Review of Priority Queues and Graph Searches

T. M. Murali

September 2, 7, 2021

Results of Poll on Teaching Style

Thank you for the responses!
(1) Class speed: Just right (83\%)

Results of Poll on Teaching Style

Thank you for the responses!
(1) Class speed: Just right (83\%)
(2) iPad+doodling was helpful: Yes (97\%)

- Not used to your handwriting.

Results of Poll on Teaching Style

Thank you for the responses!
(1) Class speed: Just right (83\%)
(2) iPad+doodling was helpful: Yes (97\%)

- Not used to your handwriting.
(3) Polls
- They help me think (89\%)
- There should be more polls (56\%)
- Can't see solutions on TopHat for later review
(4) Other suggestions:
- Assume we have basic mathematical skills. (Future polls will be on specific aspects of algorithms.)
- Discuss applications of algorithms (I will mention them.)
- We have covered a lot of the content discussed so far.
- Post slides with drawings

Results of Poll on Teaching Style

Thank you for the responses!
(1) Class speed: Just right (83\%)
(2) iPad+doodling was helpful: Yes (97\%)

- Not used to your handwriting.
(3) Polls
- They help me think (89\%)
- There should be more polls (56\%)
- Can't see solutions on TopHat for later review
(4) Other suggestions:
- Assume we have basic mathematical skills. (Future polls will be on specific aspects of algorithms.)
- Discuss applications of algorithms (I will mention them.)
- We have covered a lot of the content discussed so far.
- Post slides with drawings
- So far so good, like, love, great, enjoying.

Results of Poll on PQs and Graph Searches

(1) Priority queues: Refresher or in detail (66\%), Summary (33\%)
(2) Breadth-first search: Refresher or in detail (67\%), Summary (33\%)
(3) Depth-first search: Refresher or in detail (64\%), Summary (36\%)

- Responses:
- Priority queues not covered in CS 3114 when I took it.
- It's been a while!
- Shouldn't we all know this by now?

Results of Poll on PQs and Graph Searches

(1) Priority queues: Refresher or in detail (66\%), Summary (33\%)
(2) Breadth-first search: Refresher or in detail (67\%), Summary (33\%)
(3) Depth-first search: Refresher or in detail (64\%), Summary (36\%)

- Responses:
- Priority queues not covered in CS 3114 when I took it.
- It's been a while!
- Shouldn't we all know this by now?
© Spend two classes on these three topics
- Focus on proving their properties.
- Describe/refresh proof techniques, which will be useful during the rest of the semester.

Motivation: Sort a List of Numbers

Sort
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

Motivation: Sort a List of Numbers

Sort
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

- Possible algorithm:
- Insert each number into a data structure D.
- Repeatedly find the smallest number in D, output it, and remove it.

Motivation: Sort a List of Numbers

Sort
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that
$y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

- Possible algorithm:
- Insert each number into a data structure D.
- Repeatedly find the smallest number in D, output it, and remove it.
- To get $O(n \log n)$ running time, each "insert" step, "find minimum" step and each "remove" step must take $O(\log n)$ time.

Priority Queue

- Store a set S of elements, where each element v has a priority value $\operatorname{key}(v)$.
- Smaller key values \equiv higher priorities.
- Operations supported:
- find the element with smallest key
- remove the smallest element
- insert an element
- delete an element
- update the key of an element
- Element deletion and key update require knowledge of the position of the element in the priority queue.

Heaps

- Combine benefits of both lists and sorted arrays.
- Conceptually, a heap is a balanced binary tree.
- Heap order. For every element v at a node i, the element w at i 's parent satisfies key $(w) \leq \operatorname{key}(v)$.
- We can implement a heap in a pointer-based data structure.

Heaps

- Alternatively, assume maximum number N of elements is known in advance.
- Store nodes of the heap in an array.
- Node at index i has children at indices $2 i$ and $2 i+1$ and parent at index $\lfloor i / 2\rfloor$.
- Index 1 is the root.
- How do you know that a node at index i is a leaf?

