Divide and Conquer Algorithms

T. M. Murali

October 7, 12, 2021

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
- Partition problem into two equal sub-problems of size $n / 2$.
- Solve each part recursively.
- Combine the two solutions in $O(n)$ time.
- Resulting running time is $O(n \log n)$.

Mergesort

Sort

INSTANCE: Nonempty list $L=x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

- Mergesort is a divide-and-conquer algorithm for sorting.
(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(3) Recursively sort B.
(9) Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

- Merge two sorted lists $A=a_{1}, a_{2}, \ldots, a_{k}$ and $B=b_{1}, b_{2}, \ldots b_{l}$.

Maintain a current pointer for each list.
Initialise each pointer to the front of the list.
While both lists are nonempty:
Let a_{i} and b_{j} be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
Advance the current pointer in the list that the smaller element belonged to.
EndWhile
Append the rest of the non-empty list to the output.

Merging Two Sorted Lists

- Merge two sorted lists $A=a_{1}, a_{2}, \ldots, a_{k}$ and $B=b_{1}, b_{2}, \ldots b_{l}$.

Maintain a current pointer for each list.
Initialise each pointer to the front of the list.
While both lists are nonempty:
Let a_{i} and b_{j} be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
Advance the current pointer in the list that the smaller element belonged to.
EndWhile
Append the rest of the non-empty list to the output.

- Running time of this algorithm is $O(k+l)$.

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(3) Recursively sort B.
(- Merge the sorted lists A and B into a single sorted list.

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(Recursively sort B.
(9) Merge the sorted lists A and B into a single sorted list.

Running time for L
Running time for $A+$
Running time for $\mathrm{B}+$
Time to split the input into two lists +
Time to merge two sorted lists.

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(Recursively sort B.
(9) Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements $=$
Running time for $A+$
Running time for $\mathrm{B}+$
Time to split the input into two lists +
Time to merge two sorted lists.

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(3) Recursively sort B.
(4) Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq
Worst-case running time for $\lfloor n / 2\rfloor$ elements + Worst-case running time for $\lceil n / 2\rceil$ elements +
Time to split the input into two lists +
Time to merge two sorted lists.

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(Recursively sort B.
(9) Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq
Worst-case running time for $\lfloor n / 2\rfloor$ elements + Worst-case running time for $\lceil n / 2\rceil$ elements +
Time to split the input into two lists +
Time to merge two sorted lists.

- Assume n is a power of 2 .
- Define $T(n) \equiv$ Worst-case running time for n elements, for every $n \geq 1$.

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.
(Recursively sort B.
(9) Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq
Worst-case running time for $\lfloor n / 2\rfloor$ elements + Worst-case running time for $\lceil n / 2\rceil$ elements +
Time to split the input into two lists +
Time to merge two sorted lists.

- Assume n is a power of 2 .
- Define $T(n) \equiv$ Worst-case running time for n elements, for every $n \geq 1$.

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+c n, n>2 \\
& T(2) \leq c
\end{aligned}
$$

Analysing Mergesort

(1) Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
(2) Recursively sort A.

- Recursively sort B.
(9) Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq
Worst-case running time for $\lfloor n / 2\rfloor$ elements + Worst-case running time for $\lceil n / 2\rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

- Assume n is a power of 2 .
- Define $T(n) \equiv$ Worst-case running time for n elements, for every $n \geq 1$.

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+c n, n>2 \\
& T(2) \leq c
\end{aligned}
$$

- Three basic ways of solving this recurrence relation:
(1) "Unroll" the recurrence (somewhat informal method).
(2) Guess a solution and substitute into recurrence to check.
(0) Guess solution in $O()$ form and substitute into recurrence to determine the constants. Read from the textbook.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

- Input to each sub-problem on level i has size
- Recursion tree has Poll levels.
- Number of sub-problems on level i has size

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

- Input to each sub-problem on level i has size $n / 2^{i}$.
- Recursion tree has $\log n$ levels.
- Number of sub-problems on level i has size 2^{i}.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

- Input to each sub-problem on level i has size $n / 2^{i}$.
- Recursion tree has $\log n$ levels.
- Number of sub-problems on level i has size 2^{i}.
- Total work done at each level is
- Running time of the algorithm is

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

- Input to each sub-problem on level i has size $n / 2^{i}$.
- Recursion tree has $\log n$ levels.
- Number of sub-problems on level i has size 2^{i}.
- Total work done at each level is cn.
- Running time of the algorithm is $c n \log n$.
- Use this method only to get an idea of the solution.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.

Inductive hypothesis: ??

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.

Inductive hypothesis: ??

- Inductive step: Prove $T(n) \leq c n \log n$.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.

Inductive hypothesis: ??

