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Results of Poll on Teaching Style

Thank you for the responses!
1 Class speed: Just right (83%)

2 iPad+doodling was helpful: Yes (97%)
I Not used to your handwriting.

3 Polls
I They help me think (89%)
I There should be more polls (56%)
I Can’t see solutions on TopHat for later review

4 Other suggestions:
I Assume we have basic mathematical skills. (Future polls will be on specific

aspects of algorithms.)
I Discuss applications of algorithms (I will mention them.)
I We have covered a lot of the content discussed so far.
I Post slides with drawings
I So far so good, like, love, great, enjoying.
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Results of Poll on PQs and Graph Searches

1 Priority queues: Refresher or in detail (66%), Summary (33%)
2 Breadth-first search: Refresher or in detail (67%), Summary (33%)
3 Depth-first search: Refresher or in detail (64%), Summary (36%)
4 Responses:

I Priority queues not covered in CS 3114 when I took it.
I It’s been a while!
I Shouldn’t we all know this by now?

5 Spend two classes on these three topics
I Focus on proving their properties.
I Describe/refresh proof techniques, which will be useful during the rest of the

semester.
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Motivation: Sort a List of Numbers

Sort
INSTANCE: Nonempty list x1, x2, . . . , xn of integers.
SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Possible algorithm:
I Insert each number into a data structure D.
I Repeatedly find the smallest number in D, output it, and remove it.

To get O(n log n) running time, each “insert” step, “find minimum” step and
each “remove” step must take O(log n) time.
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Priority Queue

Store a set S of elements, where each element v has a priority value key(v).
Smaller key values ≡ higher priorities.
Operations supported:

I find the element with smallest key
I remove the smallest element
I insert an element
I delete an element
I update the key of an element

Element deletion and key update require knowledge of the position of the
element in the priority queue.
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Heaps

Combine benefits of both lists and sorted arrays.
Conceptually, a heap is a balanced binary tree.
Heap order: For every element v at a node i , the element w at i ’s parent
satisfies key(w) ≤ key(v).
We can implement a heap in a pointer-based data structure.
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Heaps

Alternatively, assume maximum number N of elements is known in advance.
Store nodes of the heap in an array.

I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf?

If 2i > n, where n is the
current number of elements in the heap.
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Inserting an Element: Heapify-up

1 Insert new element at index n + 1.
2 Fix heap order using Heapify-up(H, n + 1).

Proof of correctness: read pages 61–62 of your textbook.
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Example of Heapify-up
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Running time of Heapify-up

Running time of Heapify-up(i):

I Each invocation decreases the second argument by a factor of at least 2. Poll

I After k invocations, argument is at most i/2k .
I Therefore i/2k ≥ 1, which implies that k ≤ log2 i .
I Running time of Heapify-up(i) is O(log i).
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Deleting an Element: Heapify-down
Suppose H has n + 1 elements.

1 Delete element at H[i ] by moving element at H[n + 1] to H[i ].
2 If element at H[i ] is too small, fix heap order using Heapify-up(H, i).
3 If element at H[i ] is too large, fix heap order using Heapify-down(H, i).

Proof of correctness: read pages 63–64 of your textbook.
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Example of Heapify-down
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Running time of Heapify-down

Each invocation of Heapify-down increases its second argument by a factor
of at least two. Poll

After k invocations argument must be at least i2k ≤ n, which implies that
k ≤ log2 n/i . Therefore running time is O(log2 n/i).
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Sorting Numbers with the Priority Queue

Sort
INSTANCE: Nonempty list x1, x2, . . . , xn of integers.
SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly find the smallest number in H, output it, and delete it from H.

Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).
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The Oracle of Bacon
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https://oracleofbacon.org/
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(Böhmer et al., The Lancet, May 15, 2020)
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Graphs

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, gene and protein networks, our bodies
(nervous and circulatory systems, brains), buildings, transportation networks,
. . .
Problems involving graphs have a rich history dating back to Euler.
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Euler and Graphs

Devise a walk through the city that
crosses each of the seven bridges exactly once.
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Definition of a Graph
Undirected graph G = (V ,E ): set V of nodes and set E of edges, where
E ⊆ V × V .

I Elements of E are unordered pairs.
I Edge (u, v) is incident on u, v ; u and v are neighbours of each other.
I Exactly one edge between any pair of nodes.
I G contains no self loops, i.e., no edges of the form (u, u).

T. M. Murali September 2, 7, 2021 Review of Priority Queues and Graph Searches



Priority Queues Graph Definitions Computing Connected Components BFS DFS Implementations

Definition of a Graph
Directed graph G = (V ,E ): set V of nodes and set E of edges, where
E ⊆ V × V .