Heaps

- Alternatively, assume maximum number N of elements is known in advance.
- Store nodes of the heap in an array.
- Node at index i has children at indices $2 i$ and $2 i+1$ and parent at index $\lfloor i / 2\rfloor$.
- Index 1 is the root.
- How do you know that a node at index i is a leaf? If $2 i>n$, where n is the current number of elements in the heap.

Inserting an Element: Heapify-up

(1) Insert new element at index $n+1$.
(2) Fix heap order using Heapify-up $(H, n+1)$.

```
Heapify-up(H,i):
    If \(i>1\) then
    let \(j=\operatorname{parent}(i)=\lfloor i / 2\rfloor\)
    If key[H[i]]<key[H[j]] then
            swap the array entries \(H[i]\) and \(H[j]\)
            Heapify-up ( \(\mathrm{H}, \mathrm{j}\) )
        Endif
    Endif
```


Inserting an Element: Heapify-up

(1) Insert new element at index $n+1$.
(2) Fix heap order using Heapify-up $(H, n+1)$.

```
Heapify-up(H,i):
    If i>1 then
        let j= parent(i)=\lfloori/2\rfloor
        If key[H[i]]<key[H[j]] then
        swap the array entries H[i] and H[j]
        Heapify-up(H,j)
        Endif
    Endif
```

- Proof of correctness: read pages 61-62 of your textbook.

Example of Heapify-up

Figure 2.4 The Heapify-up process. Key 3 (at position 16) is too small (on the left). After swapping keys 3 and 11, the heap violation moves one step closer to the root of the tree (on the right).

Running time of Heapify-up

```
Heapify-up(H,i):
    If i>1 then
        let j=parent(i)=\i/2\rfloor
    If key[H[i]]<key[H[j]] then
        swap the array entries H[i] and H[j]
        Heapify-up(H,j)
    Endif
    Endif
```

- Running time of Heapify-up(i):

Running time of Heapify-up

```
Heapify-up(H,i):
    If i>1 then
    let j=parent(i)=\i/2\rfloor
    If key[H[i]]<key[H[j]] then
        swap the array entries H[i] and H[j]
        Heapify-up(H,j)
    Endif
    Endif
```

- Running time of Heapify-up(i):
- Each invocation decreases the second argument by a factor of at least 2.

Running time of Heapify-up

Heapify-up(H,i):

```
If i>1 then
    let j=parent(i)=\lfloori/2\rfloor
    If key[H[i]]<key[H[j]] then
        swap the array entries H[i] and H[j]
        Heapify-up(H,j)
    Endif
```


Endif

- Running time of Heapify-up(i):
- Each invocation decreases the second argument by a factor of at least 2.
- After k invocations, argument is at most $i / 2^{k}$.
- Therefore $i / 2^{k} \geq 1$, which implies that $k \leq \log _{2} i$.
- Running time of Heapify-up (i) is $O(\log i)$.

Deleting an Element: Heapify-down

- Suppose H has $n+1$ elements.
(1) Delete element at $H[i]$ by moving element at $H[n+1]$ to $H[i]$.
(2) If element at $H[i]$ is too small, fix heap order using Heapify-up (H, i).
© If element at $H[i]$ is too large, fix heap order using Heapify-down (H, i).

```
Heapify-down(H,i):
    Let n= length(H)
    If 2i>n then
        Terminate with H unchanged
    Else if 2i<n then
        Let left = 2i, and right = 2i+1
        Let j be the index that minimizes key[H[left]] and key[H[right]]
    Else if 2i=n then
        Let j=2i
    Endif
    If key[H[j]] < key[H[i]] then
        swap the array entries H[i] and H[j]
        Heapify-down(H,j)
    Endif
```


Deleting an Element: Heapify-down

- Suppose H has $n+1$ elements.
(1) Delete element at $H[i]$ by moving element at $H[n+1]$ to $H[i]$.
(2) If element at $H[i]$ is too small, fix heap order using Heapify-up (H, i).
(3) If element at $H[i]$ is too large, fix heap order using Heapify-down (H, i).

```
Heapify-down(H,i):
    Let n= length(H)
    If 2i>n then
        Terminate with H unchanged
    Else if 2i<n then
        Let left = 2i, and right = 2i+1
        Let j be the index that minimizes key[H[left]] and key[H[right]]
    Else if 2i=n then
        Let j=2i
    Endif
    If key[H[j]] < key[H[i]] then
        swap the array entries H[i] and H[j]
        Heapify-down(H,j)
    Endif
```

- Proof of correctness: read pages 63-64 of your textbook.

