# Applications of Minimum Spanning Trees 

T. M. Murali

October 5, 2021

## Minimum Spanning Trees

- We motivated MSTs through the problem of finding a low-cost network connecting a set of nodes.
- MSTs are useful in a number of seemingly disparate applications.
- We will consider two problems: minimum bottleneck graphs (problem 9 in Chapter 4) and clustering (Chapter 4.7).


## Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
- Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
- Total road length is not a criterion.


## Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
- Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
- Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.


## Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
- Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
- Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
- In an undirected graph $G(V, E)$, let $(V, T)$ be a spanning tree. The bottleneck edge in $T$ is the edge with largest cost in $T$.


## Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
- Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
- Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
- In an undirected graph $G(V, E)$, let $(V, T)$ be a spanning tree. The bottleneck edge in $T$ is the edge with largest cost in $T$.
Minimum Bottleneck Spanning Tree (MBST)
INSTANCE: An undirected graph $G(V, E)$ and a function $c: E \rightarrow \mathbb{R}^{+}$ SOLUTION: A set $T \subseteq E$ of edges such that $(V, T)$ is a spanning tree and there is no spanning tree in $G$ with a cheaper bottleneck edge.


## MBST Examples



## Two Questions on MBSTs

(1) Assume edge costs are distinct.
(2) Is every MBST tree an MST? P Poll
(0) Is every MST an MBST?

## Two Questions on MBSTs

(1) Assume edge costs are distinct.
(2) Is every MBST tree an MST? No. It is easy to create a counterexample.
(3) Is every MST an MBST?

## Two Questions on MBSTs

(1) Assume edge costs are distinct.
(2) Is every MBST tree an MST? No. It is easy to create a counterexample.
(3) Is every MST an MBST? Yes. Use the cycle property.

- Let $T$ be the MST and let $T^{\prime}$ be a spanning tree with a cheaper bottleneck edge. Let $e$ be the bottleneck edge in $T$.

```
> Poll
```


## Two Questions on MBSTs

(1) Assume edge costs are distinct.
(2) Is every MBST tree an MST? No. It is easy to create a counterexample.
(0 Is every MST an MBST? Yes. Use the cycle property.

- Let $T$ be the MST and let $T^{\prime}$ be a spanning tree with a cheaper bottleneck edge. Let $e$ be the bottleneck edge in $T$.
- Every edge in $T^{\prime}$ is cheaper than $e$.
- Adding $e$ to $T^{\prime}$ creates a cycle consisting only of edges in $T^{\prime}$ and $e$.


## Two Questions on MBSTs

(1) Assume edge costs are distinct.
(2) Is every MBST tree an MST? No. It is easy to create a counterexample.
(3) Is every MST an MBST? Yes. Use the cycle property.

- Let $T$ be the MST and let $T^{\prime}$ be a spanning tree with a cheaper bottleneck edge. Let $e$ be the bottleneck edge in $T$.
- Every edge in $T^{\prime}$ is cheaper than $e$.
- Adding $e$ to $T^{\prime}$ creates a cycle consisting only of edges in $T^{\prime}$ and $e$.
- Since $e$ is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that $T$ is an MST.


## Motivation for Clustering

## We did not discuss this problem in class.

- Given a set of objects and distances between them.
- Objects can be images, web pages, people, species ....
- Distance function: increasing distance corresponds to decreasing similarity.
- Goal: group objects into clusters, where each cluster is a set of similar objects.


## Example of Clustering



## Example of Clustering



## Example of Clustering



## Example of Clustering



## Formalising the Clustering Problem

- Let $U$ be the set of $n$ objects labelled $p_{1}, p_{2}, \ldots, p_{n}$.
- For every pair $p_{i}$ and $p_{j}$, we have a distance $d\left(p_{i}, p_{j}\right)$.
- We require $d\left(p_{i}, p_{i}\right)=0, d\left(p_{i}, p_{j}\right)>0$, if $i \neq j$, and $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$


## Formalising the Clustering Problem

- Let $U$ be the set of $n$ objects labelled $p_{1}, p_{2}, \ldots, p_{n}$.
- For every pair $p_{i}$ and $p_{j}$, we have a distance $d\left(p_{i}, p_{j}\right)$.
- We require $d\left(p_{i}, p_{i}\right)=0, d\left(p_{i}, p_{j}\right)>0$, if $i \neq j$, and $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$
- Given a positive integer $k$, a $k$-clustering of $U$ is a partition of $U$ into $k$ non-empty subsets or "clusters" $C_{1}, C_{2}, \ldots C_{k}$.