- Inductive step: Prove $T(n) \leq c n \log n$.
$T(n) \leq 2 T\left(\frac{n}{2}\right)+c n$, from the recurrence itself

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.

Inductive hypothesis: Must include $n / 2$.

- Inductive step: Prove $T(n) \leq c n \log n$.
$T(n) \leq 2 T\left(\frac{n}{2}\right)+c n$, from the recurrence itself

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n / 2$. Assume $T(m) \leq c m \log _{2} m$, for all $m<n$. Therefore,

$$
T\left(\frac{n}{2}\right) \leq \frac{c n}{2} \log \left(\frac{n}{2}\right) .
$$

- Inductive step: Prove $T(n) \leq c n \log n$.
$T(n) \leq 2 T\left(\frac{n}{2}\right)+c n$, from the recurrence itself

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n / 2$.

Assume $T(m) \leq c m \log _{2} m$, for all $m<n$. Therefore,

$$
T\left(\frac{n}{2}\right) \leq \frac{c n}{2} \log \left(\frac{n}{2}\right) .
$$

- Inductive step: Prove $T(n) \leq c n \log n$.

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n, \text { from the recurrence itself } \\
& \leq 2\left(\frac{c n}{2} \log \left(\frac{n}{2}\right)\right)+c n, \text { by the inductive hypothesis } \\
& =c n \log \left(\frac{n}{2}\right)+c n \\
& =c n \log n-c n+c n \\
& =c n \log n .
\end{aligned}
$$

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n / 2$.

Assume $T(m) \leq c m \log _{2} m$, for all $m<n$. Therefore,

$$
T\left(\frac{n}{2}\right) \leq \frac{c n}{2} \log \left(\frac{n}{2}\right) .
$$

- Inductive step: Prove $T(n) \leq c n \log n$.

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n, \text { from the recurrence itself } \\
& \leq 2\left(\frac{c n}{2} \log \left(\frac{n}{2}\right)\right)+c n, \text { by the inductive hypothesis } \\
& =c n \log \left(\frac{n}{2}\right)+c n \\
& =c n \log n-c n+c n \\
& =c n \log n .
\end{aligned}
$$

- Why is $T(n) \leq k n^{2}$ a "loose" bound?

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n / 2$.

Assume $T(m) \leq c m \log _{2} m$, for all $m<n$. Therefore,

$$
T\left(\frac{n}{2}\right) \leq \frac{c n}{2} \log \left(\frac{n}{2}\right) .
$$

- Inductive step: Prove $T(n) \leq c n \log n$.

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n, \text { from the recurrence itself } \\
& \leq 2\left(\frac{c n}{2} \log \left(\frac{n}{2}\right)\right)+c n, \text { by the inductive hypothesis } \\
& =c n \log \left(\frac{n}{2}\right)+c n \\
& =c n \log n-c n+c n \\
& =c n \log n .
\end{aligned}
$$

- Why is $T(n) \leq k n^{2}$ a "loose" bound?
- Why doesn't an attempt to prove $T(n) \leq k n$, for some $k>0$ work?

Proof for All Values of n

- We assumed n is a power of 2 .
- How do we generalise the proof?

Proof for All Values of n

- We assumed n is a power of 2 .
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n+1)$, for all n : worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m)=O(m \log m)$

Proof for All Values of n

- We assumed n is a power of 2 .
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n+1)$, for all n : worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m)=O(m \log m)=O(n \log n)$, because $m \leq 2 n$.

Other Recurrence Relations

- Divide into q sub-problems of size $n / 2$ and merge in $O(n)$ time. Two distinct cases: $q=1$ and $q>2$.
- Divide into two sub-problems of size $n / 2$ and merge in $O\left(n^{2}\right)$ time.

$$
T(n)=q T(n / 2)+c n, q=1
$$

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n / 2)+O(n)$.

$$
T(n)=q T(n / 2)+c n, q=1
$$

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n / 2)+O(n)$.

- Each invocation reduces the problem size by a factor of $2 \Rightarrow$ there are $\log n$ levels in the recursion tree.
- At level i of the tree, the problem size is $n / 2^{i}$ and the work done is $c n / 2^{i}$.
- Therefore, the total work done is

$$
\sum_{i=0}^{i=\log n} \frac{c n}{2^{i}}=
$$

$$
T(n)=q T(n / 2)+c n, q=1
$$

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n / 2)+O(n)$.

