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Strategy

Review: Definitions of A/P-Complete and NP-Hard

A problem X is N'P-Complete if A problem X is N'P-Hard if
@ XeNPand
@ for every problem Y € NP, @ for every problem Y € NP,
Y <p X. Y <p X.
NP NP-hard

o
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Strategy

Proving Other Problems NP-Complete
co-NP NP NP-hard

e Claim: If Y is N'P-Complete and X € NP such that Y <p X, then X is
NP-Complete.
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Strategy

Proving Other Problems NP-Complete
co-NP NP NP-hard

e Claim: If Y is N'P-Complete and X € NP such that Y <p X, then X is
NP-Complete.

@ Given a new problem X, a general strategy for proving it N"P-Complete is
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Strategy

Proving Other Problems NP-Complete
co-NP NP NP-hard

NPc

e Claim: If Y is N'P-Complete and X € NP such that Y <p X, then X is
NP-Complete.
@ Given a new problem X, a general strategy for proving it N"P-Complete is

@ Prove that X € N'P.
@ Select a problem Y known to be A/P-Complete.
@ Prove that Y <p X.

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy

Proving Other Problems NP-Complete
co-NP NP NP-hard

NPc

e Claim: If Y is N'P-Complete and X € NP such that Y <p X, then X is
NP-Complete.
@ Given a new problem X, a general strategy for proving it N"P-Complete is

@ Prove that X € N'P.
@ Select a problem Y known to be A/P-Complete.
@ Prove that Y <p X.

@ To prove X is N'P-Complete, reduce a known NP-Complete problem Y to
X. Do not prove reduction in the opposite direction, i.e., X <p Y.
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Proving a Problem NP-Complete with Karp Reductior

@ Prove that X € N'P.
@ Select a problem Y known to be N/P-Complete.

© Consider an arbitrary input s to problem Y. Show how to construct, in
polynomial time, an input t to problem X such that
@ If Y(s) = yes, then X(t) = yes and
@ If X(t) = yes, then Y(s) = yes (equivalently, if Y(s) =no, then X(t) = no).
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3-SAT is N'P-Complete

@ Why is 3-SAT in NP?
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3-SAT is N'P-Complete

@ Why is 3-SAT in NP?
@ CIRCUIT SATISFIABILITY <p 3-SAT.
@ Given an input to CIRCUIT SATISFIABILITY, create an input to SAT, in which
each clause has at most three variables.
@ Convert this input to SAT into an input to 3-SAT.

Inputs:

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth
values, and one output.

» Skip proof that CIRCUIT SATISFIABILITY < p 3-SAT

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.
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Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -
@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses
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Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -
@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

@ node v has V and edges entering from nodes v and w: ensure x, = x, V X,
using clauses
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Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

@ node v has V and edges entering from nodes v and w: ensure x, = x, V X,
using clauses (x, VX;), (xv VXw), and (X V X, V Xy ).
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3-SAT

Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

@ node v has V and edges entering from nodes v and w: ensure x, = x, V X,
using clauses (x, VX;), (xv VXw), and (X V X, V Xy ).

@ node v has A and edges entering from nodes v and w: ensure x, = x, A Xy
using clauses
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3-SAT

Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

@ node v has V and edges entering from nodes v and w: ensure x, = x, V X,
using clauses (x, VX;), (xv VXw), and (X V X, V Xy ).

@ node v has A and edges entering from nodes v and w: ensure x, = x, A Xy
using clauses (X, V x,), (Xv V xw), and (x, VX5 V Xp).
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3-SAT

Partitioning Problems Other Problems

Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

@ node v has V and edges entering from nodes v and w: ensure x, = x, V X,
using clauses (x, VX;), (xv VXw), and (X V X, V Xy ).

@ node v has A and edges entering from nodes v and w: ensure x, = x, A Xy
using clauses (X, V x,), (Xv V xw), and (x, VX5 V Xp).

o Constants at sources: single-variable clauses.
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3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability <p 3-SAT: Transformation

@ Given an arbitrary circuit K, associate each node v with a Boolean variable
Xy -

@ Encode the requirements of each gate as a clause.

@ node v has — and edge entering from node u: guarantee that x, = X, using
clauses (x, V x,) and (X, V Xy).

@ node v has V and edges entering from nodes v and w: ensure x, = x, V X,
using clauses (x, VX;), (xv VXw), and (X V X, V Xy ).

@ node v has A and edges entering from nodes v and w: ensure x, = x, A Xy
using clauses (X, V x,), (Xv V xw), and (x, VX5 V Xp).

o Constants at sources: single-variable clauses.

e Output: if o is the output node, use the clause (x,).
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3-SAT

Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.
» K is satisfiable — clauses are satisfiable.
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3-SAT

Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.

» K is satisfiable — clauses are satisfiable.
» clauses are satisfiable — K is satisfiable.

