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Maximum Flow and Minimum Cut

Two rich algorithmic problems.

Fundamental problems in combinatorial optimization.

Beautiful mathematical duality between flows and cuts.

Numerous non-trivial applications:

Bipartite matching.

Network connectivity.

Data mining.

Project selection.

Airline scheduling.

Baseball elimination.

Image segmentation.

Open-pit mining.

Network reliability.

Distributed computing.

Egalitarian stable matching.

Security of statistical data.

Network intrusion detection.

Multi-camera scene
reconstruction.

Gene function prediction.

We will only sketch proofs. Read details from the textbook.
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Matching in Bipartite Graphs

Bipartite Graph: a graph G (V ,E ) where
1 V = X ∪ Y , X and Y are disjoint and
2 E ⊆ X × Y .

Bipartite graphs model situations in which objects are matched with or
assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

A matching in a bipartite graph G is a set M ⊆ E of edges such that each
node of V is incident on at most edge of M.
A set of edges M is a perfect matching if every node in V is incident on
exactly one edge in M.

I The graph in the figure does not have a perfect matching because

both y4 and
y5 are adjacent only to x5.
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Bipartite Graph Matching Problem

Bipartite Matching

INSTANCE: A Bipartite graph G .

SOLUTION: The matching of largest size in G .

T. M. Murali November 9, 11, 2021 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Normal Approach for Solving a Problem

Algorithm for computing 
maximum matchings 

in bipartite graphs

Develop algorithm for computing maximum matchings in bipartite graphs.

Prove that the algorithm is correct, i.e., for every possible inputs, it compute
the size of the largest matching in the bipartite graph accurately.

Analyze running time of the algorithm.
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Alternative Approach for Solving a Problem
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Alternative Approach for Solving a Problem

Input to maximum 
matching problem

Input to network 
flow problem
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Alternative Approach for Solving a Problem

Algorithm for 
maximizing

network flow
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Algorithm 1 for Bipartite Graph Matching
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1 Convert G to a flow network G ′:
1 Direct edges from Y to X .
2 Add nodes s and t.
3 Add an edge from s to each node in X .
4 Add an edge from each node in Y to t.
5 Set all edge capacities to 1.

2 Compute the maximum flow in G ′.

3 Convert the maximum flow in G ′ into a matching in G .
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Algorithm 2 for Bipartite Graph Matching
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Algorithm 3 for Bipartite Graph Matching
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1 Convert G to a flow network G ′:
1 Direct edges from X to Y and assign each a capacity of 1.
2 Add nodes s and t.
3 Add an edge from s to each node x in X with a capacity equal to the degree

of x .
4 Add an edge from each node y in Y to t with capacity equal to the degree of

y .

2 Compute the maximum flow in G ′.

3 Convert the maximum flow in G ′ into a matching in G .
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Which Algorithm is Correct?
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Value of maximum flow is 0 Value of maximum flow is 4 Value of maximum flow is 10
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Correct Algorithm for Bipartite Graph Matching

1 Convert G to a flow network G ′: direct edges from X to Y , add nodes s and
t, connect s to each node in X , connect each node in Y to t, set all edge
capacities to 1.

2 Compute the maximum flow in G ′.

3 Convert the maximum flow in G ′ into a matching in G .

Claim: the value of the maximum flow in G ′ equals the size of the maximum
matching in G .

In general, there is matching with size k in G if and only if there is a
(integer-valued) flow of value k in G ′.
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Strategy for Proving Correctness

 

Algorithm for 
maximizing

network flow

Preclude the possibility that G has a matching with k edges but G ′ has a flow of
small value (as with Algorithm 1).
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Strategy for Proving Correctness

Algorithm for 
maximizing

network flow

Preclude the possibility that G ′ has a flow of value k but we cannot construct a
matching in G with k edges (as with Algorithm 3).
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Correctness of Bipartite Graph Matching Algorithm

Matching ⇒ flow: if there is a matching with k edges in G , there is an s-t
flow of value k in G ′.

How do we construct this flow? Thought experiment.

I Consider every edge (u, v) in the matching: u ∈ X and v ∈ Y .
I Send one unit of flow along the path s → u → v → t.

Why have we constructed a flow?

I Capacity constraint:

No edge receives a flow > 1 because we started with a
matching.

