
Shortest Paths Minimum Spanning Trees Implementation

Greedy Graph Algorithms

T. M. Murali

September 21, 23, 28, 2021

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Algorithm Design

Start discussion of different ways of designing algorithms.

Greedy algorithms, divide and conquer, dynamic programming, flow-based
approaches.

Discuss principles that can solve a variety of problem types.

Design an algorithm, prove its correctness, analyse its complexity.

Greedy algorithms: make the current best choice.
I First discussed greedy algorithms for scheduling (Chapters 4.1 to 4.3).
I Now we will discuss greedy graph algorithms.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Algorithm Design

Start discussion of different ways of designing algorithms.

Greedy algorithms, divide and conquer, dynamic programming, flow-based
approaches.

Discuss principles that can solve a variety of problem types.

Design an algorithm, prove its correctness, analyse its complexity.

Greedy algorithms: make the current best choice.
I First discussed greedy algorithms for scheduling (Chapters 4.1 to 4.3).
I Now we will discuss greedy graph algorithms.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Shortest Paths Problem

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

G (V ,E) is a connected directed
graph. Each edge e has a length
l(e) ≥ 0.

Length of a path P is the sum of
the lengths of the edges in P.

Goal: compute the shortest path
from a specified start node s to
each node in V .

Aside: If G is undirected, convert to
a directed graph by replacing each
edge in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V } of paths, where Pu is the shortest path
in G from s to u.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Shortest Paths Problem

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

G (V ,E) is a connected directed
graph. Each edge e has a length
l(e) ≥ 0.

Length of a path P is the sum of
the lengths of the edges in P.

Goal: compute the shortest path
from a specified start node s to
each node in V .

Aside: If G is undirected, convert to
a directed graph by replacing each
edge in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V } of paths, where Pu is the shortest path
in G from s to u.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Shortest Paths Problem

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

G (V ,E) is a connected directed
graph. Each edge e has a length
l(e) ≥ 0.

Length of a path P is the sum of
the lengths of the edges in P.

Goal: compute the shortest path
from a specified start node s to
each node in V .

Aside: If G is undirected, convert to
a directed graph by replacing each
edge in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V } of paths, where Pu is the shortest path
in G from s to u.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Shortest Paths Problem

s e

f

b

c

a
1

2

1
1

a

e

f

b

c

1

2

1
1

s

2

G (V ,E) is a connected directed
graph. Each edge e has a length
l(e) ≥ 0.

Length of a path P is the sum of
the lengths of the edges in P.

Goal: compute the shortest path
from a specified start node s to
each node in V .

Aside: If G is undirected, convert to
a directed graph by replacing each
edge in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V } of paths, where Pu is the shortest path
in G from s to u.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Shortest Paths Problem

s e

f

b

c

a
1

2

1
1

a

e

f

b

c

1

2

1
1

s

2

G (V ,E) is a connected directed
graph. Each edge e has a length
l(e) ≥ 0.

Length of a path P is the sum of
the lengths of the edges in P.

Goal: compute the shortest path
from a specified start node s to
each node in V .

Aside: If G is undirected, convert to
a directed graph by replacing each
edge in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V } of paths, where Pu is the shortest path
in G from s to u.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Shortest Paths Problem Instance

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS

s e

f

b

c

a
1

1

1

1

1

1

1

1

1

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS

s e

f

b

c

a
1

1

1

1

1

1

1

1

1

Unweighted graph: Use BFS. Process nodes in non-decreasing order of distance.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Weighted graph: Edge weights are integers. Can we make the graph unweighted?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Add dummy nodes: Edge of weight w gets w − 1 nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Dummy nodes: BFS computes shortest paths correctly. Running time is Poll

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Dummy nodes: BFS computes shortest paths correctly. Running time is
O(m + n +

∑
e∈E l(e)). Pseudo-polynomial time: depends on input values.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Like BFS: explore nodes in non-increasing order of distance from s. Once a node
is explored, its distance is fixed.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

Unlike BFS: Layers are not uniform. Which node to process next? Candidates are
nodes with an edge from a explored node.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

For each unexplored node, determine “best” preceding explored node.

Record
shortest path length only through explored nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]

For each unexplored node, determine “best” preceding explored node.

Record
shortest path length only through explored nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]
[4]

For each unexplored node, determine “best” preceding explored node.

Record
shortest path length only through explored nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]
[4]
[4]

For each unexplored node, determine “best” preceding explored node. Record
shortest path length only through explored nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

For each unexplored node, determine “best” preceding explored node.

Record
shortest path length only through explored nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

[2]

Explore node with smallest path length only through explored nodes.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1, from s]

[2, from s]

[]

[2, from a]

Like BFS: Record previous node in the computed path.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1, from s]

[2, from s]

[]

[2, from a]

[4, from e]

[3, from e]

Follow previous nodes to compute shortest path. Like BFS: these edges form a
tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Idea Underlying Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

Maintain a set S of explored nodes.
I For each node u ∈ S , compute a value d(u), which (we will prove) is the

length of the shortest path from s to u.
I For each node x 6∈ S , maintain a value d ′(x), which is the length of the

shortest path from s to x using only the nodes in S (and x , of course).

