Greedy Algorithms

T. M. Murali

September 14, 16, 2021

Algorithm Design

- Start discussion of different ways of designing algorithms.
- Greedy algorithms, divide and conquer, dynamic programming.
- Discuss principles that can solve a variety of problem types.
- Design an algorithm, prove its correctness, analyse its complexity.

Algorithm Design

- Start discussion of different ways of designing algorithms.
- Greedy algorithms, divide and conquer, dynamic programming.
- Discuss principles that can solve a variety of problem types.
- Design an algorithm, prove its correctness, analyse its complexity.
- Greedy algorithms: make the current best choice.

- Input: Start and end time of each ride.
- Constraint: Cannot be in two places at one time.
- Goal: Compute the largest number of rides you can be on in one day.

Interval Scheduling

Interval Scheduling
INSTANCE: Set $\{(s(i), f(i)), 1 \leq i \leq n\}$ of start and finish times of n jobs.
SOLUTION: The largest subset of mutually compatible jobs.

- Two jobs are compatible if they do not overlap.
- This problem models the situation where you have a resource, a set of fixed jobs, and you want to schedule as many jobs as possible.
- For any input set of jobs, algorithm must provably compute the largest set of compatible jobs.

Interval Scheduling Example

(a)

(c)

(b)

(d)

Time

Interval Scheduling Example

Time
(c) Mutually compatible

Time
(b) Mutually compatible

Time
(d) Mutually compatible

Time

- Solutions (c) and (d) are optimal.
- Each contains four jobs.
- No set of mutually compatible jobs can contain more than four jobs.

Template for Greedy Algorithm

- Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- Key question: in what order should we process the jobs?

Template for Greedy Algorithm

- Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- Key question: in what order should we process the jobs?

Earliest start time Increasing order of start time $s(i)$.
Earliest finish time Increasing order of finish time $f(i)$.
Shortest interval Increasing order of length $f(i)-s(i)$.
Fewest conflicts Increasing order of the number of conflicting jobs.

Template for Greedy Algorithm

- Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- Key question: in what order should we process the jobs? Earliest start time Increasing order of start time $s(i)$. Earliest finish time Increasing order of finish time $f(i)$. Shortest interval Increasing order of length $f(i)-s(i)$.
Fewest conflicts Increasing order of the number of conflicting jobs.

Template for Greedy Algorithm

- Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- Key question: in what order should we process the jobs? Earliest start time Increasing order of start time $s(i)$. Earliest finish time Increasing order of finish time $f(i)$. Shortest interval Increasing order of length $f(i)-s(i)$.
Fewest conflicts Increasing order of the number of conflicting jobs.

Time
(c) Minimum conflicts
(d)

Interval Scheduling Algorithm: Earliest Finish Time

- Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty While R is not yet empty

Choose a request $i \in R$ that has the smallest finishing time
Add request i to A
Delete all requests from R that are not compatible with request i EndWhile

Return the set A as the set of accepted requests

Interval Scheduling Algorithm: Earliest Finish Time

- Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty While R is not yet empty

Choose a request $i \in R$ that has the smallest finishing time
Add request i to A
Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

- Claim: A is a compatible set of jobs.

Interval Scheduling Algorithm: Earliest Finish Time

- Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty While R is not yet empty

Choose a request $i \in R$ that has the smallest finishing time
Add request i to A
Delete all requests from R that are not compatible with request i EndWhile

Return the set A as the set of accepted requests

- Claim: A is a compatible set of jobs. Proof follows by construction, i.e., the algorithm computes a compatible set of jobs.

Ideas for Analysing the EFT Algorithm

- We need to prove that $|A|$ (the number of jobs in A) is the largest possible in any set of mutually compatible jobs.

Ideas for Analysing the EFT Algorithm

- We need to prove that $|A|$ (the number of jobs in A) is the largest possible in any set of mutually compatible jobs.
- Proof idea 1: algorithm makes the best choice at each step, so it must choose the largest number of mutually compatible jobs.

Ideas for Analysing the EFT Algorithm

- We need to prove that $|A|$ (the number of jobs in A) is the largest possible in any set of mutually compatible jobs.
- Proof idea 1: algorithm makes the best choice at each step, so it must choose the largest number of mutually compatible jobs.
- What does "best" mean?
- This idea is too generic. It can be applied even to algorithms that we know do not work correctly.