I Conservation constraint:

Every node other than s and t has one incoming unit
and one outgoing unit of flow because we started with a matching.

What is the value of the flow?

k, since exactly that many nodes out of s
carry flow.
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Correctness of Bipartite Graph Matching Algorithm

Flow ⇒ matching: if there is a flow f ′ in G ′ with value k, there is a
matching M in G with k edges.

I There is an integer-valued flow f ′ of value k ⇒ flow along any edge is 0 or 1.
I Let M be the set of edges not incident on s or t with flow equal to 1.
I Claim: M contains k edges.
I Claim: Each node in X (respectively, Y ) is the tail (respectively, head) of at

most one edge in M.

Conclusion: size of the maximum matching in G is equal to the value of the
maximum flow in G ′; the edges in this matching are those that carry flow
from X to Y in G ′.

Read the book on what augmenting paths mean in this context.
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Running time of Bipartite Graph Matching Algorithm

Suppose G has m edges and n nodes in X and in Y .

C ≤ n.

Ford-Fulkerson algorithm runs in O(mn) time.

T. M. Murali November 9, 11, 2021 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Running time of Bipartite Graph Matching Algorithm

Suppose G has m edges and n nodes in X and in Y .

C ≤ n.

Ford-Fulkerson algorithm runs in O(mn) time.

T. M. Murali November 9, 11, 2021 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Bipartite Graphs without Perfect Matchings

How do we determine if a bipartite graph G has a perfect matching?

Find
the maximum matching and check if it is perfect.

Suppose G has no perfect matching. Can we exhibit a short “certificate” of
that fact? What can such certificates look like?

G has no perfect matching iff there is a cut in G ′ with capacity less than n.
Therefore, the cut is a certificate.
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Bipartite Graphs without Perfect Matchings

We would like the certificate in terms of G .

I For example, two nodes in Y with one incident edge each with the same
neighbour in X .

I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that |A| > |Γ(A)|.
Hall’s Theorem: Let G (X ∪ Y ,E ) be a bipartite graph such that |X | = |Y |.
Then G either has a perfect matching or there is a subset A ⊆ Y such that
|A| > |Γ(A)|. We can compute a perfect matching or such a subset in O(mn)
time. Read proof in the textbook.
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Edge-Disjoint Paths

A set of paths in a graph G is edge disjoint if each edge in G appears in at
most one path.

Directed Edge-Disjoint Paths

INSTANCE: Directed graph G (V ,E ) with two distinguished nodes s
and t.

SOLUTION: The maximum number of edge-disjoint paths between s
and t.
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Mapping to the Max-Flow Problem

Convert G into a flow network:

s is the source, t is the sink, each edge has
capacity 1.
Claim: There are k edge-disjoint paths from s to t in a directed graph G if
and only if there is a s-t flow in G with value ≥ k.
Paths ⇒ flow: if there are k edge-disjoint paths from s to t, send one unit of
flow along each to yield a flow with value k.
Flow ⇒ paths: Suppose there is an integer-valued flow of value at least k.
Are there k edge-disjoint paths? If so, what are they?
Construct k edge-disjoint paths from a flow of value ≥ k as follows:

I There is an integral flow. Therefore, flow on each edge is 0 or 1.
I Claim: if f is a 0-1 valued flow of value ν(f ) = k, then the set of edges with

flow f (e) = 1 contains a set of k edge-disjoint paths.

T. M. Murali November 9, 11, 2021 Applications of Network Flow
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Completing the Proof

Claim: if f is a 0-1 valued flow of value ν(f ) = k , then the set of edges with
flow f (e) = 1 contains a set of k edge-disjoint paths.

Proof strategy is different from textbook.

Use problem 2 in homework 6:
I Consider graph G ′ containing all the edges e with f (e) = 1.

I There is a simple s–t path in G .
I Convert f into a new flow f ′ by change the flow along every edge in this path

to 0.
I ν(f ) = k − 1.
I Apply a proof by induction.

T. M. Murali November 9, 11, 2021 Applications of Network Flow
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Running Time of the Edge-Disjoint Paths Algorithm

Given a flow of value k , how quickly can we determine the k edge-disjoint
paths?

O(mn) time.