“Greedily” add a node v to S that has the smallest value of d ′(v) (is closest
to s using only nodes in S).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Idea Underlying Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

Maintain a set S of explored nodes.
I For each node u ∈ S , compute a value d(u), which (we will prove) is the

length of the shortest path from s to u.
I For each node x 6∈ S , maintain a value d ′(x), which is the length of the

shortest path from s to x using only the nodes in S (and x , of course).

“Greedily” add a node v to S that has the smallest value of d ′(v) (is closest
to s using only nodes in S).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths:

when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?

I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S (i.e., u

is explored).
I For each such edge, we compute the length of the shortest path from s to x

via u, which is d(u) + l(u, x).
I We store the smallest of these values in d ′(x).

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .

I Argument of min runs over all edges of the type (u, x), where u is in S (i.e., u
is explored).

I For each such edge, we compute the length of the shortest path from s to x
via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S (i.e., u

is explored).

I For each such edge, we compute the length of the shortest path from s to x
via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]
[4]
[4]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S (i.e., u

is explored).
I For each such edge, we compute the length of the shortest path from s to x

via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S (i.e., u

is explored).
I For each such edge, we compute the length of the shortest path from s to x

via u, which is d(u) + l(u, x).
I We store the smallest of these values in d ′(x).

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .

I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.

I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

[2]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1, from s]

[2, from s]

[]

[2, from a]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.

Claim: Pu is the shortest path from s to u.

Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: |S | = k, for some k ≥ 1.

The algorithm has correctly
computed Pu for every node u ∈ S . Strong induction.

I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a
shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.

Claim: Pu is the shortest path from s to u.

Prove by induction on the size of S .
I Base case: |S | = 1. The only node in S is s.

I Inductive hypothesis: |S | = k, for some k ≥ 1.

The algorithm has correctly
computed Pu for every node u ∈ S . Strong induction.

I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a
shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.

Claim: Pu is the shortest path from s to u.

Prove by induction on the size of S .
I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: |S | = k, for some k ≥ 1.

The algorithm has correctly
computed Pu for every node u ∈ S . Strong induction.

I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a
shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.

Claim: Pu is the shortest path from s to u.

Prove by induction on the size of S .
I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: |S | = k, for some k ≥ 1. The algorithm has correctly

computed Pu for every node u ∈ S . Strong induction.

I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a
shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.

Claim: Pu is the shortest path from s to u.

Prove by induction on the size of S .
I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: |S | = k, for some k ≥ 1. The algorithm has correctly

computed Pu for every node u ∈ S . Strong induction.
I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a

shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.
Claim: Pu is the shortest path from s to u.
Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: |S | = k, for some k ≥ 1. The algorithm has correctly

computed Pu for every node u ∈ S . Strong induction.
I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a

shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness
Let Pu be the path computed by the algorithm for an arbitrary node u.
Claim: Pu is the shortest path from s to u.
Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: |S | = k, for some k ≥ 1. The algorithm has correctly

computed Pu for every node u ∈ S . Strong induction.
I Inductive step: |S | = k + 1 because we add the node v to S . Could there be a

shorter path P from s to v? We must prove this cannot be the case.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?

Union of shortest paths from a fixed source s forms a tree; paths not
necessarily computed by Dijkstra’s algorithm.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?

Union of shortest paths from a fixed source s forms a tree; paths not
necessarily computed by Dijkstra’s algorithm.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running time of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

V has n nodes and E has m edges. Poll

How many iterations are there of the while loop?

n − 1.
In each iteration, for each node x ∈ V − S , compute

d ′(x) = min
(u,x),u∈S

(d(u) + l(u, x))

Running time per iteration is O(m), since the algorithm processes each edge
(u, x) in the graph exactly once (when computing d ′(x)).
The overall running time is O(nm).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running time of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

V has n nodes and E has m edges. Poll

How many iterations are there of the while loop? n − 1.

In each iteration, for each node x ∈ V − S , compute

d ′(x) = min
(u,x),u∈S

(d(u) + l(u, x))

Running time per iteration is O(m), since the algorithm processes each edge
(u, x) in the graph exactly once (when computing d ′(x)).
The overall running time is O(nm).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running time of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

V has n nodes and E has m edges. Poll

How many iterations are there of the while loop? n − 1.
In each iteration, for each node x ∈ V − S , compute

d ′(x) = min
(u,x),u∈S

(d(u) + l(u, x))

Running time per iteration is O(m), since the algorithm processes each edge
(u, x) in the graph exactly once (when computing d ′(x)).
The overall running time is O(nm).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running time of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

V has n nodes and E has m edges. Poll

How many iterations are there of the while loop? n − 1.
In each iteration, for each node x ∈ V − S , compute

d ′(x) = min
(u,x),u∈S

(d(u) + l(u, x))

Running time per iteration is

O(m), since the algorithm processes each edge
(u, x) in the graph exactly once (when computing d ′(x)).
The overall running time is O(nm).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running time of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

V has n nodes and E has m edges. Poll

How many iterations are there of the while loop? n − 1.
In each iteration, for each node x ∈ V − S , compute

d ′(x) = min
(u,x),u∈S

(d(u) + l(u, x))

Running time per iteration is O(m), since the algorithm processes each edge
(u, x) in the graph exactly once (when computing d ′(x)).
The overall running time is O(nm).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only

if (v , x) is an edge in G
and x is not in S .