Ideas for Analysing the EFT Algorithm

- We need to prove that $|A|$ (the number of jobs in A) is the largest possible in any set of mutually compatible jobs.
- Proof idea 1: algorithm makes the best choice at each step, so it must choose the largest number of mutually compatible jobs.
- What does "best" mean?
- This idea is too generic. It can be applied even to algorithms that we know do not work correctly.
- Proof idea 2: at each step, can we show algorithm has the "better" solution than any other answer?
- What does "better" mean?
- How do we measure progress of the algorithm?

Ideas for Analysing the EFT Algorithm

- We need to prove that $|A|$ (the number of jobs in A) is the largest possible in any set of mutually compatible jobs.
- Proof idea 1: algorithm makes the best choice at each step, so it must choose the largest number of mutually compatible jobs.
- What does "best" mean?
- This idea is too generic. It can be applied even to algorithms that we know do not work correctly.
- Proof idea 2: at each step, can we show algorithm has the "better" solution than any other answer?
- What does "better" mean?
- How do we measure progress of the algorithm?
- Basic idea of proof:
- We can sort jobs in any solution in increasing order of their finishing time.
- Finishing time of job number r selected by $A \leq$ finishing time of job number r selected by any other algorithm.

Analysing the EFT Algorithm

- Let O be an optimal set of jobs. © Poll

Analysing the EFT Algorithm

- Let O be an optimal set of jobs. Poll We will show that $|A|=|O|$.
- Let $i_{1}, i_{2}, \ldots, i_{k}$ be the set of jobs in A in order.
- Let $j_{1}, j_{2}, \ldots, j_{m}$ be the set of jobs in O in order, $m \geq k$.
- Claim: For all indices $r \leq k, f\left(i_{r}\right) \leq f\left(j_{r}\right)$.

Analysing the EFT Algorithm

- Let O be an optimal set of jobs. Poll We will show that $|A|=|O|$.
- Let $i_{1}, i_{2}, \ldots, i_{k}$ be the set of jobs in A in order.
- Let $j_{1}, j_{2}, \ldots, j_{m}$ be the set of jobs in O in order, $m \geq k$.
- Claim: For all indices $r \leq k, f\left(i_{r}\right) \leq f\left(j_{r}\right)$. Prove by induction on r.

Analysing the EFT Algorithm

- Let O be an optimal set of jobs. Poll We will show that $|A|=|O|$.
- Let $i_{1}, i_{2}, \ldots, i_{k}$ be the set of jobs in A in order.
- Let $j_{1}, j_{2}, \ldots, j_{m}$ be the set of jobs in O in order, $m \geq k$.
- Claim: For all indices $r \leq k, f\left(i_{r}\right) \leq f\left(j_{r}\right)$. Prove by induction on r.

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

Analysing the EFT Algorithm

- Let O be an optimal set of jobs. We will show that $|A|=|O|$.
- Let $i_{1}, i_{2}, \ldots, i_{k}$ be the set of jobs in A in order.
- Let $j_{1}, j_{2}, \ldots, j_{m}$ be the set of jobs in O in order, $m \geq k$.
- Claim: For all indices $r \leq k, f\left(i_{r}\right) \leq f\left(j_{r}\right)$. Prove by induction on r.

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

- Claim: $m=k$.

Analysing the EFT Algorithm

- Let O be an optimal set of jobs. Poll We will show that $|A|=|O|$.
- Let $i_{1}, i_{2}, \ldots, i_{k}$ be the set of jobs in A in order.
- Let $j_{1}, j_{2}, \ldots, j_{m}$ be the set of jobs in O in order, $m \geq k$.
- Claim: For all indices $r \leq k, f\left(i_{r}\right) \leq f\left(j_{r}\right)$. Prove by induction on r.

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

- Claim: $m=k$.
- Claim: The greedy algorithm returns an optimal set A.

Implementing the EFT Algorithm

(1) Reorder jobs so that they are in increasing order of finish time.
(2) Store starting time of jobs in an array S.
(0) $k=1$.
(c) While $k \leq|S|$,
(1) Output job k.
(2) Let finish time of job k be f.
(3) Iterate over S from index k onwards to find the first index i such that $S[i] \geq f$.