Example of Heapify-down

Figure 2.5 The Heapify-down process:. Key 21 (at position 3) is too big (on the left). After swapping keys 21 and 7, the heap violation moves one step closer to the bottom of the tree (on the right).

Running time of Heapify-down

```
Heapify-down(H,i):
    Let }n=\mathrm{ length(H)
    If }2i>n\mathrm{ then
        Terminate with H unchanged
    Else if 2i<n then
        Let left=2i, and right = 2i+1
        Let j be the index that minimizes key[H[left]] and key[H[right]]
    Else if 2i=n then
        Let j=2i
    Endif
    If key[H[j]] < key[H[i]] then
        swap the array entries H[i] and H[j]
        Heapify-down(H,j)
    Endif
```

- Each invocation of Heapify-down increases its second argument by a factor of at least two. Poll

Running time of Heapify-down

```
Heapify-down(H,i):
    Let }n=\mathrm{ length(H)
    If 2i>n then
        Terminate with H unchanged
    Else if 2i<n then
        Let left=2i, and right = 2i+1
        Let j be the index that minimizes key[H[left]] and key[H[right]]
    Else if 2i=n then
        Let j=2i
    Endif
    If key[H[j]] < key[H[i]] then
        swap the array entries H[i] and H[j]
        Heapify-down(H,j)
    Endif
```

- Each invocation of Heapify-down increases its second argument by a factor of at least two. Poil
- After k invocations argument must be at least

Running time of Heapify-down

```
Heapify-down(H,i):
    Let }n=\mathrm{ length(H)
    If 2i>n then
        Terminate with H unchanged
    Else if 2i<n then
        Let left=2i, and right = 2i+1
        Let j be the index that minimizes key[H[left]] and key[H[right]]
    Else if 2i=n then
        Let j=2i
    Endif
    If key[H[j]] < key[H[i]] then
        swap the array entries H[i] and H[j]
        Heapify-down(H,j)
    Endif
```

- Each invocation of Heapify-down increases its second argument by a factor of at least two. P Poll
- After k invocations argument must be at least $i 2^{k} \leq n$, which implies that $k \leq \log _{2} n / i$. Therefore running time is $O\left(\log _{2} n / i\right)$.

Sorting Numbers with the Priority Queue

Sort
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

Sorting Numbers with the Priority Queue

Sort
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

- Final algorithm:
- Insert each number in a priority queue H.
- Repeatedly find the smallest number in H, output it, and delete it from H.

Sorting Numbers with the Priority Queue

Sort
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

- Final algorithm:
- Insert each number in a priority queue H.
- Repeatedly find the smallest number in H, output it, and delete it from H.
- Each insertion and deletion takes $O(\log n)$ time for a total running time of $O(n \log n)$.

The Oracle of Bacon

(Böhmer et al., The Lancet, May 15, 2020)

Graphs

- Model pairwise relationships (edges) between objects (nodes).

Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, gene and protein networks, our bodies (nervous and circulatory systems, brains), buildings, transportation networks,

Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, gene and protein networks, our bodies (nervous and circulatory systems, brains), buildings, transportation networks,
- Problems involving graphs have a rich history dating back to Euler.

Euler and Graphs

Devise a walk through the city that crosses each of the seven bridges exactly once.

Euler and Graphs

T. M. Murali

September 2, 7, 2021
Review of Priority Queues and Graph Searches

Euler and Graphs

Definition of a Graph

- Undirected graph $G=(V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$.
- Elements of E are unordered pairs.
- Edge (u, v) is incident on $u, v ; u$ and v are neighbours of each other.
- Exactly one edge between any pair of nodes.
- G contains no self loops, i.e., no edges of the form (u, u).

Definition of a Graph

- Directed graph $G=(V, E)$: set V of nodes and set E of edges, where $E \subseteq V \times V$.
- Elements of E are ordered pairs.
- $e=(u, v): u$ is the tail of the edge e, v is its head; e is directed from u to v.
- A pair of nodes may be connected by two directed edges: (u, v) and (v, u).
- G contains no self loops.