Idea: For each node x ∈ V − S , store the current value of d ′(x). Upon
adding a node v to S , update d ′() only for neighbours of v that are not in S .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: Set v = arg minx∈V−S d

′(x)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S do
6: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))

Observation: If we add v to S , d ′(x) changes only Poll

if (v , x) is an edge in
G and x is not in S .

Idea: For each node x ∈ V − S , store the current value of d ′(x). Upon
adding a node v to S , update d ′() only for neighbours of v that are not in S .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: Set v = arg minx∈V−S d

′(x)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S do
6: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge in G
and x is not in S .

Idea: For each node x ∈ V − S , store the current value of d ′(x). Upon
adding a node v to S , update d ′() only for neighbours of v that are not in S .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: Set v = arg minx∈V−S d

′(x)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S do
6: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge in G
and x is not in S .

Idea: For each node x ∈ V − S , store the current value of d ′(x). Upon
adding a node v to S , update d ′() only for neighbours of v that are not in S .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: Set v = arg minx∈V−S d

′(x)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S do
6: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge in G
and x is not in S .

Idea: For each node x ∈ V − S , store the current value of d ′(x). Upon
adding a node v to S , update d ′() only for neighbours of v that are not in S .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: Set v = arg minx∈V−S d

′(x)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S do
6: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge in G
and x is not in S .

Idea: For each node x ∈ V − S , store the current value of d ′(x). Upon
adding a node v to S , update d ′() only for neighbours of v that are not in S .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Faster Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

For each node x ∈ V − S , store the pair (x , d ′(x)) in a priority queue Q with
d ′(x) as the key.

Determine the next node v to add to S using ExtractMin (line 3).

After adding v to S , for each node x ∈ V − S such that there is an edge
from v to x , check if d ′(x) should be updated, i.e., if there is a shortest path
from s to x via v (lines 5–8).

In line 8, if x is not in Q, simply insert it.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? Poll

n − 1
times.
For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .
What is the total running time of step 5?

∑
v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.
What is total running time of the algorithm? O(m log n).
State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5?

O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?

∑
v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey?

At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm?

O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

How many times does the algorithm invoke ExtractMin? n − 1 times.

For every node v , what is the running time of step 5? O(dv), the number of
outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dv) = O(m).

How many times does the algorithm invoke ChangeKey? At most m times.

What is total running time of the algorithm? O(m log n).

State of the art: Fibonacci heaps achieve a running time of O(m) for all
ChangeKey operations, for a running time of O(n log n + m).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Network Design

Connect a set of nodes using a set of edges with certain properties.

Input is usually a graph and the desired network (the output) should use
subset of edges in the graph.

Example: connect all nodes using a cycle of shortest total length.

This
problem is the NP-complete traveling salesman problem.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Network Design

Connect a set of nodes using a set of edges with certain properties.

Input is usually a graph and the desired network (the output) should use
subset of edges in the graph.

Example: connect all nodes using a cycle of shortest total length. This
problem is the NP-complete traveling salesman problem.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

Given an undirected graph G (V ,E) with a cost c(e) > 0 associated with
each edge e ∈ E .
Find a subset T of edges such that the graph (V ,T) is connected and the
cost

∑
e∈T c(e) is as small as possible. Poll

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c)

(d) (e) (f)

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

Given an undirected graph G (V ,E) with a cost c(e) > 0 associated with
each edge e ∈ E .
Find a subset T of edges such that the graph (V ,T) is connected and the
cost

∑
e∈T c(e) is as small as possible. Poll

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c)

(d) (e) (f)

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

Given an undirected graph G (V ,E) with a cost c(e) > 0 associated with
each edge e ∈ E .
Find a subset T of edges such that the graph (V ,T) is connected and the
cost

∑
e∈T c(e) is as small as possible. Poll

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c)

(d) (e) (f)

Not connected Not smallest cost

Not smallest cost Smallest costNot smallest cost

Not connected

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

Minimum Spanning Tree
INSTANCE: An undirected graph G (V ,E) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T) is connected and
the cost

∑
e∈T c(e) is as small as possible.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

Claim: If T is a minimum-cost solution to this problem then (V ,T) is a tree.
A subset T of E is a spanning tree of G if (V ,T) is a tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

Minimum Spanning Tree
INSTANCE: An undirected graph G (V ,E) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T) is connected and
the cost

∑
e∈T c(e) is as small as possible.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

Claim: If T is a minimum-cost solution to this problem then (V ,T) is a tree.
A subset T of E is a spanning tree of G if (V ,T) is a tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

Minimum Spanning Tree
INSTANCE: An undirected graph G (V ,E) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T) is connected and
the cost

∑
e∈T c(e) is as small as possible.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

Claim: If T is a minimum-cost solution to this problem then (V ,T) is a tree.
A subset T of E is a spanning tree of G if (V ,T) is a tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle.

Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.

Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected.

Reverse-Delete algorithm

Which of these algorithms works? All of them!

Simplifying assumption: all edge costs are distinct.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle.

Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.

Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected.

Reverse-Delete algorithm

Which of these algorithms works? All of them!

Simplifying assumption: all edge costs are distinct.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle.

Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.

Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected.

Reverse-Delete algorithm

Which of these algorithms works?

All of them!

