithm is efficient if it has a polynomial running time.

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting:

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - "Roughly" hides potentially large constants, e.g., running time of merge sort may in reality be 10n log₂ n.

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - "Roughly" hides potentially large constants, e.g., running time of merge sort may in reality be 10n log₂ n.
- How can make statements such as the following, in order to compare the running times of different algorithms?
 - ▶ $100n\log_2 n \le n^2$
 - ▶ $10000n \le n^2$
 - $> 5n^2 4n \ge 1000n \log n$

"
$$10000n \le n^2$$
"

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if for all n, $f(n) \le g(n)$.

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exists constant c>0 such that for all n , $f(n) \leq c g(n)$.

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c>0 and $n_0\geq 0$ such that for all $n\geq n_0$, $f(n)\leq c g(n)$.

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c>0 and $n_0\geq 0$ such that for all $n\geq n_0$, $f(n)\leq c g(n)$.

$100n\log_2 n$ and n^2

$100n\log_2 n$ and n^2

▶ Poll

$100n\log_2 n$ and n^2

▶ Poll

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if for all n, we have $f(n) \geq g(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exists constant c>0 such that for all n , we have $f(n)\geq cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition

Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

• Mathematical functions:

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$.

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms:
 - ▶ The lower bound on the running time of *bubble sort* is $\Omega(n^2)$.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms:
 - The lower bound on the running time of *bubble sort* is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g.,

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms:
 - ► The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms for sorting.
- Problems:
 - ▶ The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$.

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

Algorithms:

- ► The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
- But there may be other, faster algorithms for sorting.

• Problems:

▶ The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

Algorithms:

- ► The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
- But there may be other, faster algorithms for sorting.

Problems:

- The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
- ▶ The stable matching problem has a lower bound of $\Omega(n^2)$.

• Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

Algorithms:

- ► The lower bound on the running time of *bubble sort* is $\Omega(n^2)$. There is some input of *n* numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
- But there may be other, faster algorithms for sorting.

• Problems:

- The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
- The stable matching problem has a lower bound of $\Omega(n^2)$. For any algorithm, there is at least one input for which the algorithm will take $\Omega(n^2)$ steps, even if all the preference matrices are already stored in memory (Ng and Hirschberg, SIAM J. Comput., 1990).

Tight Bound

Definition

Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

Tight Bound

Definition

Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n)is $\Omega(g(n))$.

- In all these definitions, c and n_0 are constants independent of n.
- Abuse of notation: say $g(n) = O(f(n)), g(n) = \Omega(f(n)), g(n) = \Theta(f(n)).$

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
 - If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 < i < k$,

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
 - Similar statements hold for lower and tight bounds.
 - If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then

$$f_1 + f_2 + \ldots + f_k =$$

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
 - Similar statements hold for lower and tight bounds.
 - If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then

$$f_1+f_2+\ldots+f_k=O(h).$$

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
 - Similar statements hold for lower and tight bounds.
 - If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then

$$f_1+f_2+\ldots+f_k=O(h).$$

• If f = O(g), then f + g =

Dropping argument n on this slide for visual clarity.

Transitivity

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
 - Similar statements hold for lower and tight bounds.
 - If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then

$$f_1 + f_2 + \ldots + f_k = O(h).$$

• If f = O(g), then $f + g = \Theta(g)$.

f(n)	g(n)	Reason
$pn^2 + qn + r$		
$pn^2 + qn + r$		
$\sum_{0 \leq i \leq d} a_i n^i$		
$O(n^{1.59})$		
$\log_a n$		

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$		
$\sum_{0 \leq i \leq d} a_i n^i$		
$O(n^{1.59})$		
$\log_a n$		

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$ $pn^2 + qn + r$	$O(n^3)$?	
$\sum_{0 \leq i \leq d} a_i n^i$		
$O(n^{1.59})$		
$\log_a n$		

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$ $pn^2 + qn + r$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \le i \le d} a_i n^i$ $O(n^{1.59})$		
$O(n^{1.59})$		
$\log_a n$		

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^{2} + qn + r$ $pn^{2} + qn + r$ $\sum_{0 \le i \le d} a_{i}n^{i}$ $O(n^{1.59})$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \leq i \leq d} a_i n^i$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$		
$\log_a n$		

• $O(n^d)$ is the definition of polynomial time.