Corollary: The Ford-Fulkerson algorithm can be used to find a maximum set
of edge-disjoint s-t paths in a directed graph G in O(mn) time.
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Certificate for Edge-Disjoint Paths Algorithm

A set F ⊆ E of edge separates s and t if the graph (V ,E − F ) contains no
s-t paths.

Menger’s Theorem: In every directed graph with nodes s and t, the
maximum number of edge-disjoint s-t paths is equal to the minimum number
of edges whose removal disconnects s from t.

T. M. Murali November 9, 11, 2021 Applications of Network Flow
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Edge-Disjoint Paths in Undirected Graphs

Can extend the theorem to undirected graphs.

Replace each edge with two directed edges of capacity 1 and apply the
algorithm for directed graphs.

Problem: Both counterparts of an undirected edge (u, v) may be used by
different edge-disjoint paths in the directed graph.

Can obtain an integral flow where only one of the directed counterparts of
(u, v) has non-zero flow.

We can find the maximum number of edge-disjoint paths in O(mn) time.

We can prove a version of Menger’s theorem for undirected graphs: in every
undirected graph with nodes s and t, the maximum number of edge-disjoint
s–t paths is equal to the minimum number of edges whose removal separates
s from t.

T. M. Murali November 9, 11, 2021 Applications of Network Flow
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Image Segmentation

A fundamental problem in computer vision is that of segmenting an image
into coherent regions.

A basic segmentation problem is that of partitioning an image into a
foreground and a background: label each pixel in the image as belonging to
the foreground or the background.

I Note that the image on the right shows segmentation into multiple regions but
we are interested in the segmentation into two regions.
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Formulating the Image Segmentation Problem

Let V be the set of pixels in an image.
Let E be the set of pairs of neighbouring pixels.
V and E yield an undirected graph G (V ,E ).

Each pixel i has a likelihood ai > 0 that it belongs to the foreground and a
likelihood bi > 0 that it belongs to the background.
These likelihoods are specified in the input to the problem.
We want the foreground/background boundary to be smooth: For each pair
(i , j) of pixels, there is a separation penalty pij ≥ 0 for placing one of them in
the foreground and the other in the background.
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The Image Segmentation Problem

Image Segmentation

INSTANCE: Pixel graphs G (V ,E ), likelihood functions a, b : V → R+,
penalty function p : E → R+

SOLUTION: Optimum labelling: partition of the pixels into two sets A
and B that maximises

q(A,B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E
|A∩{i,j}|=1

pij
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Developing an Algorithm for Image Segmentation

q(A,B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E
|A∩{i,j}|=1

pij

There is a similarity between labellings and Poll

cuts.

But there are differences:

I We are maximising an objective function rather than minimising it.
I There is no source or sink in the segmentation problem.
I We have values on the nodes.
I The graph is undirected.
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Maximization to Minimization

Let Q =
∑

i (ai + bi ).

Notice that
∑

i∈A ai +
∑

j∈B bj = Q −
∑

i∈A bi −
∑

j∈B aj .

Therefore, maximising
q(A,B) =

∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E
|A∪{i,j}|=1

pij

= Q −
∑
i∈A

bi −
∑
j∈B

aj −
∑

(i,j)∈E
|A∩{i,j}|=1

pij

is identical to minimising

q′(A,B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E
|A∩{i,j}|=1

pij
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Solving the Other Issues

Solve the other issues like we did
earlier.

Add a new “super-source” s to
represent the foreground.

Add a new “super-sink” t to
represent the background.

Connect s and t to every pixel and
assign capacity ai to edge (s, i) and
capacity bi to edge (i , t).

Direct edges away from s and into t.

Replace each edge (i , j) in E with
two directed edges of capacity pij .
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Cuts in the Flow Network

Let G ′ be this flow network and
(A,B) an s-t cut.

What does the capacity of the cut
represent?

Edges crossing the cut are of three
types:

I (s,w),w ∈ B contributes aw .
I (u, t), u ∈ A contributes bu.
I (u,w), u ∈ A,w ∈ B contributes

puw .

c(A,B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E
|A∩{i,j}|=1

pij = q′(A,B).
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Solving the Image Segmentation Problem

The capacity of a s-t cut c(A,B) exactly measures the quantity q′(A,B).

To maximise q(A,B), we simply compute the s-t cut (A,B) of minimum
capacity.

Deleting s and t from the cut yields the desired segmentation of the image.
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