Simplifying assumption: all edge costs are distinct.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle. Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.
Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected. Reverse-Delete algorithm

Which of these algorithms works? All of them!

Simplifying assumption: all edge costs are distinct.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle. Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.
Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected. Reverse-Delete algorithm

Which of these algorithms works? All of them!

Simplifying assumption: all edge costs are distinct.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

Does the edge of smallest cost belong to an MST?

Yes. Why?
I Wrong proof: because Kruskal’s algorithm adds it. We have not yet proved

correctness of Kruskal’s algorithm!
I Correct proof: will work it out soon.

Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

Does the edge of smallest cost belong to an MST? Yes. Why?

I Wrong proof: because Kruskal’s algorithm adds it. We have not yet proved
correctness of Kruskal’s algorithm!

I Correct proof: will work it out soon.

Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

Does the edge of smallest cost belong to an MST? Yes. Why?
I Wrong proof: because Kruskal’s algorithm adds it. We have not yet proved

correctness of Kruskal’s algorithm!
I Correct proof: will work it out soon.

Which edges must belong to an MST?

I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

Does the edge of smallest cost belong to an MST? Yes. Why?
I Wrong proof: because Kruskal’s algorithm adds it. We have not yet proved

correctness of Kruskal’s algorithm!
I Correct proof: will work it out soon.

Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

Does the edge of smallest cost belong to an MST? Yes. Why?
I Wrong proof: because Kruskal’s algorithm adds it. We have not yet proved

correctness of Kruskal’s algorithm!
I Correct proof: will work it out soon.

Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

Which edges cannot belong to an MST?

I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

Does the edge of smallest cost belong to an MST? Yes. Why?
I Wrong proof: because Kruskal’s algorithm adds it. We have not yet proved

correctness of Kruskal’s algorithm!
I Correct proof: will work it out soon.

Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts
A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .
cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts
A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .
cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts
A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).
Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .
cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts

A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .

cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c) (d)

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts

A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .

cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c) (d)Not cut({a, b, d}): (c, g) Is cut({a, b, d}) Not cut({a, b, d}): (a b) Not cut({a, b, d}): (b, e)

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts

A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .

cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c) (d)

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts

A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .

cut(S) is a “cut” because deleting the edges in cut(S) disconnects S from
V − S . Polls

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

(a) (b) (c) (d)Not cut({a, e, g}): (b, c) Not cut({a, g, e}): (f, h) Is cut({a, e, g}) Not cut({a, e, g}): (d, e)

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?

There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?

There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?

There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?

There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?
There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?
There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cut Property

When is it safe to include an edge in an MST?

Claim: For every S ⊂ V ,S 6= ∅, every MST contains
the cheapest edge in cut(S).

Proof by contradiction using exchange argument.

How do you state the contradiction to the claim?
There is a set S ⊂ V and an MST T such that T
does not contain the cheapest edge in cut(S).

I Let e = (u, v) be the cheapest edge in cut(S).

Proof strategy: If T does not contain e, show that
there is a tree with smaller cost than T that
contains e.

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Cut Property

There is a set S ⊂ V and an MST T such that T does not contain the
cheapest edge in cut(S).
Proof strategy: If T does not contain e, show that there is a tree with
smaller cost than T that contains e.

Wrong proof:
I Since T is spanning, it must contain some

edge, e.g., f , in cut(S).
I T −{f } ∪ {e} has smaller cost than T but

may not be a spanning tree.

Correct proof:
I Add e to T forming a cycle.

I This cycle must contain an edge e′ in
cut(S). Poll

I T − {e′} ∪ {e} has smaller cost than T
and is a spanning tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Cut Property

There is a set S ⊂ V and an MST T such that T does not contain the
cheapest edge in cut(S).
Proof strategy: If T does not contain e, show that there is a tree with
smaller cost than T that contains e.

Wrong proof:
I Since T is spanning, it must contain some

edge, e.g., f , in cut(S).
I T −{f } ∪ {e} has smaller cost than T but

may not be a spanning tree.

Correct proof:
I Add e to T forming a cycle.

I This cycle must contain an edge e′ in
cut(S). Poll

I T − {e′} ∪ {e} has smaller cost than T
and is a spanning tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Cut Property

There is a set S ⊂ V and an MST T such that T does not contain the
cheapest edge in cut(S).
Proof strategy: If T does not contain e, show that there is a tree with
smaller cost than T that contains e.

Wrong proof:
I Since T is spanning, it must contain some

edge, e.g., f , in cut(S).
I T −{f } ∪ {e} has smaller cost than T but

may not be a spanning tree.

Correct proof:
I Add e to T forming a cycle.

I This cycle must contain an edge e′ in
cut(S). Poll

I T − {e′} ∪ {e} has smaller cost than T
and is a spanning tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Cut Property

There is a set S ⊂ V and an MST T such that T does not contain the
cheapest edge in cut(S).
Proof strategy: If T does not contain e, show that there is a tree with
smaller cost than T that contains e.

Wrong proof:
I Since T is spanning, it must contain some

edge, e.g., f , in cut(S).
I T −{f } ∪ {e} has smaller cost than T but

may not be a spanning tree.

Correct proof:
I Add e to T forming a cycle.