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.

» K is satisfiable — clauses are satisfiable.
» clauses are satisfiable — K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node's variable is precisely what the

circuit will compute.
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Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.

» K is satisfiable — clauses are satisfiable.

» clauses are satisfiable — K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node's variable is precisely what the
circuit will compute.

@ Converting input to SAT to an input to 3-SAT.
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Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.
» K is satisfiable — clauses are satisfiable.
> clauses are satisfiable — K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node's variable is precisely what the
circuit will compute.
@ Converting input to SAT to an input to 3-SAT.
> Create four new variables zi, z5, z3, z4 such that any satisfying assignment will
have z; = z» = 0 by adding clauses
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Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.
» K is satisfiable — clauses are satisfiable.
> clauses are satisfiable — K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node's variable is precisely what the
circuit will compute.
@ Converting input to SAT to an input to 3-SAT.

> Create four new variables zi, z5, z3, z4 such that any satisfying assignment will
have z; = z, = 0 by adding clauses (z; V z3 V z3), (zZ1 VZ3 V z3), (z1 V z3 V Z3),
and (ziVZzzVz), fori=1and i =2.
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Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.
» K is satisfiable — clauses are satisfiable.
> clauses are satisfiable — K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node's variable is precisely what the
circuit will compute.
@ Converting input to SAT to an input to 3-SAT.
> Create four new variables zi, z5, z3, z4 such that any satisfying assignment will
have z; = zo = 0 by adding clauses (ZiV z3 V z1), (ZiVZ3 V z3), (Z V z3 V Zs),
and (ziVZzzVz), fori=1and i =2.
» If a clause has a single term t, replace the clause with (tV z1 V ).
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Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability <p 3-SAT: Proof

@ Prove that K is equivalent to the input to SAT.
» K is satisfiable — clauses are satisfiable.

>

clauses are satisfiable — K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node's variable is precisely what the
circuit will compute.

@ Converting input to SAT to an input to 3-SAT.

T. M. Murali

>

Create four new variables z1, z», z3, z4 such that any satisfying assignment will
have z; = z, = 0 by adding clauses (z; V z3 V z3), (zZ1 VZ3 V z3), (z1 V z3 V Z3),
and (ziVZzzVz), fori=1and i =2.

» If a clause has a single term t, replace the clause with (tV z1 V ).
> If a clause has a two terms t and t’, replace the clause with t V t' V z.
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More NP-Complete problems

o CIRCUIT SATISFIABILITY is A/P-Complete.
@ We just showed that CIRCUIT SATISFIABILITY <p 3-SAT.
@ We know that
3-SAT <p INDEPENDENT SET <p VERTEX COVER <p SET COVER
@ All these problems are in N'P.

@ Therefore, INDEPENDENT SET, VERTEX COVER, and SET COVER are
NP-Complete.
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Sequencing Problems

Hamiltonian Cycle

@ Problems we have seen so far involve searching over subsets of a collection of
objects.

@ Another type of computationally hard problem involves searching over the set
of all permutations of a collection of objects.
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Other Problems

Sequencing Problems Partitioning Pre

Hamiltonian Cycle

@ Problems we have seen so far involve searching over subsets of a collection of

objects.

@ Another type of computationally hard problem involves searching over the set
of all permutations of a collection of objects.

o In a directed graph G(V, E), a cycle C is a Hamiltonian cycle if C visits each
vertex exactly once.

HAMILTONIAN CYCLE
INSTANCE: A directed graph G.
QUESTION: Does G contain a Hamiltonian cycle?
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Other Problems

Sequencing Problems Partitioning Pre

Hamiltonian Cycle

@ Problems we have seen so far involve searching over subsets of a collection of

objects.

@ Another type of computationally hard problem involves searching over the set
of all permutations of a collection of objects.

o In a directed graph G(V, E), a cycle C is a Hamiltonian cycle if C visits each
vertex exactly once.

HAMILTONIAN CYCLE
INSTANCE: A directed graph G.
QUESTION: Does G contain a Hamiltonian cycle?
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Hamiltonian Cycle is N'P-Complete

@ Why is the problem in N'P?
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Hamiltonian Cycle is N'P-Complete

@ Why is the problem in N'P?
e Claim: 3-SAT <p HAMILTONIAN CYCLE.
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Hamiltonian Cycle is N'P-Complete

Why is the problem in N"P?

Claim: 3-SAT <p HAMILTONIAN CYCLE.

Consider an arbitrary input to 3-SAT with variables xq, x2, . .., X, and clauses
G, G, ... C.

Strategy:

© Construct a graph G with O(nk) nodes and edges and 2" Hamiltonian cycles
with a one-to-one correspondence with 2" truth assignments.

@ Add nodes to impose constraints arising from clauses.

@ Construction takes O(nk) time.