Time
(1) $k=i$

Implementing the EFT Algorithm

(1) Reorder jobs so that they are in increasing order of finish time.
(2) Store starting time of jobs in an array S.
(0) $k=1$.
(9) While $k \leq|S|$,

- Output job k.
(2) Let finish time of job k be f.
- Iterate over S from index k onwards to find the first index i such that $S[i] \geq f$.

Time

- $k=i$
- Must be careful to iterate over S such that we never scan same index more than once.
- Running time is $O(n \log n)$, dominated by sorting.

12616	CS-4104	Data and Algorithm Analysis	L	3	75	CA Shaffer	TR	2;00PM	3:15PM	SURGE 107	14 T
18154	CS-4104	Data and Algorithm Analysis	L	3	70	TM Murali	M W	2:30PM	$3: 45 \mathrm{PM}$	SURGE 104C	14M
12617	CS-4114	Formal Languages	L	3	75	L Zhang	TR	9:30AM	10:45AM	MCB 129	09T
18155	CS-4204	Computer Graphics	L	3	36	D Gracanin	TR	11:00AM	12:15PM	MCB 224	11 T
19593	CS-4264	Principles Computer Security	L	3	50	KE Giles	M W	2:30PM	3:45PM	GOODW 135	14M
12618	CS-4284	Systems \& Networking Capstone	L	3	40	GV Back	M W	2:30PM	3:45PM	MCB 238	14M
18156	CS-4304	Compiler Design	L	3	50	C Jung	TR	8:00AM	9:15AM	GOODW 125	08T
12620	CS-4604	Int Data Base Mgt Sys	L	3	55	RJ Quintin	M W	4:00PM	5:15PM	SURGE 109	16M
12621	CS-4624	Multimedia/Hypertext	L	3	70	EA Fox	TR	3:30PM	4:45PM	SURGE 109	15 T
12622	CS-4644	Creative Computing Studio	L	3	25	SR Harrison	W	2:30PM	5:15PM	MAC 253A	14W
Comments for CRN 12622		Prerequisite: C or better in CS 3724 OR CS 3744									
12623	CS-4654	Intermed Data Analytics \& ML	L	3	50	RB Gramacy	M W	4:00PM	5:15PM	SEITZ 313	16M
12624	CS-4704	Software Engineering Capstone	L	3	15	KR Edmison	M W	4:00PM	5:15PM	NCB 170	16M
Comments for CRN 1262		Prerequisite: C or better in CS 3704 OR CS 3714									
12625	CS-4784	Human-Computer Interact Capstn	L	3	30	AL Kavanaugh	F	1:00PM	3:45PM	MAC 253A	13F
Comments for CRN 12625		Prerequisite: CS 3724 required; CS 3714 or 3744 recommended									
19924	CS-4784	Human-Computer Interact Capstn	L	3	0	DS McCrickard	F	12:30PM	3:15PM	MCB 655	12F

- Input: Start and end time of each class.
- Constraint: Cannot schedule two overlapping classes to the same room.
- Output: Assign each class to a room and use smallest number of rooms possible.

Interval Partitioning

Interval Partitioning
INSTANCE: Set $\{(s(i), f(i)), 1 \leq i \leq n\}$ of start and finish times of n jobs.
SOLUTION: A partition of the jobs into k sets, where each set of jobs is mutually compatible, and k is minimised.

- This problem models the situation where you a set of fixed jobs, and you want to schedule all jobs using as few resources as possible.

Depth of Intervals

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a through j). (b) A solution in which all intervals are scheduled using three resources: each row represents a set of intervals that can all be scheduled on a single resource.

- The depth of a set of intervals is the maximum number of intervals that contain any time point.

Depth of Intervals

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a through j). (b) A solution in which all intervals are scheduled using three resources: each row represents a set of intervals that can all be scheduled on a single resource.

- The depth of a set of intervals is the maximum number of intervals that contain any time point.
- Claim: In any instance of Interval Partitioning, $k \geq$ depth.

Depth of Intervals

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a through j). (b) A solution in which all intervals are scheduled using three resources: each row represents a set of intervals that can all be scheduled on a single resource.

- The depth of a set of intervals is the maximum number of intervals that contain any time point.
- Claim: In any instance of Interval Partitioning, $k \geq$ depth.
- Is it possible to compute the depth efficiently? Is $k=$ depth?

Computing the Depth of the Intervals

- How efficiently can we compute the depth of a set of intervals?