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$ $pn^2 + qn + r$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \le i \le d} a_i n^i$ $O(n^{1.59})$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$	Polynomial time? Poll	
$\log_a n$		

• $O(n^d)$ is the definition of polynomial time.

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$ $pn^2 + qn + r$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \le i \le d} a_i n^i$ $O(n^{1.59})$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$	Polynomial time? Poll	Yes, since $n^{1.59}$ is $O(n^2)$
$\log_a n$		

• $O(n^d)$ is the definition of polynomial time.

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$ $pn^2 + qn + r$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \le i \le d} a_i n^i$ $O(n^{1.59})$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$	Polynomial time? Poll	Yes, since $n^{1.59}$ is $O(n^2)$
$\log_a n$	$O(\log_b n)$	

• $O(n^d)$ is the definition of polynomial time.

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \le i \le d} a_i n^i$ $O(n^{1.59})$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$	Polynomial time? Poll	Yes, since $n^{1.59}$ is $O(n^2)$
$\log_a n$	$O(\log_b n)$	Yes, for any pair of constants $a, b > 1$

• $O(n^d)$ is the definition of polynomial time.

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$	$O(n^3)$?	$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \leq i \leq d} a_i n^i$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$	Polynomial time? Poll	Yes, since $n^{1.59}$ is $O(n^2)$
$\log_a n$	$O(\log_b n)$	Yes, for any pair of constants $a, b > 1$

- $O(n^d)$ is the definition of polynomial time.
- For every constant x > 0, $\log n = O(n^x)$, e.g., $\log n = n^{0.00001}$.

f(n)	g(n)	Reason
$pn^2 + qn + r$	$\Theta(n^2)$	
$pn^2 + qn + r$		$n^2 \le n^3$, if $n \ge 1$
$\sum_{0 \leq i \leq d} a_i n^i$	$\Theta(n^d)$	if $d>0$ is an integer constant and $a_d>0$
$O(n^{1.59})$	Polynomial time? Pol	Yes, since $n^{1.59}$ is $O(n^2)$
$\log_a n$	$O(\log_b n)$	Yes, for any pair of constants $a, b > 1$

- $O(n^d)$ is the definition of polynomial time.
- For every constant x > 0, $\log n = O(n^x)$, e.g., $\log n = n^{0.00001}$.
- For every constant r > 1 and every constant d > 0, $n^d = O(r^n)$, e.g., $n^3 = O(1.1^n)$.

• Finding the minimum, merging two sorted lists.

- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list.

- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list. "Median-of-medians" algorithm.
- Sub-linear time.

- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list. "Median-of-medians" algorithm.
- Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.

$O(n \log n)$ Time

• Any algorithm where the costliest step is sorting.

Quadratic Time

• Enumerate all pairs of elements.

Quadratic Time

- Enumerate all pairs of elements.
- Given a set of *n* points in the plane, find the pair that are the closest.

Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest. Surprising fact: will solve this problem in $O(n \log n)$ time later in the semester.

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.
- Does a graph have a *clique* of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.
- Does a graph have a *clique* of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.
- Does a graph have a *clique* of size *k*, where *k* is a constant, i.e. there are *k* nodes such that every pair is connected by an edge?

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.
- Does a graph have a *clique* of size *k*, where *k* is a constant, i.e. there are *k* nodes such that every pair is connected by an edge? How do we find such a clique?

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.
- Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge? How do we find such a clique?
- Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes, report it.

- COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.
- Some subgraphs can have high potential for virus transmission.
- Does a graph have a *clique* of size *k*, where *k* is a constant, i.e. there are *k* nodes such that every pair is connected by an edge? How do we find such a clique?
- Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes, report it. Poll

• Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.

• What is the largest size of a clique in a graph with *n* nodes?

- What is the largest size of a clique in a graph with *n* nodes?
- Algorithm: For each $1 \le i \le n$, check if the graph has a clique of size i. Output largest clique found.

- What is the largest size of a clique in a graph with *n* nodes?
- Algorithm: For each $1 \le i \le n$, check if the graph has a clique of size i. Output largest clique found.
- What is the running time?

- What is the largest size of a clique in a graph with *n* nodes?
- Algorithm: For each $1 \le i \le n$, check if the graph has a clique of size i. Output largest clique found.
- What is the running time? $O(n^22^n)$.