- Each invocation reduces the problem size by a factor of $2 \Rightarrow$ there are $\log n$ levels in the recursion tree.
- At level i of the tree, the problem size is $n / 2^{i}$ and the work done is $c n / 2^{i}$.
- Therefore, the total work done is

$$
\sum_{i=0}^{i=\log n} \frac{c n}{2^{i}}=O(n)
$$

$T(n)=q T(n / 2)+c n, q>2$

Level 0: $c n$ total

Level 1: $c n / 2+c n / 2+c n / 2=(3 / 2) c n$ total

Figure 5.2 Unrolling the recurrence $T(n) \leq 3 T(n / 2)+O(n)$.

$$
T(n)=q T(n / 2)+c n, q>2
$$

Level 0: cn total

Level 1: $c n / 2+c n / 2+c n / 2=(3 / 2) c n$ total

Figure 5.2 Unrolling the recurrence $T(n) \leq 3 T(n / 2)+O(n)$.

- There are $\log n$ levels in the recursion tree.
- At level i of the tree, there are q^{i} sub-problems, each of size $n / 2^{i}$.
- The total work done at level i is $q^{i} c n / 2^{i}$. Therefore, the total work done is

$$
T(n) \leq \sum_{i=0}^{i=\log _{2} n} q^{i} \frac{c n}{2^{i}} \leq
$$

$$
T(n)=q T(n / 2)+c n, q>2
$$

Level 0: cn total

Level 1:cn/2 $+c n / 2+c n / 2=(3 / 2) c n$ total

Figure 5.2 Unrolling the recurrence $T(n) \leq 3 T(n / 2)+O(n)$.

- There are $\log n$ levels in the recursion tree.
- At level i of the tree, there are q^{i} sub-problems, each of size $n / 2^{i}$.
- The total work done at level i is $q^{i} c n / 2^{i}$. Therefore, the total work done is

$$
\begin{aligned}
T(n) & \leq \sum_{i=0}^{i=\log _{2} n} q^{i} \frac{c n}{2^{i}} \leq c n \sum_{i=0}^{i=\log _{2} n}\left(\frac{q}{2}\right)^{i} \\
& =O\left(c n\left(\frac{q}{2}\right)^{\log _{2} n}\right)=O\left(c n\left(\frac{q}{2}\right)^{\left(\log _{q / 2} n\right)\left(\log _{2} q / 2\right)}\right) \\
& =O\left(c n n^{\log _{2} q / 2}\right)=O\left(n^{\log _{2} q}\right)
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+c n^{2}
$$

- Total work done is

$$
\sum_{i=0}^{i=\log n} 2^{i}\left(\frac{c n}{2^{i}}\right)^{2} \leq
$$

$$
T(n)=2 T(n / 2)+c n^{2}
$$

- Total work done is

$$
\sum_{i=0}^{i=\log n} 2^{i}\left(\frac{c n}{2^{i}}\right)^{2} \leq O\left(n^{2}\right)
$$

Motivation

Inspired by your shopping trends

- Collaborative filtering: match one user's preferences to those of other users, e.g., purchases, books, music.
- Meta-search engines: merge results of multiple search engines into a better search result.

Fundamental Question

- How do we compare a pair of rankings?
- My ranking of songs: ordered list of integers from 1 to n.
- Your ranking of songs: $a_{1}, a_{2}, \ldots, a_{n}$, a permutation of the integers from 1 to n.

Comparing Rankings

- Suggestion: two rankings of songs are very similar if they have few inversions.

Comparing Rankings

- Suggestion: two rankings of songs are very similar if they have few inversions.
- The second ranking has an inversion if there exist i, j such that $i<j$ but $a_{i}>a_{j}$.
- The number of inversions s is a measure of the difference between the rankings.
- Question also arises in statistics: Kendall's rank correlation of two lists of numbers is $1-2 s /(n(n-1))$.

Counting Inversions

Count Inversions

INSTANCE: A list $L=x_{1}, x_{2}, \ldots, x_{n}$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \leq i<j \leq n$ such $x_{i}>x_{j}$.

Counting Inversions

Count Inversions

INSTANCE: A list $L=x_{1}, x_{2}, \ldots, x_{n}$ of distinct integers between 1 and n.
SOLUTION: The number of pairs $(i, j), 1 \leq i<j \leq n$ such $x_{i}>x_{j}$.

Counting Inversions

Count Inversions

INSTANCE: A list $L=x_{1}, x_{2}, \ldots, x_{n}$ of distinct integers between 1 and n.
SOLUTION: The number of pairs $(i, j), 1 \leq i<j \leq n$ such $x_{i}>x_{j}$.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers?

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
(1) Partition L into two lists A and B of size $n / 2$ each.
(2) Recursively count the number of inversions in A.
(3) Recursively count the number of inversions in B.
(9) Count the number of inversions involving one element in A and one element in B.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
(1) Partition L into two lists A and B of size $n / 2$ each.
(2) Recursively count the number of inversions in A.
(3) Recursively count the number of inversions in B.
(9) Count the number of inversions involving one element in A and one element in B.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
(1) Partition L into two lists A and B of size $n / 2$ each.
(2) Recursively count the number of inversions in A.
(3) Recursively count the number of inversions in B.
(9) Count the number of inversions involving one element in A and one element in B.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
(1) Partition L into two lists A and B of size $n / 2$ each.
(2) Recursively count the number of inversions in A.
(3) Recursively count the number of inversions in B.
(9) Count the number of inversions involving one element in A and one element in B.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge
procedure:
(1) Maintain a current pointer for each list.
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return
the merged list.