G contains n paths Py, P,, ... P,, one for each variable.

Each P; contains b = 3k + 3 nodes v; 1, Vi 2, ... V;, three for each clause and
some extra nodes.
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Sequencing Problems

3-SAT <p Hamiltonian Cycle: Constructing G
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3 SAT <p Hamlltoman Cycle Modelling clauses

@ Consider the clause C; = x1 VX3 V Xx3.

C ) @

L ()l ()«

() )P

()P
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3-SAT <p Hamlltoman Cycle Modellmg clauses

@ Consider the clause C; = x1 VX3 V Xx3.

Py

() )P
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Sequencing Problems Partitioning Problems Other Problems

Example

@ Two clauses C; = x1 VX2, G = x1 V xo.

Py
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Sequencing Problems Partitioning Problems Other Problems

Example

@ Two clauses C; = x1 VX2, G = x1 V xo.

-.-.- P,

Py

T

Nodes for ¢; Nodes for c5
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Sequencing Problems artitioning Problems Other Problems

Example

@ Two clauses C; = x1 VX2, G = x1 V xo.

(8 )ezcr o

—

«‘/A/IMu

O=O=0S0LOLOTO=0=0l/
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T

Nodes for ¢; Nodes for c5
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Sequencing Problems Partitioning Problems Other Problems

Example

@ Two clauses C; = x1 VX2, G = x1 V xo.

S C1 Co

Py
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Sequencing Problems

Example

@ Two clauses C; = x1 VX2, G = x1 V xo.

C1 C2

) OO O OO 0OnA

OEOEO-O=0: 6= O=0=0)
\\
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Sequencing Problems

Example

@ Two clauses C; = x1 VX2, G = x1 V xo.

C1 C2

) OO O OO0 OnA

— — — l

Py

®
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Sequencing Problems

3-SAT <p Hamiltonian Cycle: Proof Part 1

@ 3-SAT input is satisfiable — G has a Hamiltonian cycle.
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Sequencing Problems

3-SAT <p Hamiltonian Cycle: Proof Part 1

@ 3-SAT input is satisfiable — G has a Hamiltonian cycle.

» Construct a Hamiltonian cycle C as follows:
If x; =1, traverse P; from left to right in C.
Otherwise, traverse P; from right to left in C.
For each clause Cj, there is at least one term set to 1. If the term is x;, splice
¢j into C using edge from v;3; and edge to v; 3;j11. Analogous construction if
term is X;.

A 4

v
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Sequencing Problems

3-SAT <p Hamiltonian Cycle: Proof Part 2

‘/

"'jj;‘:/:: :

@ G has a Hamiltonian cycle C — Input to 3-SAT is satisfiable.
> If C enters ¢; on an edge from v;3j, it must leave ¢; along the edge to v;3j1.
> Analogous statement if C enters ¢; on an edge from v;3j 1.
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Sequencing Problems

3-SAT <p Hamiltonian Cycle: Proof Part 2

@ G has a Hamiltonian cycle C — Input to 3-SAT is satisfiable.
> If C enters ¢; on an edge from v; 3;, it must leave ¢; along the edge to v;3j;1.
> Analogous statement if C enters ¢; on an edge from v;3j 1.
> Nodes immediately before and after ¢; in C are themselves connected by an
edge e in G.
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Sequencing Problems

@ G has a Hamiltonian cycle C — Input to 3-SAT is satisfiable.

>

>

>

T. M. Murali

If C enters ¢; on an edge from v; 3;, it must leave ¢; along the edge to v;3ji1.
Analogous statement if C enters ¢; on an edge from v;3j 1.

Nodes immediately before and after ¢; in C are themselves connected by an
edge e in G.

If we remove all such edges e from C, we get a Hamiltonian cycle C’ in

G — {Cl,CQ, .. .,Ck}.

Use C’ to construct truth assignment to variables; prove assignment is

satisfying.
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The Travelling Salesman Problem

@ A salesman must visit n cities vi, vo, ... v, starting at home city v;.

@ Salesman must find a tour, an order in which to visit each city exactly once,
and return home.

@ Goal is to find as short a tour as possible.
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The Travelling Salesman Problem

@ A salesman must visit n cities vi, vo, ... v, starting at home city v;.

@ Salesman must find a tour, an order in which to visit each city exactly once,
and return home.

@ Goal is to find as short a tour as possible.

@ For every pair of cities v; and v;, d(v;, vj) > 0 is the distance from v; to v;.

o A touris a permutation v, = vy, Vj,,...V;,.

@ The length of the tour is 2;2—11 d(vivi,,) +d(vi,, vi,)-
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Other Problems

Sequencing Problems Partitioning

The Travelling Salesman Problem

@ A salesman must visit n cities vi, vo, ... v, starting at home city v;.
@ Salesman must find a tour, an order in which to visit each city exactly once,
and return home.