Computing the Depth of the Intervals

- How efficiently can we compute the depth of a set of intervals?
(1) Sort the start times and finish times of the jobs into a single list L.
(2) $d \leftarrow 0$.
(For i ranging from 1 to $2 n$
(1) If L_{i} is a start time, increment d by 1 .
(2) If L_{i} is a finish time, decrement d by 1 .
(Return the largest value of d computed in the loop.

Computing the Depth of the Intervals

- How efficiently can we compute the depth of a set of intervals?
(1) Sort the start times and finish times of the jobs into a single list L.
(2) $d \leftarrow 0$.
((For i ranging from 1 to $2 n$
(1) If L_{i} is a start time, increment d by 1 .
(2) If L_{i} is a finish time, decrement d by 1 .
(0) Return the largest value of d computed in the loop.
- Algorithm runs in $O(n \log n)$ time.

Interval Partitioning Algorithm

- First, compute the depth d of the intervals.

Interval Partitioning Algorithm

- First, compute the depth d of the intervals.

```
Sort the intervals by their start times, breaking ties arbitrarily
Let I}\mp@subsup{I}{1}{},\mp@subsup{I}{2}{},\ldots,\mp@subsup{I}{n}{}\mathrm{ denote the intervals in this order
For j=1, 2, 3,\ldots,n
    For each interval }\mp@subsup{I}{i}{}\mathrm{ that precedes }\mp@subsup{I}{j}{}\mathrm{ in sorted order and overlaps it
        Exclude the label of I}\mp@subsup{I}{i}{}\mathrm{ from consideration for }\mp@subsup{I}{j}{
    Endfor
    If there is any label from {1,2,\ldots,d} that has not been excluded then
        Assign a nonexcluded label to I Ij
    Else
        Leave Ij unlabeled
    Endif
Endfor
```

- Claim: Every interval gets a label and no pair of overlapping intervals get the same label.

Interval Partitioning Algorithm

- First, compute the depth d of the intervals.

```
Sort the intervals by their start times, breaking ties arbitrarily
Let I}\mp@subsup{I}{1}{},\mp@subsup{I}{2}{},\ldots,\mp@subsup{I}{n}{}\mathrm{ denote the intervals in this order
For j=1,2,3,\ldots,n
    For each interval I}\mp@subsup{I}{i}{}\mathrm{ that precedes I}\mp@subsup{I}{j}{}\mathrm{ in sorted order and overlaps it
        Exclude the label of I}\mp@subsup{I}{i}{}\mathrm{ from consideration for I
    Endfor
    If there is any label from {1,2,...,d} that has not been excluded then
        Assign a nonexcluded label to I I
    Else
        Leave I Ij unlabeled
    Endif
Endfor
```

- Claim: Every interval gets a label and no pair of overlapping intervals get the same label.
- Claim: The greedy algorithm is optimal.

Interval Partitioning Algorithm

- First, compute the depth d of the intervals.

```
Sort the intervals by their start times, breaking ties arbitrarily
Let I}\mp@subsup{I}{1}{},\mp@subsup{I}{2}{},\ldots,\mp@subsup{I}{n}{}\mathrm{ denote the intervals in this order
For j=1,2,3,\ldots,n
    For each interval I}\mp@subsup{I}{i}{}\mathrm{ that precedes I}\mp@subsup{I}{j}{}\mathrm{ in sorted order and overlaps it
        Exclude the label of I}\mp@subsup{I}{i}{}\mathrm{ from consideration for Ij
    Endfor
    If there is any label from {1,2,...,d} that has not been excluded then
        Assign a nonexcluded label to I I
    Else
        Leave I Ij unlabeled
    Endif
Endfor
```

- Claim: Every interval gets a label and no pair of overlapping intervals get the same label.
- Claim: The greedy algorithm is optimal.
- The running time of the algorithm is $O(n \log n)$.

Interval Partitioning Algorithm

- First, compute the depth d of the intervals.

```
Sort the intervals by their start times, breaking ties arbitrarily
Let I}\mp@subsup{I}{1}{},\mp@subsup{I}{2}{},\ldots,\mp@subsup{I}{n}{}\mathrm{ denote the intervals in this order
For j=1,2,3,\ldots,n
    For each interval I I that precedes I}\mp@subsup{I}{j}{}\mathrm{ in sorted order and overlaps it
        Exclude the label of I}\mp@subsup{I}{i}{}\mathrm{ from consideration for Ij
    Endfor
    If there is any label from {1,2,\ldots,d} that has not been excluded then
        Assign a nonexcluded label to I I
    Else
        Leave I Ij unlabeled
    Endif
Endfor
```

- Claim: Every interval gets a label and no pair of overlapping intervals get the same label.
- Claim: The greedy algorithm is optimal.
- The running time of the algorithm is $O(n \log n)$. Can modify algorithm for computing depth to maintain set of available labels and to assign them efficiently.