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) Do something clever in $O(1)$ time.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) Do something clever in $O(1)$ time.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) Do something clever in $O(1)$ time.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

\section*{Counting Inversions: Conquer Step
 | 1 | 2 | 4 | 5 | 6 | 8 | 3 | 7 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) Do something clever in $O(1)$ time.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$,
(1) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

\section*{Counting Inversions: Conquer Step
 | 1 | 2 | 4 | 5 | 6 | 8 | 3 | 7 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

Counting Inversions: Conquer Step

1	2	4	5	6	8	3	7	9	10	11	12

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

\section*{Counting Inversions: Conquer Step
 | 1 | 2 | 4 | 5 | 6 | 8 | 3 | 7 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

\section*{Counting Inversions: Conquer Step
 | 1 | 2 | 4 | 5 | 6 | 8 | 3 | 7 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

\section*{Counting Inversions: Conquer Step
 | 1 | 2 | 4 | 5 | 6 | 8 | 3 | 7 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-And-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

\section*{Counting Inversions: Conquer Step
 | 1 | 2 | 4 | 5 | 6 | 8 | 3 | 7 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(4) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
(1) Maintain a current pointer for each list.
(2) Maintain a variable count initialised to 0 .
(3) Initialise each pointer to the front of the list.
(9) While both lists are nonempty:
(1) Let a_{i} and b_{j} be the elements pointed to by the current pointers.
(2) Append the smaller of the two to the output list.
(3) If $b_{j}<a_{i}$, increment count by the number of elements remaining in A.
(9) Advance current in the list containing the smaller element.
(5) Append the rest of the non-empty list to the output.
(6) Return count and the merged list.
- Running time of this algorithm is $O(m)$.

Counting Inversions: Final Algorithm

```
Sort-and-Count(L)
    If the list has one element then
    there are no inversions
    Else
    Divide the list into two halves:
        A contains the first \lceil }n/2\rceil\mathrm{ elements
        B contains the remaining \lfloorn/2\rfloor elements
    (rA,A) = Sort-and-Count(A)
    (r, 隹) = Sort-and-Count(B)
    (r,L) = Merge-and-Count (A,B)
```

Endif
Return $r=r_{A}+r_{B}+r$, and the sorted list L

Counting Inversions: Final Algorithm

```
Sort-and-Count(L)
    If the list has one element then
    there are no inversions
    Else
    Divide the list into two halves:
        A contains the first \lceil }n/2\rceil\mathrm{ elements
        B contains the remaining \lfloorn/2\rfloor elements
    (r
    (r, 隹) = Sort-and-Count(B)
    (r,L) = Merge-and-Count (A,B)
```

Endif
Return $r=r_{A}+r_{B}+r$, and the sorted list L

- Running time $T(n)$ of the algorithm is $O(n \log n)$ because $T(n) \leq 2 T(n / 2)+O(n)$.

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: $n=1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n-1$ or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and / such that $k<I$ but $x_{k}>x_{l}$. When is this inversion counted by the algorithm?
- $k, I \leq\lfloor n / 2\rfloor$:
- $k, I \geq\lceil n / 2\rceil$:
- $k \leq\lfloor n / 2\rfloor, I \geq\lceil n / 2\rceil$:

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: $n=1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n-1$ or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and / such that $k<I$ but $x_{k}>x_{I}$. When is this inversion counted by the algorithm?
- $k, I \leq\lfloor n / 2\rfloor: x_{k}, x_{l} \in A$, counted in r_{A}, by the inductive hypothesis.
- $k, I \geq\lceil n / 2\rceil: x_{k}, x_{I} \in B$, counted in r_{B}, by the inductive hypothesis.
- $k \leq\lfloor n / 2\rfloor, I \geq\lceil n / 2\rceil$:

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: $n=1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n-1$ or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and / such that $k<I$ but $x_{k}>x_{l}$. When is this inversion counted by the algorithm?
- $k, I \leq\lfloor n / 2\rfloor: x_{k}, x_{I} \in A$, counted in r_{A}, by the inductive hypothesis.
- $k, I \geq\lceil n / 2\rceil: x_{k}, x_{I} \in B$, counted in r_{B}, by the inductive hypothesis.
- $k \leq\lfloor n / 2\rfloor, I \geq\lceil n / 2\rceil: x_{k} \in A, x_{l} \in B$. Is this inversion counted by Merge-and-Count?