## Formalising the Clustering Problem

- Let $U$ be the set of $n$ objects labelled $p_{1}, p_{2}, \ldots, p_{n}$.
- For every pair $p_{i}$ and $p_{j}$, we have a distance $d\left(p_{i}, p_{j}\right)$.
- We require $d\left(p_{i}, p_{i}\right)=0, d\left(p_{i}, p_{j}\right)>0$, if $i \neq j$, and $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$
- Given a positive integer $k$, a $k$-clustering of $U$ is a partition of $U$ into $k$ non-empty subsets or "clusters" $C_{1}, C_{2}, \ldots C_{k}$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$
\operatorname{spacing}\left(C_{1}, C_{2}, \ldots C_{k}\right)=\min _{\substack{1 \leq i, j \leq k \\ i \neq j \\ p \in C_{i}, q \in C_{j}}} d(p, q)
$$

## Formalising the Clustering Problem

- Let $U$ be the set of $n$ objects labelled $p_{1}, p_{2}, \ldots, p_{n}$.
- For every pair $p_{i}$ and $p_{j}$, we have a distance $d\left(p_{i}, p_{j}\right)$.
- We require $d\left(p_{i}, p_{i}\right)=0, d\left(p_{i}, p_{j}\right)>0$, if $i \neq j$, and $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$
- Given a positive integer $k$, a $k$-clustering of $U$ is a partition of $U$ into $k$ non-empty subsets or "clusters" $C_{1}, C_{2}, \ldots C_{k}$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$
\operatorname{spacing}\left(C_{1}, C_{2}, \ldots C_{k}\right)=\min _{\substack{1 \leq i, j \leq k \\ i \neq j \\ p \in C_{i}, q \in C_{j}}} d(p, q)
$$

Clustering of Maximum Spacing
INSTANCE: A set $U$ of objects, a distance function $d: U \times U \rightarrow \mathbb{R}^{+}$, and a positive integer $k$
SOLUTION: A $k$-clustering of $U$ whose spacing is the largest over all possible $k$-clusterings.

## Example of Clustering



## Algorithm for Clustering of Maximum Spacing



## Algorithm for Clustering of Maximum Spacing



## Algorithm for Clustering of Maximum Spacing



- Intuition: greedily cluster objects in increasing order of distance.


## Algorithm for Clustering of Maximum Spacing



- Intuition: greedily cluster objects in increasing order of distance.


## Algorithm for Clustering of Maximum Spacing



- Intuition: greedily cluster objects in increasing order of distance.
- Let $\mathcal{C}$ be a set of $n$ clusters, with each object in $U$ in its own cluster.
- Process pairs of objects in increasing order of distance.
- Let $(p, q)$ be the next pair with $p \in C_{p}$ and $q \in C_{q}$.
- If $C_{p} \neq C_{q}$, add new cluster $C_{p} \cup C_{q}$ to $\mathcal{C}$, delete $C_{p}$ and $C_{q}$ from $\mathcal{C}$.
- Stop when there are $k$ clusters in $\mathcal{C}$.


## Algorithm for Clustering of Maximum Spacing



- Intuition: greedily cluster objects in increasing order of distance.
- Let $\mathcal{C}$ be a set of $n$ clusters, with each object in $U$ in its own cluster.
- Process pairs of objects in increasing order of distance.
- Let $(p, q)$ be the next pair with $p \in C_{p}$ and $q \in C_{q}$.
- If $C_{p} \neq C_{q}$, add new cluster $C_{p} \cup C_{q}$ to $\mathcal{C}$, delete $C_{p}$ and $C_{q}$ from $\mathcal{C}$.
- Stop when there are $k$ clusters in $\mathcal{C}$.
- Same as Kruskal's algorithm but do not add last $k-1$ edges in MST.