I This cycle must contain an edge e′ in
cut(S). Poll

I T − {e′} ∪ {e} has smaller cost than T
and is a spanning tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Cut Property

There is a set S ⊂ V and an MST T such that T does not contain the
cheapest edge in cut(S).
Proof strategy: If T does not contain e, show that there is a tree with
smaller cost than T that contains e.

Wrong proof:
I Since T is spanning, it must contain some

edge, e.g., f , in cut(S).
I T −{f } ∪ {e} has smaller cost than T but

may not be a spanning tree.

Correct proof:
I Add e to T forming a cycle.
I This cycle must contain an edge e′ in

cut(S). Poll

I T − {e′} ∪ {e} has smaller cost than T
and is a spanning tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Proof of Cut Property

There is a set S ⊂ V and an MST T such that T does not contain the
cheapest edge in cut(S).
Proof strategy: If T does not contain e, show that there is a tree with
smaller cost than T that contains e.

Wrong proof:
I Since T is spanning, it must contain some

edge, e.g., f , in cut(S).
I T −{f } ∪ {e} has smaller cost than T but

may not be a spanning tree.

Correct proof:
I Add e to T forming a cycle.
I This cycle must contain an edge e′ in

cut(S). Poll

I T − {e′} ∪ {e} has smaller cost than T
and is a spanning tree.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Prim’s Algorithm

Maintain a tree (S ,T), i.e. a set of nodes and a set of edges, which we will
show will always be a tree.

Start with an arbitrary node s ∈ S .

Prim’s Algorithm(G , c , s)

1: S = {s} and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v):u∈S,v∈V−S c(u, v) Poll

4: Add the node v to S and add the edge (u, v) to T .

Note that

arg min
(u,v),u∈S,v∈V−S

c(u, v) ≡ arg min
(u,v)∈cut(S)

c(u, v).

In other words, in each step, Prim’s algorithm computes and adds the
cheapest edge in the current value of cut(S).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Prim’s Algorithm

Maintain a tree (S ,T), i.e. a set of nodes and a set of edges, which we will
show will always be a tree.

Start with an arbitrary node s ∈ S .

Prim’s Algorithm(G , c , s)

1: S = {s} and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v):u∈S,v∈V−S c(u, v) Poll

4: Add the node v to S and add the edge (u, v) to T .

Note that

arg min
(u,v),u∈S,v∈V−S

c(u, v) ≡ arg min
(u,v)∈cut(S)

c(u, v).

In other words, in each step, Prim’s algorithm computes and adds the
cheapest edge in the current value of cut(S).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Prim’s Algorithm

Maintain a tree (S ,T), i.e. a set of nodes and a set of edges, which we will
show will always be a tree.

Start with an arbitrary node s ∈ S .

Prim’s Algorithm(G , c , s)

1: S = {s} and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v):u∈S,v∈V−S c(u, v) Poll

4: Add the node v to S and add the edge (u, v) to T .

Note that

arg min
(u,v),u∈S,v∈V−S

c(u, v) ≡ arg min
(u,v)∈cut(S)

c(u, v).

In other words, in each step, Prim’s algorithm computes and adds the
cheapest edge in the current value of cut(S).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: S = {s} and and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v)∈cut(S) c(u, v)
4: Add the node v to S and add the edge (u, v) to T .

Claim: Prim’s algorithm outputs an MST.

1 Prove that every edge inserted satisfies the cut property.

F By construction, in each iteration (u, v) is the cheapest edge in cut(S) for the
current value of S .

2 Prove that the graph constructed is a spanning tree.

F Why are there no cycles in (V ,T)? Poll

F Why is (V ,T) a spanning tree (edges in T connect all nodes in V)? Poll

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: S = {s} and and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v)∈cut(S) c(u, v)
4: Add the node v to S and add the edge (u, v) to T .

Claim: Prim’s algorithm outputs an MST.
1 Prove that every edge inserted satisfies the cut property.

F By construction, in each iteration (u, v) is the cheapest edge in cut(S) for the
current value of S .

2 Prove that the graph constructed is a spanning tree.

F Why are there no cycles in (V ,T)? Poll

F Why is (V ,T) a spanning tree (edges in T connect all nodes in V)? Poll

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: S = {s} and and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v)∈cut(S) c(u, v)
4: Add the node v to S and add the edge (u, v) to T .

Claim: Prim’s algorithm outputs an MST.
1 Prove that every edge inserted satisfies the cut property.

F By construction, in each iteration (u, v) is the cheapest edge in cut(S) for the
current value of S .

2 Prove that the graph constructed is a spanning tree.

F Why are there no cycles in (V ,T)? Poll

F Why is (V ,T) a spanning tree (edges in T connect all nodes in V)? Poll

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: S = {s} and and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v)∈cut(S) c(u, v)
4: Add the node v to S and add the edge (u, v) to T .

Claim: Prim’s algorithm outputs an MST.
1 Prove that every edge inserted satisfies the cut property.

F By construction, in each iteration (u, v) is the cheapest edge in cut(S) for the
current value of S .

2 Prove that the graph constructed is a spanning tree.
F Why are there no cycles in (V ,T)? Poll

F Why is (V ,T) a spanning tree (edges in T connect all nodes in V)? Poll

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: S = {s} and and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v)∈cut(S) c(u, v)
4: Add the node v to S and add the edge (u, v) to T .