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: $n=1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n-1$ or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and / such that $k<I$ but $x_{k}>x_{l}$. When is this inversion counted by the algorithm?
- $k, I \leq\lfloor n / 2\rfloor: x_{k}, x_{l} \in A$, counted in r_{A}, by the inductive hypothesis.
- $k, I \geq\lceil n / 2\rceil: x_{k}, x_{l} \in B$, counted in r_{B}, by the inductive hypothesis.
- $k \leq\lfloor n / 2\rfloor, I \geq\lceil n / 2\rceil: x_{k} \in A, x_{l} \in B$. Is this inversion counted by Merge-and-Count? Yes, when x_{l} is output.

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: $n=1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n-1$ or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and / such that $k<I$ but $x_{k}>x_{l}$. When is this inversion counted by the algorithm?
- $k, I \leq\lfloor n / 2\rfloor: x_{k}, x_{l} \in A$, counted in r_{A}, by the inductive hypothesis.
- $k, I \geq\lceil n / 2\rceil: x_{k}, x_{l} \in B$, counted in r_{B}, by the inductive hypothesis.
- $k \leq\lfloor n / 2\rfloor, I \geq\lceil n / 2\rceil: x_{k} \in A, x_{l} \in B$. Is this inversion counted by Merge-and-Count? Yes, when x_{l} is output.

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: $n=1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n-1$ or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and / such that $k<I$ but $x_{k}>x_{I}$. When is this inversion counted by the algorithm?
- $k, I \leq\lfloor n / 2\rfloor: x_{k}, x_{l} \in A$, counted in r_{A}, by the inductive hypothesis.
- $k, I \geq\lceil n / 2\rceil: x_{k}, x_{l} \in B$, counted in r_{B}, by the inductive hypothesis.
- $k \leq\lfloor n / 2\rfloor, I \geq\lceil n / 2\rceil: x_{k} \in A, x_{l} \in B$. Is this inversion counted by Merge-and-Count? Yes, when x_{l} is output.
- Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion? When x_{l} is output, it is smaller than all remaining elements in A, since A is sorted.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.
- Result has at most $2 n$ digits.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.
- Result has at most $2 n$ digits.
- Algorithm we learnt in school takes

	1100
	$\times 1101$
12	1100
$\times 13$	
36	0000
$\frac{1100}{126}$	$\frac{1100}{10011100}$
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.
- Result has at most $2 n$ digits.
- Algorithm we learnt in school takes $O\left(n^{2}\right)$ operations. Size of the input is not 2 but 2n,

	1100
	$\times 1101$
12	0000
$\times 1100$	
36	1100
$\frac{12}{156}$	$\frac{1100}{10011100}$
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

Divide-and-Conquer Idea

- Let us use divide and conquer

Divide-and-Conquer Idea

- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

Divide-and-Conquer Idea

- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
\begin{aligned}
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =
\end{aligned}
$$

Divide-and-Conquer Idea

- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

Divide-and-Conquer Algorithm

Divide-and-Conquer Algorithm

- Algorithm:
(1) Compute $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}$, and $x_{0} y_{0}$ recursively.
(2) Merge the answers, i.e..,
(1) Multiple $x_{1} y_{1}$ by 2^{n}
(2) Add $x_{1} y_{0}$ and $x_{0} y_{1}$ and multiple this sum by $2^{n / 2}$
(3) Add these two numbers to $x_{0} y_{0}$

Divide-and-Conquer Algorithm

- Algorithm:
(1) Compute $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}$, and $x_{0} y_{0}$ recursively.
(2) Merge the answers, i.e..,
(1) Multiple $x_{1} y_{1}$ by 2^{n}
(2) Add $x_{1} y_{0}$ and $x_{0} y_{1}$ and multiple this sum by $2^{n / 2}$
(3) Add these two numbers to $x_{0} y_{0}$
- What is the running time of the conquer step?

Divide-and-Conquer Algorithm

- Algorithm:
(1) Compute $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}$, and $x_{0} y_{0}$ recursively.
(2) Merge the answers, i.e...,
(1) Multiple $x_{1} y_{1}$ by 2^{n}
(2) Add $x_{1} y_{0}$ and $x_{0} y_{1}$ and multiple this sum by $2^{n / 2}$
(3) Add these two numbers to $x_{0} y_{0}$
- What is the running time of the conquer step?
- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can add their products in $O(n)$ time.

Divide-and-Conquer Algorithm

- Algorithm:
(1) Compute $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}$, and $x_{0} y_{0}$ recursively.
(2) Merge the answers, i.e..,
(1) Multiple $x_{1} y_{1}$ by 2^{n}
(2) Add $x_{1} y_{0}$ and $x_{0} y_{1}$ and multiple this sum by $2^{n / 2}$
(3) Add these two numbers to $x_{0} y_{0}$
- What is the running time of the conquer step?
- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can add their products in $O(n)$ time.
- What is the running time $T(n)$?