Scheduling to Minimise Lateness

- Study different model: job i has a length $t(i)$ and a deadline $d(i)$.
- We want to schedule all n jobs on one resource.
- Our goal is to assign a starting time $s(i)$ to each job such that each job is delayed as little as possible.

Scheduling to Minimise Lateness

- Study different model: job i has a length $t(i)$ and a deadline $d(i)$.
- We want to schedule all n jobs on one resource.
- Our goal is to assign a starting time $s(i)$ to each job such that each job is delayed as little as possible.
- A job i is delayed if $f(i)>d(i)$; the lateness of the job is

$$
\max (0, f(i)-d(i))
$$

- The lateness of a schedule is

$$
\max _{1 \leq i \leq n}(\max (0, f(i)-d(i))) .
$$

Examples of Lateness

Scheduling to Minimise Lateness

Minimise Lateness

INSTANCE: Set $\{(t(i), d(i)), 1 \leq i \leq n\}$ of lengths and deadlines of n jobs.
SOLUTION: Set $\{s(i), 1 \leq i \leq n\}$ of start times such that $\max _{1 \leq i \leq n}(\max (0, s(i)+t(i)-d(i)))$ is as small as possible.

Minimise Lateness

Scheduling to Minimise Lateness

INSTANCE: Set $\{(t(i), d(i)), 1 \leq i \leq n\}$ of lengths and deadlines of n jobs. SOLUTION: Set $\{s(i), 1 \leq i \leq n\}$ of start times such that $\max _{1 \leq i \leq n}(\max (0, s(i)+t(i)-d(i)))$ is as small as possible.

Template for Greedy Algorithm

- Key question: In what order should we schedule the jobs?

Template for Greedy Algorithm

- Key question: In what order should we schedule the jobs? Shortest length Increasing order of length $t(i)$.

Shortest slack time Increasing order of $d(i)-t(i)$.

Earliest deadline Increasing order of deadline $d(i)$.

Template for Greedy Algorithm

- Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length $t(i)$. Ignores deadlines completely! Shortest job may have a very late deadline.

i	1	2
$t(i)$	1	10
$d(i)$	100	10

Shortest slack time Increasing order of $d(i)-t(i)$.

Earliest deadline Increasing order of deadline $d(i)$.

Template for Greedy Algorithm

- Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length $t(i)$. Ignores deadlines completely!
Shortest job may have a very late deadline.

i	1	2
$t(i)$	1	10
$d(i)$	100	10

Shortest slack time Increasing order of $d(i)-t(i)$. Job with smallest slack may take a long time.

i	1	2
$t(i)$	1	10
$d(i)$	2	10

Earliest deadline Increasing order of deadline $d(i)$.

Template for Greedy Algorithm

- Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length $t(i)$. Ignores deadlines completely!
Shortest job may have a very late deadline.

i	1	2
$t(i)$	1	10
$d(i)$	100	10

Shortest slack time Increasing order of $d(i)-t(i)$. Job with smallest slack may take a long time.

i	1	2
$t(i)$	1	10
$d(i)$	2	10

Earliest deadline Increasing order of deadline $d(i)$. Correct? Does it make sense to tackle jobs with earliest deadlines first?

Minimising Lateness: Earliest Deadline First

Order the jobs in order of their deadlines
Assume for simplicity of notation that $d_{1} \leq \ldots \leq d_{n}$
Initially, $f=s$
Consider the jobs $i=1, \ldots, n$ in this order
Assign job i to the time interval from $s(i)=f$ to $f(i)=f+t_{i}$
Let $f=f+t_{i}$
End
Return the set of scheduled intervals $[s(i), f(i)]$ for $i=1, \ldots, n$