Claim: Prim’s algorithm outputs an MST.
1 Prove that every edge inserted satisfies the cut property.

F By construction, in each iteration (u, v) is the cheapest edge in cut(S) for the
current value of S .

2 Prove that the graph constructed is a spanning tree.
F Why are there no cycles in (V ,T)? Poll

F Why is (V ,T) a spanning tree (edges in T connect all nodes in V)? Poll

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Kruskal’s Algorithm

Start with an empty set T of edges.

Process edges in E in increasing order of cost.

Add the next edge e to T only if adding e does not create a cycle. Discard e
if it creates a cycle.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Example of Kruskal’s Algorithm

a

b c

d e f

g

h

4

1

25

11

12 3

8 20

7

15

6

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

Note: at any iteration, T may contain several connected components and
each node in V is in some component.

Claim: Kruskal’s algorithm outputs an MST.

1 For every edge e added, demonstrate the existence of a set S ⊂ V (and
V − S) such that e and S satisfy the cut property, i.e., e is the cheapest edge
in cut(S).

F If e = (u, v), let S be the set of nodes connected to u in the current graph T .
F Why is e the cheapest edge in cut(S)?

2 Prove that the algorithm computes a spanning tree.

F (V ,T) contains no cycles by construction.
F If (V ,T) is not connected, there exists a subset S of nodes not connected to

V − S. What is the contradiction?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

Note: at any iteration, T may contain several connected components and
each node in V is in some component.

Claim: Kruskal’s algorithm outputs an MST.
1 For every edge e added, demonstrate the existence of a set S ⊂ V (and

V − S) such that e and S satisfy the cut property, i.e., e is the cheapest edge
in cut(S).

F If e = (u, v), let S be the set of nodes connected to u in the current graph T .
F Why is e the cheapest edge in cut(S)?

2 Prove that the algorithm computes a spanning tree.

F (V ,T) contains no cycles by construction.
F If (V ,T) is not connected, there exists a subset S of nodes not connected to

V − S. What is the contradiction?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

Note: at any iteration, T may contain several connected components and
each node in V is in some component.

Claim: Kruskal’s algorithm outputs an MST.
1 For every edge e added, demonstrate the existence of a set S ⊂ V (and

V − S) such that e and S satisfy the cut property, i.e., e is the cheapest edge
in cut(S).

F If e = (u, v), let S be the set of nodes connected to u in the current graph T .

F Why is e the cheapest edge in cut(S)?

2 Prove that the algorithm computes a spanning tree.

F (V ,T) contains no cycles by construction.
F If (V ,T) is not connected, there exists a subset S of nodes not connected to

V − S. What is the contradiction?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

Note: at any iteration, T may contain several connected components and
each node in V is in some component.

Claim: Kruskal’s algorithm outputs an MST.
1 For every edge e added, demonstrate the existence of a set S ⊂ V (and

V − S) such that e and S satisfy the cut property, i.e., e is the cheapest edge
in cut(S).

F If e = (u, v), let S be the set of nodes connected to u in the current graph T .
F Why is e the cheapest edge in cut(S)?

2 Prove that the algorithm computes a spanning tree.

F (V ,T) contains no cycles by construction.
F If (V ,T) is not connected, there exists a subset S of nodes not connected to

V − S. What is the contradiction?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

Note: at any iteration, T may contain several connected components and
each node in V is in some component.

Claim: Kruskal’s algorithm outputs an MST.
1 For every edge e added, demonstrate the existence of a set S ⊂ V (and

V − S) such that e and S satisfy the cut property, i.e., e is the cheapest edge
in cut(S).

F If e = (u, v), let S be the set of nodes connected to u in the current graph T .
F Why is e the cheapest edge in cut(S)?

2 Prove that the algorithm computes a spanning tree.
F (V ,T) contains no cycles by construction.

F If (V ,T) is not connected, there exists a subset S of nodes not connected to
V − S. What is the contradiction?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

Note: at any iteration, T may contain several connected components and
each node in V is in some component.

Claim: Kruskal’s algorithm outputs an MST.
1 For every edge e added, demonstrate the existence of a set S ⊂ V (and

V − S) such that e and S satisfy the cut property, i.e., e is the cheapest edge
in cut(S).

F If e = (u, v), let S be the set of nodes connected to u in the current graph T .
F Why is e the cheapest edge in cut(S)?

2 Prove that the algorithm computes a spanning tree.
F (V ,T) contains no cycles by construction.
F If (V ,T) is not connected, there exists a subset S of nodes not connected to

V − S. What is the contradiction?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cycle Property

When can we be sure that an edge cannot be in any MST?

Let C be any cycle in G and let e = (v ,w) be the most expensive edge in C .
Claim: e does not belong to any MST of G .
Proof: exchange argument. If a supposed MST T contains e, show that
there is a tree with smaller cost than T that does not contain e.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cycle Property

When can we be sure that an edge cannot be in any MST?
Let C be any cycle in G and let e = (v ,w) be the most expensive edge in C .
Claim: e does not belong to any MST of G .