Divide-and-Conquer Algorithm

- Algorithm:
(1) Compute $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}$, and $x_{0} y_{0}$ recursively.
(2) Merge the answers, i.e..,
(1) Multiple $x_{1} y_{1}$ by 2^{n}
(2) Add $x_{1} y_{0}$ and $x_{0} y_{1}$ and multiple this sum by $2^{n / 2}$
(3) Add these two numbers to $x_{0} y_{0}$
- What is the running time of the conquer step?
- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can add their products in $O(n)$ time.
- What is the running time $T(n)$?

$$
T(n) \leq 4 T(n / 2)+c n \leq O\left(n^{2}\right)
$$

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?
- No need to compute $x_{1} y_{0}$ and $x_{0} y_{1}$ independently; we just need their sum.

$$
\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right) \quad=x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
$$

$$
\left(x_{1} y_{0}+x_{0} y_{1}\right)=\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)-x_{1} y_{1} \longrightarrow x_{0} y_{0}
$$

Need this sum
$n / 2$ bits

- Compute $x_{1} y_{1}, x_{0} y_{0}$ and $\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$ recursively and then compute $\left(x_{1} y_{0}+x_{0} y_{1}\right)$ by subtraction.
- Strategy: simple arithmetic manipulations.

Final Algorithm

```
Recursive-Multiply(x,y):
    Write \(x=x_{1} \cdot 2^{n / 2}+x_{0}\)
    \(y=y_{1} \cdot 2^{n / 2}+y_{0}\)
    Compute \(x_{1}+x_{0}\) and \(y_{1}+y_{0}\)
    \(p=\) Recursive-Multiply \(\left(x_{1}+x_{0}, \quad y_{1}+y_{0}\right)\)
    \(x_{1} y_{1}=\operatorname{Recursive-Multiply}\left(x_{1}, y_{1}\right)\)
    \(x_{0} y_{0}=\operatorname{Recursive-Multiply}\left(x_{0}, y_{0}\right)\)
    Return \(x_{1} y_{1} \cdot 2^{n}+\left(p-x_{1} y_{1}-x_{0} y_{0}\right) \cdot 2^{n / 2}+x_{0} y_{0}\)
```


Final Algorithm

Recursive-Multiply (x, y):

$$
\text { Write } \begin{aligned}
x & =x_{1} \cdot 2^{n / 2}+x_{0} \\
y & =y_{1} \cdot 2^{n / 2}+y_{0}
\end{aligned}
$$

Compute $x_{1}+x_{0}$ and $y_{1}+y_{0}$
$p=$ Recursive-Multiply $\left(x_{1}+x_{0}, y_{1}+y_{0}\right)$
$x_{1} y_{1}=\operatorname{Recursive-Multiply}\left(x_{1}, y_{1}\right)$
$x_{0} y_{0}=\operatorname{Recursive-Multiply}\left(x_{0}, y_{0}\right)$
Return $x_{1} y_{1} \cdot 2^{n}+\left(p-x_{1} y_{1}-x_{0} y_{0}\right) \cdot 2^{n / 2}+x_{0} y_{0}$

- We have three sub-problems of size $n / 2$.
- What is the running time $T(n)$?

$$
T(n) \leq 3 T(n / 2)+c n
$$

Final Algorithm

Recursive-Multiply (x, y):

$$
\text { Write } \begin{aligned}
x & =x_{1} \cdot 2^{n / 2}+x_{0} \\
y & =y_{1} \cdot 2^{n / 2}+y_{0}
\end{aligned}
$$

Compute $x_{1}+x_{0}$ and $y_{1}+y_{0}$
$p=$ Recursive-Multiply $\left(x_{1}+x_{0}, y_{1}+y_{0}\right)$
$x_{1} y_{1}=\operatorname{Recursive-Multiply}\left(x_{1}, y_{1}\right)$
$x_{0} y_{0}=\operatorname{Recursive-Multiply}\left(x_{0}, y_{0}\right)$
Return $x_{1} y_{1} \cdot 2^{n}+\left(p-x_{1} y_{1}-x_{0} y_{0}\right) \cdot 2^{n / 2}+x_{0} y_{0}$

- We have three sub-problems of size $n / 2$.
- What is the running time $T(n)$?

$$
\begin{aligned}
T(n) & \leq 3 T(n / 2)+c n \\
& \leq O\left(n^{\log _{2} 3}\right)=O\left(n^{1.59}\right)
\end{aligned}
$$

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, Idots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

Closest Pair of Points on the Plane

Closest Pair of Points
INSTANCE: A set P of n points in the plane
SOLUTION: The pair of points in P that are the closest to each other.