Minimising Lateness: Earliest Deadline First

```
Order the jobs in order of their deadlines
Assume for simplicity of notation that \(d_{1} \leq \ldots \leq d_{n}\)
Initially, \(f=s\)
Consider the jobs \(i=1, \ldots, n\) in this order
    Assign job \(i\) to the time interval from \(s(i)=f\) to \(f(i)=f+t_{i}\)
    Let \(f=f+t_{i}\)
```

End
Return the set of scheduled intervals $[s(i), f(i)]$ for $i=1, \ldots, n$

Minimising Lateness: Earliest Deadline First

```
Order the jobs in order of their deadlines
Assume for simplicity of notation that \(d_{1} \leq \ldots \leq d_{n}\)
Initially, \(f=s\)
Consider the jobs \(i=1, \ldots, n\) in this order
    Assign job \(i\) to the time interval from \(s(i)=f\) to \(f(i)=f+t_{i}\)
    Let \(f=f+t_{i}\)
```

End
Return the set of scheduled intervals $[s(i), f(i)]$ for $i=1, \ldots, n$

Inversions

Inversions

- A schedule has an inversion if a job i with deadline $d(i)$ is scheduled before a job j with an earlier deadline $d(j)$, i.e., $d(j)<d(i)$ and $s(i)<s(j)$.
- If i and j have the same deadlines, they cannot cause an inversion.
- Examples:

Inversions

- A schedule has an inversion if a job i with deadline $d(i)$ is scheduled before a job j with an earlier deadline $d(j)$, i.e., $d(j)<d(i)$ and $s(i)<s(j)$.
- If i and j have the same deadlines, they cannot cause an inversion.
- Examples: 2 and 1, 3 and 1, 4 and 1, 5 and 1, 4 and 2, 4 and 3,5 and 3.

Inversions

- A schedule has an inversion if a job i with deadline $d(i)$ is scheduled before a job j with an earlier deadline $d(j)$, i.e., $d(j)<d(i)$ and $s(i)<s(j)$.
- If i and j have the same deadlines, they cannot cause an inversion.
- Examples: 2 and 1, 3 and 1, 4 and 1, 5 and 1, 4 and 2, 4 and 3,5 and 3.
- Claim: If a schedule has an inversion, then there is a pair of consecutive jobs with an inversion, i.e., there are jobs i and j such that j is scheduled immediately after i and $d(j)<d(i)$.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above).

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline. Ordering of the jobs does not change the maximum lateness of these jobs.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline. Ordering of the jobs does not change the maximum lateness of these jobs.
- Claim 3: There is an optimal schedule with no idle time.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline. Ordering of the jobs does not change the maximum lateness of these jobs.
- Claim 3: There is an optimal schedule with no idle time.
- Claim 4: There is an optimal schedule with no inversions and no idle time.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline. Ordering of the jobs does not change the maximum lateness of these jobs.
- Claim 3: There is an optimal schedule with no idle time.
- Claim 4: There is an optimal schedule with no inversions and no idle time. ?!

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline. Ordering of the jobs does not change the maximum lateness of these jobs.
- Claim 3: There is an optimal schedule with no idle time.
- Claim 4: There is an optimal schedule with no inversions and no idle time. ?!
- Claim 5: The greedy algorithm produces an optimal schedule.

Properties of Schedules

- Claim 1: The algorithm produces a schedule with no inversions and no idle time.
- Claim 2: All schedules with no inversions and no idle time have the same lateness.
- Case 1: All jobs have distinct deadlines (not the case in the example above). There is a unique schedule with no inversions and no idle time.
- Case 2: Some jobs have the same deadline. Ordering of the jobs does not change the maximum lateness of these jobs.
- Claim 3: There is an optimal schedule with no idle time.
- Claim 4: There is an optimal schedule with no inversions and no idle time. ?!
- Claim 5: The greedy algorithm produces an optimal schedule. Follows from Claims 1, 2 and 4.

Proving Claim 4

- Claim 4: There is an optimal schedule with no inversions and no idle time.

Proving Claim 4

- Claim 4: There is an optimal schedule with no inversions and no idle time.
- Proof: Start with an optimal schedule O (that may have inversions) and use an exchange argument to convert O into a schedule that satisfies Claim 4 and has lateness not larger than O.