Paths and Connectivity

- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence P of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in E.

Paths and Connectivity

- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence P of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in E.
- A path is simple if all its nodes are distinct.

Paths and Connectivity

- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence P of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in E.
- A path is simple if all its nodes are distinct.
- A cycle is a path where $k>2$, the first $k-1$ nodes are distinct, and $v_{1}=v_{k}$.

Paths and Connectivity

(c)

(b)

(d)

- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence P of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in E.
- A path is simple if all its nodes are distinct.
- A cycle is a path where $k>2$, the first $k-1$ nodes are distinct, and $v_{1}=v_{k}$.

Paths and Connectivity

- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence P of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in E.
- A path is simple if all its nodes are distinct.
- A cycle is a path where $k>2$, the first $k-1$ nodes are distinct, and $v_{1}=v_{k}$.

Paths and Connectivity

- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence P of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in E.
- A path is simple if all its nodes are distinct.
- A cycle is a path where $k>2$, the first $k-1$ nodes are distinct, and $v_{1}=v_{k}$.
- Similar definitions carry over to directed graphs as well.

Connectivity

- An undirected graph G is connected if for every pair of nodes $u, v \in V$, there is a path from u to v in G.

Connectivity

- An undirected graph G is connected if for every pair of nodes $u, v \in V$, there is a path from u to v in G.

Connectivity

- An undirected graph G is connected if for every pair of nodes $u, v \in V$, there is a path from u to v in G.
- Distance $d(u, v)$ between two nodes u and v is the minimum number of edges in any $u-v$ path.

s - t Connectivity

s - t Connectivity
INSTANCE: An undirected graph $G=(V, E)$ and two nodes $s, t \in V$.
QUESTION: Is there an s-t path in G ?

s - t Connectivity

s - t Connectivity
INSTANCE: An undirected graph $G=(V, E)$ and two nodes $s, t \in V$.
QUESTION: Is there an s-t path in G ?

- The connected component of G containing s is the set of all nodes u such that there is an $s-u$ path in G.

s - t Connectivity

s - t Connectivity
INSTANCE: An undirected graph $G=(V, E)$ and two nodes $s, t \in V$.
QUESTION: Is there an s-t path in G ?

- The connected component of G containing s is the set of all nodes u such that there is an $s-u$ path in G.
- Algorithm for the s - t Connectivity problem: compute the connected component of G that contains s and check if t is in that component.

s - t Connectivity

s - t Connectivity
INSTANCE: An undirected graph $G=(V, E)$ and two nodes $s, t \in V$.
QUESTION: Is there an $s-t$ path in G ?

- The connected component of G containing s is the set of all nodes u such that there is an $s-u$ path in G.
- Algorithm for the s - t Connectivity problem: compute the connected component of G that contains s and check if t is in that component.

s - t Connectivity

s - t Connectivity
INSTANCE: An undirected graph $G=(V, E)$ and two nodes $s, t \in V$.
QUESTION: Is there an s-t path in G ?

- The connected component of G containing s is the set of all nodes u such that there is an $s-u$ path in G.
- Algorithm for the s-t Connectivity problem: compute the connected component of G that contains s and check if t is in that component.
- Appears to do more work than is strictly necessary.

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to R
Endwhile
```


Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Computing Connected Components

- Abstract idea for an algorithm, with details to be specified later.
- "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path
```

Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

Issues in Computing Connected Components

```
R will consist of nodes to which }s\mathrm{ has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and }v\not\in
    Add v to }
Endwhile
```


- Why does the algorithm terminate?
- Does the algorithm truly compute connected component of G containing s ?

Issues in Computing Connected Components

```
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and }v\not\in
    Add v to }
Endwhile
```


- Why does the algorithm terminate? Each iteration adds a new node to R.
- Does the algorithm truly compute connected component of G containing s ?

Correctness of the Algorithm

R will consist of nodes to which s has a path
Initially $R=\{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to R

Endwhile

- Claim: at the end of the algorithm, the set R is exactly the connected component of G containing s.