Closest Pair of Points on the Plane

Closest Pair of Points
INSTANCE: A set P of n points in the plane
SOLUTION: The pair of points in P that are the closest to each other.

Closest Pair of Points on the Plane

Closest Pair of Points

INSTANCE: A set P of n points in the plane SOLUTION: The pair of points in P that are the closest to each other.

- At first glance, it seems any algorithm must take $\Omega\left(n^{2}\right)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}. For a specific pair of points, can compute $d\left(p_{i}, p_{j}\right)$ in $O(1)$ time.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}. For a specific pair of points, can compute $d\left(p_{i}, p_{j}\right)$ in $O(1)$ time.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D?

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}. For a specific pair of points, can compute $d\left(p_{i}, p_{j}\right)$ in $O(1)$ time.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D?
- Sort: closest pair must be adjacent in the sorted order.

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}. For a specific pair of points, can compute $d\left(p_{i}, p_{j}\right)$ in $O(1)$ time.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D?
- Sort: closest pair must be adjacent in the sorted order.
- Divide and conquer after sorting: closest pair must be closest of
(1) closest pair in left half: distance δ_{Q}.
(2) closest pair in right half: distance δ_{R}.
(3) closest among pairs that span the left and right halves and are at most $\min \left(\delta_{Q}, \delta_{R}\right)$ apart. How many such pairs do we need to consider?

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}. For a specific pair of points, can compute $d\left(p_{i}, p_{j}\right)$ in $O(1)$ time.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D?
- Sort: closest pair must be adjacent in the sorted order.
- Divide and conquer after sorting: closest pair must be closest of
(1) closest pair in left half: distance δ_{Q}.
(2) closest pair in right half: distance δ_{R}.
(3) closest among pairs that span the left and right halves and are at most $\min \left(\delta_{Q}, \delta_{R}\right)$ apart. How many such pairs do we need to consider? Just one!

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}. For a specific pair of points, can compute $d\left(p_{i}, p_{j}\right)$ in $O(1)$ time.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D?
- Sort: closest pair must be adjacent in the sorted order.
- Divide and conquer after sorting: closest pair must be closest of
(1) closest pair in left half: distance δ_{Q}.
(2) closest pair in right half: distance δ_{R}.
(3) closest among pairs that span the left and right halves and are at most $\min \left(\delta_{Q}, \delta_{R}\right)$ apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.

Closest Pair: Algorithm Skeleton

(1) Divide P into two sets Q and R of $n / 2$ points such that each point in Q has x-coordinate less than any point in R.
(2) Recursively compute closest pair in Q and in R, respectively.

Closest Pair: Algorithm Skeleton

(1) Divide P into two sets Q and R of $n / 2$ points such that each point in Q has x-coordinate less than any point in R.
(2) Recursively compute closest pair in Q and in R, respectively.
(Let δ_{Q} be the distance computed for Q, δ_{R} be the distance computed for R, and $\delta=\min \left(\delta_{Q}, \delta_{R}\right)$.

Closest Pair: Algorithm Skeleton

(1) Divide P into two sets Q and R of $n / 2$ points such that each point in Q has x-coordinate less than any point in R.
(2) Recursively compute closest pair in Q and in R, respectively.
(3) Let δ_{Q} be the distance computed for Q, δ_{R} be the distance computed for R, and $\delta=\min \left(\delta_{Q}, \delta_{R}\right)$.
(0) Compute pair (q, r) of points such that $q \in Q, r \in R, d(q, r)<\delta$ and $d(q, r)$ is the smallest possible.

Closest Pair: Proof Sketch

- Prove by induction: Let (s, t) be the closest pair.
(1) both are in Q : computed correctly by recursive call.
(1) both are in R : computed correctly by recursive call.
(ii) one is in Q and the other is in R : computed correctly in $O(n)$ time by the procedure we will discuss.
- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.
- Overall running time is $O(n \log n)$.

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta=\delta_{R}$.)

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta=\delta_{R}$.)
- Claim: There exist $q \in Q, r \in R$ such that $d(q, r)<\delta$ if and only if $q, r \in S$.

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta=\delta_{R}$.)
- Claim: There exist $q \in Q, r \in R$ such that $d(q, r)<\delta$ if and only if $q, r \in S$.
- Corollary: If $t \in Q-S$ or $u \in R-S$, then (t, u) cannot be the closest pair.

Closest Pair: Packing Argument

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

Closest Pair: Packing Argument

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_{y} denote the set of points in S sorted by increasing y-coordinate and let s_{y} denote the y-coordinate of a point $s \in S$.