Proof: exchange argument. If a supposed MST T contains e, show that
there is a tree with smaller cost than T that does not contain e.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Cycle Property

When can we be sure that an edge cannot be in any MST?
Let C be any cycle in G and let e = (v ,w) be the most expensive edge in C .
Claim: e does not belong to any MST of G .
Proof: exchange argument. If a supposed MST T contains e, show that
there is a tree with smaller cost than T that does not contain e.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

Claim: the Reverse-Delete algorithm outputs an MST.

1 Show that every edge deleted belongs to no MST.

F A deleted edge must belong to some cycle C .
F Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2 Prove that the graph remaining at the end is a spanning tree.

F (V ,E ′) is connected at the end, by construction.
F If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

Claim: the Reverse-Delete algorithm outputs an MST.
1 Show that every edge deleted belongs to no MST.

F A deleted edge must belong to some cycle C .
F Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2 Prove that the graph remaining at the end is a spanning tree.

F (V ,E ′) is connected at the end, by construction.
F If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

Claim: the Reverse-Delete algorithm outputs an MST.
1 Show that every edge deleted belongs to no MST.

F A deleted edge must belong to some cycle C .
F Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .
2 Prove that the graph remaining at the end is a spanning tree.

F (V ,E ′) is connected at the end, by construction.
F If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

Claim: the Reverse-Delete algorithm outputs an MST.
1 Show that every edge deleted belongs to no MST.

F A deleted edge must belong to some cycle C .
F Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .
2 Prove that the graph remaining at the end is a spanning tree.

F (V ,E ′) is connected at the end, by construction.

F If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The
algorithm would have deleted that edge.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

Claim: the Reverse-Delete algorithm outputs an MST.
1 Show that every edge deleted belongs to no MST.

F A deleted edge must belong to some cycle C .
F Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .
2 Prove that the graph remaining at the end is a spanning tree.

F (V ,E ′) is connected at the end, by construction.
F If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Implementing Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: S = {s} and T = ∅
2: while S 6= V do
3: Compute (u, v) = arg min(u,v):u∈S,v∈V−S c(u, v)
4: Add the node v to S and add the edge (u, v) to T .

Implementation and analysis are very similar to Dijkstra’s algorithm.

Maintain S and store attachment costs a(v) = mine∈cut(S) c(e) for every
node v ∈ V − S in a priority queue. Not the same as Dijsktra’s algorithm!

At each step, extract the node v with the minimum attachment cost from
the priority queue and update the attachment costs of the neighbours of v .

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Final Version of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: Insert(Q, s, 0, ∅)
2: while S 6= V do
3: (v , a(v), u) = ExtractMin(Q)
4: Add node v to S and edge (u, v) to T .
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if c(v , x) < a(x) then
7: a(x) = c(v , x)
8: ChangeKey(Q, x , a(x), v)

Q is a priority queue.

Each element in Q is a triple: the node, its attachment cost, and its
predecessor in the MST.

In Step 8, if x is not already in Q, simply Insert (x , a(x), v) into Q. Poll

Total of n − 1 ExtractMin and m ChangeKey/Insert operations,
yielding a running time of O(m log n).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Final Version of Prim’s Algorithm

Prim’s Algorithm(G , c , s)

1: Insert(Q, s, 0, ∅)
2: while S 6= V do
3: (v , a(v), u) = ExtractMin(Q)
4: Add node v to S and edge (u, v) to T .
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if c(v , x) < a(x) then
7: a(x) = c(v , x)
8: ChangeKey(Q, x , a(x), v)

Q is a priority queue.

Each element in Q is a triple: the node, its attachment cost, and its
predecessor in the MST.

In Step 8, if x is not already in Q, simply Insert (x , a(x), v) into Q.

Total of n − 1 ExtractMin and m ChangeKey/Insert operations,
yielding a running time of O(m log n).

Skip implementation of Kruskal’s algorithm.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Implementing Kruskal’s Algorithm

Start with an empty set T of edges.

Process edges in E in increasing order of cost.

Add the next edge e to T only if adding e does not create a cycle.

Sorting edges takes O(m log n) time.

Key question: “Does adding e = (u, v) to T create a cycle?”
I Maintain set of connected components of T .
I Find(u): return the name of the connected component of T that u belongs

to.
I Union(A,B): merge connected components A and B.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Implementing Kruskal’s Algorithm

Start with an empty set T of edges.

Process edges in E in increasing order of cost.

Add the next edge e to T only if adding e does not create a cycle.

Sorting edges takes O(m log n) time.

Key question: “Does adding e = (u, v) to T create a cycle?”
I Maintain set of connected components of T .
I Find(u): return the name of the connected component of T that u belongs

to.
I Union(A,B): merge connected components A and B.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

How many Find invocations does Kruskal’s algorithm need?

2m.

How many Union invocations does Kruskal’s algorithm need? n − 1.

Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

How many Find invocations does Kruskal’s algorithm need? 2m.

How many Union invocations does Kruskal’s algorithm need?

n − 1.

Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

How many Find invocations does Kruskal’s algorithm need? 2m.

How many Union invocations does Kruskal’s algorithm need? n − 1.

Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

How many Find invocations does Kruskal’s algorithm need? 2m.

How many Union invocations does Kruskal’s algorithm need? n − 1.

Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

How many Find invocations does Kruskal’s algorithm need? 2m.

How many Union invocations does Kruskal’s algorithm need? n − 1.

Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Comments on Union-Find and MST

The Union-Find data structure is useful to maintain the connected
components of a graph as edges are added to the graph.