Correctness of the Algorithm

```
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to R
Endwhile
```


- Claim: at the end of the algorithm, the set R is exactly the connected component of G containing s.
- Proof: At termination, suppose $w \notin R$ but there is an $s-w$ path P in G.
- Consider first node v in P not in $R(v \neq s)$.
- Let u be the predecessor of v in P :

Correctness of the Algorithm

```
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to R
Endwhile
```


- Claim: at the end of the algorithm, the set R is exactly the connected component of G containing s.
- Proof: At termination, suppose $w \notin R$ but there is an $s-w$ path P in G.
- Consider first node v in P not in $R(v \neq s)$.
- Let u be the predecessor of v in $P: u$ is in R.
- (u,v) is an edge with $u \in R$ but $v \notin R$, contradicting the stopping rule.

Correctness of the Algorithm

```
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to R
Endwhile
```


- Claim: at the end of the algorithm, the set R is exactly the connected component of G containing s.
- Proof: At termination, suppose $w \notin R$ but there is an s-w path P in G.
- Consider first node v in P not in $R(v \neq s)$.
- Let u be the predecessor of v in $P: u$ is in R.
- (u,v) is an edge with $u \in R$ but $v \notin R$, contradicting the stopping rule.
- Note: wrong to assume that predecessor of w in P is not in R.

Breadth-First Search (BFS)

- Idea: explore G starting at s and going "outward" in all directions, adding nodes one layer at a time.

Breadth-First Search (BFS)

- Idea: explore G starting at s and going "outward" in all directions, adding nodes one layer at a time.
- Layer L_{0} contains only s.

Breadth-First Search (BFS)

- Idea: explore G starting at s and going "outward" in all directions, adding nodes one layer at a time.
- Layer L_{0} contains only s.
- Layer L_{1} contains all neighbours of s.

Breadth-First Search (BFS)

- Idea: explore G starting at s and going "outward" in all directions, adding nodes one layer at a time.
- Layer L_{0} contains only s.
- Layer L_{1} contains all neighbours of s.
- Given layers $L_{0}, L_{1}, \ldots, L_{j}$, layer L_{j+1} contains all nodes that
(1) do not belong to an earlier layer and
(O) are connected by an edge to a node in layer L_{j}.

Breadth-First Search (BFS)

- Idea: explore G starting at s and going "outward" in all directions, adding nodes one layer at a time.
- Layer L_{0} contains only s.
- Layer L_{1} contains all neighbours of s.
- Given layers $L_{0}, L_{1}, \ldots, L_{j}$, layer L_{j+1} contains all nodes that
(1) do not belong to an earlier layer and
(O) are connected by an edge to a node in layer L_{j}.

Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer L_{j} consists of all nodes Poll

Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer L_{j} consists of all nodes Poll exactly at distance j from S. Proof

Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer L_{j} consists of all nodes Poll exactly at distance j from S. Proof by induction on j.
- Claim: There is a path from s to t if and only if t is a member of some layer.

Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer L_{j} consists of all nodes Poll exactly at distance j from S. Proof by induction on j.
- Claim: There is a path from s to t if and only if t is a member of some layer.
- For each node v in layer L_{j+1}, select one node u in L_{j} such that (u, v) is an edge in G.
- Consider the graph T formed by all such edges, directed from u to v.

Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer L_{j} consists of all nodes Poll exactly at distance j from S. Proof by induction on j.
- Claim: There is a path from s to t if and only if t is a member of some layer.
- For each node v in layer L_{j+1}, select one node u in L_{j} such that (u, v) is an edge in G.
- Consider the graph T formed by all such edges, directed from u to v.
- Why is T a tree?

Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer L_{j} consists of all nodes Poll exactly at distance j from S. Proof by induction on j.
- Claim: There is a path from s to t if and only if t is a member of some layer.
- For each node v in layer L_{j+1}, select one node u in L_{j} such that (u, v) is an edge in G.
- Consider the graph T formed by all such edges, directed from u to v.
- Why is T a tree? It is connected. The number of edges in T is the number of nodes in all the layers minus 1.
- T is called the breadth-first search tree.

Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, \ldots, reach a dead-end, backtrack,

Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, \ldots, reach a dead-end, backtrack,
(1) Mark all nodes as "Unexplored".
(2) Invoke DFS (s).

```
DFS(u):
    Mark u as "Explored" and add u to R
    For each edge (u,v) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
    Endfor
```


Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, \ldots, reach a dead-end, backtrack,
(1) Mark all nodes as "Unexplored".
(2) Invoke DFS (s).

```
DFS(u):
    Mark u as "Explored" and add u to R
    For each edge ( }u,v\mathrm{ ) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
    Endfor
```

- Depth-first search tree is a tree T : when $\operatorname{DFS}(v)$ is invoked directly during the call to $\operatorname{DFS}(v)$, add edge (u, v) to T.

Example of DFS

Example of DFS

BFS vs. DFS

BFS vs. DFS

- Both visit the same set of nodes but in a different order.
- Both traverse all the edges in the connected component but in a different order.
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.
- $n_{v}=$ the number of neighbours of node v. Poll

Operation/Space
Is (i, j) an edge?
Iterate over all edges incident on node i Space used

Adj. matrix
Adj. list

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.
- $n_{v}=$ the number of neighbours of node v. Poll

Operation/Space	Adj. matrix	Adj. list
Is (i, j) an edge? Iterate over all edges incident on node i Space used	$O(1)$ time	$O\left(n_{i}\right)$ time

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.
- $n_{v}=$ the number of neighbours of node v. \perp Poll

Operation/Space	Adj. matrix	Adj. list
Is (i, j) an edge?	$O(1)$ time	$O\left(n_{i}\right)$ time
Iterate over all edges incident on node i	$O(n)$ time	$O\left(n_{i}\right)$ time
Space used		

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.
- $n_{v}=$ the number of neighbours of node v. Poll

Operation/Space	Adj. matrix	Adj. list
Is (i, j) an edge?	$O(1)$ time	$O\left(n_{i}\right)$ time
Iterate over all edges incident on node i	$O(n)$ time	$O\left(n_{i}\right)$ time
Space used	$O\left(n^{2}\right)$	$O\left(n+\sum_{v \in G} n_{v}\right)$

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.
- $n_{v}=$ the number of neighbours of node v. Poll

Operation/Space	Adj. matrix	Adj. list
Is (i, j) an edge?	$O(1)$ time	$O\left(n_{i}\right)$ time
Iterate over all edges incident on node i	$O(n)$ time	$O\left(n_{i}\right)$ time
Space used	$O\left(n^{2}\right)$	$O\left(n+\sum_{v \in G} n_{v}\right)$
		$=O(n+m)$

Representing Graphs

- Graph $G=(V, E)$ has two input parameters: $|V|=n,|E|=m$.
- Size of the graph is defined to be $m+n$.
- Strive for algorithms whose running time is linear in graph size, i.e., $O(m+n)$.
- Assume $V=\{1,2, \ldots, n-1, n\}$.
- Adjacency matrix: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
- An edge $e=(u, v)$ appears twice: in $\operatorname{Adj}[u]$ and $\operatorname{Adj}[v]$.
- $n_{v}=$ the number of neighbours of node v. \perp Poll
- Space used and time to iterate over neighbours are optimal for every graph.
- Poll

Operation/Space	Adj. matrix	Adj. list
Is (i, j) an edge?	$O(1)$ time	$O\left(n_{i}\right)$ time
Iterate over all edges incident on node i	$O(n)$ time	$O\left(n_{i}\right)$ time
Space used	$O\left(n^{2}\right)$	$O\left(n+\sum_{v \in G} n_{v}\right)$
		$=O(n+m)$

Data Structures for Implementation

- "Implementation" of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.

Data Structures for Implementation

- "Implementation" of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
- BFS: store visited nodes in a queue (first-in, first-out).
- DFS: store visited nodes in a stack (last-in, first-out)

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor

Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor

Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor

Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor

Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor

Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor

Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor
Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor
Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor
Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor
Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor
Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered $[v]=$ true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor
Endwhile

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered [v] = true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor

Endwhile

- Can modify this procedure to also keep track of distance to s (layer numbers).

Using a Queue in BFS

- Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.
- Maintain all the layers in a single queue L. BFS(s) :

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v Initialize L to consist of the single element s While L is not empty

Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered [v] = true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor

Endwhile

- Can modify this procedure to also keep track of distance to s (layer numbers). Store the pair $\left(u, I_{u}\right)$, where I_{u} is the index of the layer containing u.

Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered[v] = true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor
Endwhile

- How many times is a node popped from L ?

Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered[v] = true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor
Endwhile

- How many times is a node popped from L? Exactly once.

Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered[v] = true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor
Endwhile

- How many times is a node popped from L? Exactly once.
- Time used by for loop for a node u :

Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered[v] = true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor
Endwhile

- How many times is a node popped from L ? Exactly once.
- Time used by for loop for a node $u: O\left(n_{u}\right)$ time.

Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered[v] = false then Set Discovered[v] = true Add edge (u, v) to the tree T Push v to the back of L Endif

Endfor

Endwhile

- How many times is a node popped from L ? Exactly once.
- Time used by for loop for a node $u: O\left(n_{u}\right)$ time.
- Total time for all for loops: $\sum_{u \in G} O\left(n_{u}\right)=O(m)$ time.
- Maintaining layer information:

Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
For each edge (u, v) incident on u If Discovered $[v]=$ false then Set Discovered[v] = true Add edge (u, v) to the tree T Push v to the back of L Endif
Endfor
Endwhile

- How many times is a node popped from L ? Exactly once.
- Time used by for loop for a node $u: O\left(n_{u}\right)$ time.
- Total time for all for loops: $\sum_{u \in G} O\left(n_{u}\right)=O(m)$ time.
- Maintaining layer information: $O(1)$ time per node.
- Total time is $O(n+m)$.

Recursive DFS to Stack-Based DFS

```
DFS(u):
    Mark u as "Explored" and add u to R
    For each edge (u,v) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
    Endfor
```

- Procedure has "tail recursion": recursive call is the last step.

Recursive DFS to Stack-Based DFS

```
DFS(u):
    Mark u as "Explored" and add u to R
    For each edge (u,v) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
    Endfor
```

- Procedure has "tail recursion": recursive call is the last step.
- Can replace the recursion by an iteration: use a stack to explicitly implement the recursion.

Analysing DFS

```
DFS(s):
    Initialize S to be a stack with one element S
    While S is not empty
        Take a node }u\mathrm{ from }
        If Explored[u]= false then
            Set Explored[u] = true
            For each edge (u,v) incident to }
                Add v to the stack S
            Endfor
        Endif
    Endwhile
```

- How many times is a node's adjacency list scanned?

Analysing DFS

```
DFS(s):
    Initialize S to be a stack with one element s
    While S is not empty
        Take a node }u\mathrm{ from S
        If Explored[u] = false then
            Set Explored[u] = true
            For each edge ( }u,v\mathrm{ ) incident to }
                Add v to the stack S
            Endfor
        Endif
    Endwhile
```

- How many times is a node's adjacency list scanned? Exactly once.

Analysing DFS

```
DFS(s):
    Initialize S to be a stack with one element s
    While S is not empty
        Take a node }u\mathrm{ from }
        If Explored[u] = false then
            Set Explored[u] = true
            For each edge ( }u,v\mathrm{ ) incident to }
                Add v to the stack S
            Endfor
        Endif
    Endwhile
```

- How many times is a node's adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node u's is

Analysing DFS

```
DFS(s):
    Initialize S to be a stack with one element s
    While S is not empty
        Take a node }u\mathrm{ from S
        If Explored[u] = false then
            Set Explored[u] = true
            For each edge ( }u,v\mathrm{ ) incident to }
                Add v to the stack S
            Endfor
        Endif
    Endwhile
```

- How many times is a node's adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node u 's is $O\left(n_{u}\right)$.
- The total running time of the algorithm is

Analysing DFS

```
DFS(s):
    Initialize S to be a stack with one element }
    While S is not empty
        Take a node }u\mathrm{ from S
        If Explored[u] = false then
            Set Explored[u] = true
            For each edge ( }u,v\mathrm{ ) incident to }
                Add v to the stack S
            Endfor
        Endif
    Endwhile
```

- How many times is a node's adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node u 's is $O\left(n_{u}\right)$.
- The total running time of the algorithm is $O(n+m)$.