Proving Claim 4

- Claim 4: There is an optimal schedule with no inversions and no idle time.
- Proof: Start with an optimal schedule O (that may have inversions) and use an exchange argument to convert O into a schedule that satisfies Claim 4 and has lateness not larger than O.
(1) If O has an inversion,

Proving Claim 4

- Claim 4: There is an optimal schedule with no inversions and no idle time.
- Proof: Start with an optimal schedule O (that may have inversions) and use an exchange argument to convert O into a schedule that satisfies Claim 4 and has lateness not larger than O.
(1) If O has an inversion, let i and j be consecutive inverted jobs in O. After swapping i and j, we get a schedule O^{\prime} with one less inversion.

Proving Claim 4

- Claim 4: There is an optimal schedule with no inversions and no idle time.
- Proof: Start with an optimal schedule O (that may have inversions) and use an exchange argument to convert O into a schedule that satisfies Claim 4 and has lateness not larger than O.
(1) If O has an inversion, let i and j be consecutive inverted jobs in O. After swapping i and j, we get a schedule O^{\prime} with one less inversion.
(2) Claim: The lateness of O^{\prime} is no larger than the lateness of O.

Proving Claim 4

- Claim 4: There is an optimal schedule with no inversions and no idle time.
- Proof: Start with an optimal schedule O (that may have inversions) and use an exchange argument to convert O into a schedule that satisfies Claim 4 and has lateness not larger than O.
(1) If O has an inversion, let i and j be consecutive inverted jobs in O. After swapping i and j, we get a schedule O^{\prime} with one less inversion.
(2) Claim: The lateness of O^{\prime} is no larger than the lateness of O.
- It is enough to prove the last item, since after $\binom{n}{2}$ swaps, we obtain a schedule with no inversions whose lateness is no larger than that of O.

Swapping Inverted Jobs

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

- In O, assume each job r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O^{\prime}, let the lateness of job r be $I^{\prime}(r)$.

Swapping Inverted Jobs

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

- In O, assume each job r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O^{\prime}, let the lateness of job r be $I^{\prime}(r)$.
- Claim: $I^{\prime}(k)=I(k)$, for all $k \neq i, j$.

Swapping Inverted Jobs

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

- In O, assume each job r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O^{\prime}, let the lateness of job r be $I^{\prime}(r)$.
- Claim: $I^{\prime}(k)=I(k)$, for all $k \neq i, j$.
- Claim: $I^{\prime}(j) \leq I(j)$.

Swapping Inverted Jobs

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

- In O, assume each job r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O^{\prime}, let the lateness of job r be $I^{\prime}(r)$.
- Claim: $I^{\prime}(k)=I(k)$, for all $k \neq i, j$.
- Claim: $I^{\prime}(j) \leq I(j)$.
- Claim: $I^{\prime}(i) \leq I(j)$

Swapping Inverted Jobs

Only the finishing times of i and j are affected by the swap.

(a)
After swapping:

Job j	Job i	

(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

- In O, assume each job r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O^{\prime}, let the lateness of job r be $I^{\prime}(r)$.
- Claim: $I^{\prime}(k)=I(k)$, for all $k \neq i, j$.
- Claim: $I^{\prime}(j) \leq I(j)$.
- Claim: $I^{\prime}(i) \leq I(j)$ because $I^{\prime}(i)=f(j)-d_{i} \leq f(j)-d_{j}=I(j)$.

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie?

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie?

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(9) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie?

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(4) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie? At some point $\left(i, I_{X}\right)$, where $i>0$ and I_{X} are the number of inversions in and lateness of X, respectively. $I_{X}<I_{A}$

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(9) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie? At some point $\left(i, I_{X}\right)$, where $i>0$ and I_{X} are the number of inversions in and lateness of X, respectively. $I_{X}<I_{A}$
(5) Find an inversion in X and then isolate the inversion to be between consecutive jobs in X.
(6) Swap the jobs to get a new schedule X_{i-1}. Where does X_{i-1} lie?