The data structure does not support edge deletion efficiently.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Shortest Paths Minimum Spanning Trees Implementation

Comments on MST Algorithms

To handle multiple edges with the same length, perturb each length by a
random infinitesimal amount. Read the textbook.

Any algorithm that constructs a spanning tree by including edges that satisfy
the cut property and deleting edges that satisfy the cycle property will yield
an MST!

Current best algorithm for MST runs in O(mα(m, n)) time (Chazelle 2000)
and O(m) randomised time (Karger, Klein, and Tarjan, 1995).

Holy grail: O(m) deterministic algorithm for MST.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure

Abstraction of the data structure needed by Kruskal’s algorithm.

Maintain disjoint subsets of elements from a universe U of n elements.

Each subset has an name. We will set a set’s name to be the identity of some
element in it.

Support three operations:
1 MakeUnionFind(U): initialise the data structure with elements in U.
2 Find(u): return the identity of the subset that contains u.
3 Union(A,B): merge the sets named A and B into one set.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

Implementing the operations:

1 MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2 Find(s): return Component[s] in O(1) time.
3 Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

Union is very slow because we cannot efficiently find the elements that
belong to a set.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

Implementing the operations:
1 MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2 Find(s): return Component[s] in O(1) time.
3 Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

Union is very slow because we cannot efficiently find the elements that
belong to a set.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

Implementing the operations:
1 MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2 Find(s): return Component[s] in O(1) time.
3 Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

Union is very slow because

we cannot efficiently find the elements that
belong to a set.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

Implementing the operations:
1 MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2 Find(s): return Component[s] in O(1) time.
3 Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

Union is very slow because we cannot efficiently find the elements that
belong to a set.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 2

Optimisation 1: Use an array Elements
I Indices of Elements range from 1 to n.
I Elements[s] stores the elements in the subset named s in a list.

Execute Union(A,B) by merging B into A in two steps:
1 Updating Component for elements of B in O(|B|) time.
2 Append Elements[B] to Elements[A] in O(1) time.

Union takes Ω(n) in the worst-case.

Optimisation 2: Store size of each set in an array (say, Size). If
Size[B] ≤ Size[A], merge B into A. Otherwise merge A into B. Update
Size.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 2

Optimisation 1: Use an array Elements
I Indices of Elements range from 1 to n.
I Elements[s] stores the elements in the subset named s in a list.

Execute Union(A,B) by merging B into A in two steps:
1 Updating Component for elements of B in O(|B|) time.
2 Append Elements[B] to Elements[A] in O(1) time.

Union takes Ω(n) in the worst-case.

Optimisation 2: Store size of each set in an array (say, Size). If
Size[B] ≤ Size[A], merge B into A. Otherwise merge A into B. Update
Size.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.

I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.

I Intuition: running time of Union is dominated by updates to Component.
Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

MakeUnionFind(S) and Find(u) are as before.

Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

Goal: Implement Find in O(log n) and Union in O(1) worst-case time.

Represent each subset in a tree using pointers:
I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

Implementing Find(u): follow pointers from u to the root of u’s tree.

Implementing Union(A,B): make smaller tree’s root a child of the larger
tree’s root. Takes O(1) time.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

Goal: Implement Find in O(log n) and Union in O(1) worst-case time.

Represent each subset in a tree using pointers:
I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

Implementing Find(u): follow pointers from u to the root of u’s tree.

Implementing Union(A,B): make smaller tree’s root a child of the larger
tree’s root. Takes O(1) time.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

Goal: Implement Find in O(log n) and Union in O(1) worst-case time.

Represent each subset in a tree using pointers:
I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

Implementing Find(u): follow pointers from u to the root of u’s tree.

Implementing Union(A,B): make smaller tree’s root a child of the larger
tree’s root. Takes O(1) time.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

Goal: Implement Find in O(log n) and Union in O(1) worst-case time.

Represent each subset in a tree using pointers:
I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

Implementing Find(u): follow pointers from u to the root of u’s tree.

Implementing Union(A,B): make smaller tree’s root a child of the larger
tree’s root. Takes O(1) time.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Find in Implementation 3

Why does Find(u) take O(log n) time?

Number of pointers followed equals the number of times the identity of the
set containing u changed.

Every time u’s set’s identity changes, the set at least doubles in size ⇒ there
are O(log n) pointers followed.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Find in Implementation 3

Why does Find(u) take O(log n) time?

Number of pointers followed equals the number of times the identity of the
set containing u changed.

Every time u’s set’s identity changes, the set at least doubles in size ⇒ there
are O(log n) pointers followed.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

Every time we invoke Find(u), we follow the same set of pointers.

Path compression: make all nodes visited by Find(u) children of the root.

Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

Every time we invoke Find(u), we follow the same set of pointers.

Path compression: make all nodes visited by Find(u) children of the root.

Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

Every time we invoke Find(u), we follow the same set of pointers.

Path compression: make all nodes visited by Find(u) children of the root.

Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

Every time we invoke Find(u), we follow the same set of pointers.

Path compression: make all nodes visited by Find(u) children of the root.

Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali September 21, 23, 28, 2021 Greedy Graph Algorithms

	Shortest Paths
	Minimum Spanning Trees
	Implementation
	Appendix
	Appendix: Union-Find