## What is the Spacing of the Algorithm's Clustering?

- Let $\mathcal{C}$ be the clustering produced by the algorithm.
- What is spacing $(\mathcal{C})$ ?



## What is the Spacing of the Algorithm's Clustering?

- Let $\mathcal{C}$ be the clustering produced by the algorithm.
- What is spacing $(\mathcal{C})$ ? It is the cost of the $(k-1)$ st most expensive edge in the MST. Let this cost be $d^{*}$.


Why Does the Algorithm Compute the Clustering of Largest Spacing?


- Let $\mathcal{C}^{\prime}$ be any other clustering (with $k$ clusters).
- We will prove that spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$.

Why Does the Algorithm Compute the Clustering of Largest Spacing?


- Let $\mathcal{C}^{\prime}$ be any other clustering (with $k$ clusters).
- We will prove that spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$.


## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures




## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures



There is a pair of objects in the same cluster in $\mathcal{C}^{\prime}$ but in different clusters in $\mathcal{C}$. Not useful for proof.

## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures



There is a pair of objects in the same cluster in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}$. Can use in proof since they are connected by edges in the tree containing them.

## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures




There is a pair of objects in the same cluster in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}$. Consider the MST that the algorithm has already added.

## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures



There is a pair of objects in the same cluster in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}$. A path of MST edges that the algorithm has already added connects these objects.

## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures



There is a pair of objects in the same cluster in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}$. An MST edge that the algorithm has already added connects these objects.

## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : in Pictures



$\operatorname{spacing}\left(\mathcal{C}^{\prime}\right) \leq$ distance between these objects $\leq d^{*}$

## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : Without pictures

- There must be two objects $p_{i}$ and $p_{j}$ that are in the same cluster $C_{r}$ in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}$ :


## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : Without pictures

- There must be two objects $p_{i}$ and $p_{j}$ that are in the same cluster $C_{r}$ in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}: \operatorname{spacing}\left(\mathcal{C}^{\prime}\right) \leq d\left(p_{i}, p_{j}\right)$.


## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}$ : Without pictures

- There must be two objects $p_{i}$ and $p_{j}$ that are in the same cluster $C_{r}$ in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}: \operatorname{spacing}\left(\mathcal{C}^{\prime}\right) \leq d\left(p_{i}, p_{j}\right)$. But $d\left(p_{i}, p_{j}\right)$ could be $>d^{*}$.
- Suppose $p_{i} \in C_{s}^{\prime}$ and $p_{j} \in C_{t}^{\prime}$ in $\mathcal{C}^{\prime}$.


## spacing $\left(\mathcal{C}^{\prime}\right) \leq d^{*}:$ Without pictures

- There must be two objects $p_{i}$ and $p_{j}$ that are in the same cluster $C_{r}$ in $\mathcal{C}$ but in different clusters in $\mathcal{C}^{\prime}: \operatorname{spacing}\left(\mathcal{C}^{\prime}\right) \leq d\left(p_{i}, p_{j}\right)$. But $d\left(p_{i}, p_{j}\right)$ could be $>d^{*}$.
- Suppose $p_{i} \in C_{s}^{\prime}$ and $p_{j} \in C_{t}^{\prime}$ in $\mathcal{C}^{\prime}$.
- All edges in the path $Q$ connecting $p_{i}$ and $p_{j}$ in the MST have length $\leq d^{*}$.
- In particular, there is an object $p \in C_{s}^{\prime}$ and an object $p^{\prime} \notin C_{s}^{\prime}$ such that $p$ and $p^{\prime}$ are adjacent in $Q$.
- $d\left(p, p^{\prime}\right) \leq d^{*} \Rightarrow \operatorname{spacing}\left(\mathcal{C}^{\prime}\right) \leq d\left(p, p^{\prime}\right) \leq d^{*}$.


Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any other clustering can be no larger than that of the clustering found by the single-linkage algorithm.