Closest Pair: Packing Argument

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_{y} denote the set of points in S sorted by increasing y-coordinate and let s_{y} denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$ then s and s^{\prime} are at most 15 indices apart in S_{y}.

Closest Pair: Packing Argument

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_{y} denote the set of points in S sorted by increasing y-coordinate and let s_{y} denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$ then s and s^{\prime} are at most 15 indices apart in S_{y}.
- Converse of the claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.

Closest Pair: Packing Argument

- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_{y} denote the set of points in S sorted by increasing y-coordinate and let s_{y} denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$ then s and s^{\prime} are at most 15 indices apart in S_{y}.
- Converse of the claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Use the claim in the algorithm: For every point $s \in S_{y}$, compute distances only to the next 15 points in S_{y}.
- Other pairs of points cannot be candidates for the closest pair.

Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.

Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Pack the plane with squares of side $\delta / 2$.

Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Pack the plane with squares of side $\delta / 2$.
- Each square contains at most one point.

Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Pack the plane with squares of side $\delta / 2$.
- Each square contains at most one point.
- Let s lie in one of the squares.

Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Pack the plane with squares of side $\delta / 2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_{y}.

Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Pack the plane with squares of side $\delta / 2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_{y}.
- We get a count of 12 or more indices (textbook says 16).

Closest Pair: Final Algorithm

```
Closest-Pair(P)
    Construct P}\mp@subsup{P}{x}{}\mathrm{ and }\mp@subsup{P}{y}{}(O(n\operatorname{log}n)\mathrm{ time)
    (por, p
Closest-Pair-Rec( P
    If }|P|\leq3\mathrm{ then
        find closest pair by measuring all pairwise distances
    Endif
    Construct Qx, Qy, Rx},\mp@subsup{R}{y}{\prime}(O(n) time
    (q}\mp@subsup{q}{0}{*},\mp@subsup{q}{1}{*})=Closest-Pair-Rec(Qx, Q Q )
    (ror***) = Closest-Pair-Rec(R},\mp@subsup{R}{x}{*},\mp@subsup{R}{y}{\prime}
    x* = maximum x-coordinate of a point in set Q
    L={(x,y):x = x*}
    S = points in P within distance \delta of L.
    Construct Sy (O(n) time)
    For each point }s\in\mp@subsup{S}{y}{}\mathrm{ , compute distance from }
        to each of next 15 points in Sy
        Let s, s' be pair achieving minimum of these distances
        O(n) time)
    If d(s,s) < \delta then
        Return ( }s,\mp@subsup{s}{}{\prime}\mathrm{ )
    Else if d(\mp@subsup{q}{0}{*},\mp@subsup{q}{1}{*})<d(\mp@subsup{r}{0}{*},\mp@subsup{r}{1}{*})\mathrm{ then}
        Return ( }\mp@subsup{q}{0}{*},\mp@subsup{q}{1}{*}
    Else
        Return (ror, ,r1
```

 Enalit

Closest Pair: Final Algorithm

Closest-Pair (P)
Construct P_{x} and $P_{y} \quad(O(n \log n)$ time)
$\left(p_{0}^{*}, p_{1}^{*}\right)=$ Closest-Pair-Rec $\left(P_{x}, P_{y}\right)$

Closest-Pair-Rec $\left(P_{x}, P_{y}\right)$
If $|P| \leq 3$ then
find closest pair by measuring all pairwise distances
Endif

Construct $Q_{x}, Q_{y}, R_{x}, R_{y}(O(n)$ time)
$\left(q_{0}^{*}, q_{1}^{*}\right)=$ Closest-Pair-Rec $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}^{*}, r_{1}^{*}\right)=$ Closest-Pair-Rec $\left(R_{x}, R_{y}\right)$
$\delta=\min \left(d\left(q_{0}^{*}, q_{1}^{*}\right), \quad d\left(r_{0}^{*}, r_{1}^{*}\right)\right)$
$x^{*}=$ maximum x-coordinate of a point in set Q

Closest Pair: Final Algorithm

$x^{*}=$ maximum x-coordinate of a point in set Q
$L=\left\{(x, y): x=x^{*}\right\}$
$S=$ points in P within distance δ of L.

Construct S_{y} ($O(n)$ time)
For each point $s \in S_{y}$, compute distance from s to each of next 15 points in S_{y}
Let s, s^{\prime} be pair achieving minimum of these distances ($O(n)$ time)

If $d\left(s, s^{\prime}\right)<\delta$ then Return (s, s^{\prime})
Else if $d\left(q_{0}^{*}, q_{1}^{*}\right)<d\left(r_{0}^{*}, r_{1}^{*}\right)$ then Return $\left(q_{0}^{*}, q_{1}^{*}\right)$
Else
Return $\left(r_{0}^{*}, r_{1}^{*}\right)$