I Elements of E are ordered pairs.
I e = (u, v): u is the tail of the edge e, v is its head; e is directed from u to v .
I A pair of nodes may be connected by two directed edges: (u, v) and (v , u).
I G contains no self loops.
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Paths and Connectivity
1

2 3

4 5 6
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A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .
Similar definitions carry over to directed graphs as well.
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A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.
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Poll

Similar definitions carry over to directed graphs as well.
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Connectivity
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An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.
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s-t Connectivity
INSTANCE: An undirected graph G = (V ,E ) and two nodes s, t ∈ V .
QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .
Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.
Appears to do more work than is strictly necessary.
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Issues in Computing Connected Components
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Why does the algorithm terminate?

Each iteration adds a new node to R.

Does the algorithm truly compute connected component of G containing s?
Poll
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Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .
I Consider first node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.
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Breadth-First Search (BFS)
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Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.
Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .
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Properties of BFS
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We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes Poll

exactly at distance
j from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
For each node v in layer Lj+1, select one node u in Lj such that (u, v) is an
edge in G .
Consider the graph T formed by all such edges, directed from u to v . Poll

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-first search tree.
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Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v , . . . , reach a dead-end, backtrack, . . . ...

1 Mark all nodes as “Unexplored”.
2 Invoke DFS(s).

Depth-first search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .
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BFS vs. DFS
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Both visit the same set of nodes but in a different order.
Both traverse all the edges in the connected component but in a different
order.
BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
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Representing Graphs

Graph G = (V ,E ) has two input parameters: |V | = n, |E | = m.
I Size of the graph is defined to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m+ n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix: n × n Boolean matrix, where the entry in row i and
column j is 1 iff the graph contains the edge (i , j).
Adjacency list: array Adj, where Adj[v ] stores a linked list of all nodes
adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v ].
I nv = the number of neighbours of node v . Poll

I Space used and time to iterate over neighbours are optimal for every graph.
Poll

Operation/Space Adj. matrix Adj. list
Is (i , j) an edge?

O(1) time O(ni ) time

Iterate over all edges incident on node i

O(n) time O(ni ) time

Space used

O(n2) O(n +
∑

v∈G nv )
= O(n +m)
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Data Structures for Implementation

“Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.
Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.
How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

I BFS: store visited nodes in a queue (first-in, first-out).
I DFS: store visited nodes in a stack (last-in, first-out)
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Using a Queue in BFS
Maintain an array Discovered and set Discovered[v ] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u

If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u, v) to the tree T
Push v to the back of L

Endif
Endfor

Endwhile

1

2 3

4 5 6

7

8

1

Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.
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Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.
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Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.
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Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.
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Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.
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Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.
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Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.

T. M. Murali September 2, 7, 2021 Review of Priority Queues and Graph Searches



Priority Queues Graph Definitions Computing Connected Components BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v ] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u

If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u, v) to the tree T
Push v to the back of L

Endif
Endfor

Endwhile

1

2 3

4 5 6

7

8

6

Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.

T. M. Murali September 2, 7, 2021 Review of Priority Queues and Graph Searches



Priority Queues Graph Definitions Computing Connected Components BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v ] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u

If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u, v) to the tree T
Push v to the back of L

Endif
Endfor

Endwhile

1

2 3

4 5 6

7

8

6

Can modify this procedure to also keep track of distance to s (layer numbers).

Store the pair (u, lu), where lu is the index of the layer containing u.

T. M. Murali September 2, 7, 2021 Review of Priority Queues and Graph Searches



Priority Queues Graph Definitions Computing Connected Components BFS DFS Implementations

Using a Queue in BFS
Maintain an array Discovered and set Discovered[v ] = true as soon as the
algorithm sees v .
Maintain all the layers in a single queue L.

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u

If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u, v) to the tree T
Push v to the back of L

Endif
Endfor

Endwhile

1

2 3

4 5 6

7

8

6

Can modify this procedure to also keep track of distance to s (layer numbers).
Store the pair (u, lu), where lu is the index of the layer containing u.

T. M. Murali September 2, 7, 2021 Review of Priority Queues and Graph Searches



Priority Queues Graph Definitions Computing Connected Components BFS DFS Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u

If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u, v) to the tree T
Push v to the back of L

Endif
Endfor

Endwhile

How many times is a node popped from L?

Exactly once.
Time used by for loop for a node u: O(nu) time.
Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

Maintaining layer information: O(1) time per node.
Total time is O(n +m).
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Maintaining layer information: O(1) time per node.
Total time is O(n +m).
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Recursive DFS to Stack-Based DFS

Procedure has “tail recursion”: recursive call is the last step.

Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.
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Analysing DFS

How many times is a node’s adjacency list scanned?

Exactly once.
The total amount of time to process edges incident on node u’s is O(nu).
The total running time of the algorithm is O(n +m).
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