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(9) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie? At some point $\left(i, I_{X}\right)$, where $i>0$ and I_{X} are the number of inversions in and lateness of X, respectively. $I_{X}<I_{A}$
(5) Find an inversion in X and then isolate the inversion to be between consecutive jobs in X.
(0) Swap the jobs to get a new schedule X_{i-1}. Where does X_{i-1} lie? X_{i-1} has one fewer inversion! Lateness cannot increase! So X_{i-1} is at $\left(i-1, I_{X}\right)$ or "below."
(3) Repeat until we have X_{1} with one inversion at

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(9) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie? At some point $\left(i, I_{X}\right)$, where $i>0$ and I_{X} are the number of inversions in and lateness of X, respectively. $I_{X}<I_{A}$
(5) Find an inversion in X and then isolate the inversion to be between consecutive jobs in X.
(0) Swap the jobs to get a new schedule X_{i-1}. Where does X_{i-1} lie? X_{i-1} has one fewer inversion! Lateness cannot increase! So X_{i-1} is at $\left(i-1, I_{X}\right)$ or "below."
(3) Repeat until we have X_{1} with one inversion at $\left(1, I_{X}\right)$ or "below", where $I_{X}<I_{A}$.
(8) Repeat one more step: X_{0} has no inversions. What is X_{0} 's location?

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(9) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie? At some point $\left(i, I_{X}\right)$, where $i>0$ and I_{X} are the number of inversions in and lateness of X, respectively. $I_{X}<I_{A}$
(5) Find an inversion in X and then isolate the inversion to be between consecutive jobs in X.
(0) Swap the jobs to get a new schedule X_{i-1}. Where does X_{i-1} lie? X_{i-1} has one fewer inversion! Lateness cannot increase! So X_{i-1} is at $\left(i-1, I_{X}\right)$ or "below."
(3) Repeat until we have X_{1} with one inversion at $\left(1, I_{X}\right)$ or "below", where $I_{X}<I_{A}$.
(8) Repeat one more step: X_{0} has no inversions. What is X_{0} 's location? $\left(0, I_{X}\right)$ or "below" because of $\# 7$ and $\left(0, I_{A}\right)$ because of $\# 3$.

Summary of Proof

(1) Think of a schedule as a 2D point: x-coordinate is the number of inversions in the schedule and y-coordinate is the lateness of the schedule.
(2) Where does the schedule A produced by the algorithm lie? Somewhere on the y-axis since it has no inversions, say $\left(0, I_{A}\right)$.
(3) Where does some other schedule B with no inversions lie? Also at $\left(0, I_{A}\right)$ since all schedules with no inversions have the same lateness.
(9) Let X be any schedule that is supposed to be optimal (and better than A). Where does X lie? At some point $\left(i, I_{X}\right)$, where $i>0$ and I_{X} are the number of inversions in and lateness of X, respectively. $I_{X}<I_{A}$
(5) Find an inversion in X and then isolate the inversion to be between consecutive jobs in X.
(0) Swap the jobs to get a new schedule X_{i-1}. Where does X_{i-1} lie? X_{i-1} has one fewer inversion! Lateness cannot increase! So X_{i-1} is at $\left(i-1, I_{X}\right)$ or "below."
(3) Repeat until we have X_{1} with one inversion at $\left(1, I_{X}\right)$ or "below", where $I_{X}<I_{A}$.
(8) Repeat one more step: X_{0} has no inversions. What is X_{0} 's location? $\left(0, I_{X}\right)$ or "below" because of $\# 7$ and $\left(0, I_{A}\right)$ because of $\# 3$.
(9) We have a contradiction!
(10) Lateness of A cannot be larger than that of O !

Common Mistakes with Exchange Arguments

- Wrong: start with algorithm's schedule A and argue that A cannot be improved by swapping two jobs.
- Correct: Start with an arbitrary schedule O (which can be the optimal one) and argue that O can be converted into the schedule that is essentially the same as the one the algorithm produces without increasing the lateness.

Common Mistakes with Exchange Arguments

- Wrong: start with algorithm's schedule A and argue that A cannot be improved by swapping two jobs.
- Correct: Start with an arbitrary schedule O (which can be the optimal one) and argue that O can be converted into the schedule that is essentially the same as the one the algorithm produces without increasing the lateness.
- Wrong: Swap two jobs that are not neighbouring in O. Pitfall is that the completion times of all intervening jobs changes.
- Correct: Show that an inversion exists between two neighbouring jobs and swap them.

Summary

- Greedy algorithms make local decisions.
- Three analysis strategies:

Greedy algorithm stays ahead Show that after each step in the greedy algorithm, its solution is at least as good as that produced by any other algorithm.
Structural bound First, discover a property that must be satisfied by every possible solution. Then show that the (greedy) algorithm produces a solution with this property.
Exchange argument Transform the optimal solution in steps into the solution by the greedy algorithm without worsening the quality of the optimal solution.