@ Goal is to find as short a tour as possible.
@ For every pair of cities v; and v;, d(v;, vj) > 0 is the distance from v; to v;.
o A touris a permutation v, = vy, Vj,,...V;,.
. -1
o The length of the tour is 377" d(v;v,,) + d(vi,, viy)-
TRAVELLING SALESMAN

INSTANCE: A set V of n cities, a function d : V x V — Rt, and a
number D > 0.
QUESTION: Is there a tour of length at most D?
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Travelling Salesman is N"P-Complete

@ Why is the problem in N'P?
@ Why is the problem N'P-Complete?
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Travelling Salesman is N"P-Complete

@ Why is the problem in N'P?
@ Why is the problem N'P-Complete?
o Claim: HAMILTONIAN CYCLE <p TRAVELLING SALESMAN.
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Travelling Salesman is N"P-Complete

@ Why is the problem in N'P?
@ Why is the problem N'P-Complete?
o Claim: HAMILTONIAN CYCLE <p TRAVELLING SALESMAN.

HAMILTONIAN CYCLE TRAVELLING SALESMAN
Directed graph G(V/, E) Cities
Edges have identical weights Distances between cities can vary
Not all pairs of nodes are connected in G Every pair of cities has a distance
(u,v) and (v, u) may both be edges d(vi,v;) # d(v;, v;), in general
Does a cycle exist? Does a tour of length < D exist?
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Travelling Salesman is N"P-Complete

@ Why is the problem in N'P?
@ Why is the problem N'P-Complete?
o Claim: HAMILTONIAN CYCLE <p TRAVELLING SALESMAN.

HAMILTONIAN CYCLE TRAVELLING SALESMAN
Directed graph G(V/, E) Cities
Edges have identical weights Distances between cities can vary
Not all pairs of nodes are connected in G Every pair of cities has a distance
(u,v) and (v, u) may both be edges d(vi,v;) # d(v;, v;), in general
Does a cycle exist? Does a tour of length < D exist?

@ Given a directed graph G(V/, E) (input to HAMILTONIAN CYCLE),

> Create a city v; for each node i € V.
» Define d(vi,v;) =1if (i,j) € E.
» Define d(vi,v;) =2 if (i,j) € E.
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Sequencing Problems Partitioning Problems

Travelling Salesman is N"P-Complete

@ Why is the problem in N'P?
@ Why is the problem N'P-Complete?
o Claim: HAMILTONIAN CYCLE <p TRAVELLING SALESMAN.

HAMILTONIAN CYCLE TRAVELLING SALESMAN
Directed graph G(V/, E) Cities
Edges have identical weights Distances between cities can vary
Not all pairs of nodes are connected in G Every pair of cities has a distance
(u,v) and (v, u) may both be edges d(vi,v;) # d(v;, v;), in general
Does a cycle exist? Does a tour of length < D exist?

@ Given a directed graph G(V/, E) (input to HAMILTONIAN CYCLE),
> Create a city v; for each node i € V.
> Define d(vi,v;) = 1 if (i,j) € E.
» Define d(v;,v;) =2if (i,j) ¢ E.
@ Claim: G has a Hamiltonian cycle iff the input to Travelling Salesman has a
tour of length at most
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Sequencing Problems Partitioning Problems

Travelling Salesman is N"P-Complete

@ Why is the problem in N'P?
@ Why is the problem N'P-Complete?
o Claim: HAMILTONIAN CYCLE <p TRAVELLING SALESMAN.

HAMILTONIAN CYCLE TRAVELLING SALESMAN
Directed graph G(V/, E) Cities
Edges have identical weights Distances between cities can vary
Not all pairs of nodes are connected in G Every pair of cities has a distance
(u,v) and (v, u) may both be edges d(vi,v;) # d(v;, v;), in general
Does a cycle exist? Does a tour of length < D exist?

@ Given a directed graph G(V/, E) (input to HAMILTONIAN CYCLE),
> Create a city v; for each node i € V.
> Define d(vi,v;) = 1 if (i,j) € E.
» Define d(v;,v;) =2if (i,j) ¢ E.
@ Claim: G has a Hamiltonian cycle iff the input to Travelling Salesman has a
tour of length at most n.
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Sequencing Problems

Special Cases and Extensions that are N'P-Complete

o HAMILTONIAN CYCLE for undirected graphs.

o HAMILTONIAN PATH for directed and undirected graphs.

e TRAVELLING SALESMAN with symmetric distances (by reducing
HAMILTONIAN CYCLE for undirected graphs to it).

@ TRAVELLING SALESMAN with distances defined by points on the plane.

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Partitioning Problems

2-Dimensional Matching

BIPARTITE MATCHING

INSTANCE: Disjoint sets X, Y, each of size n, andaset T C X x Y of
pairs

QUESTION: Is there a set of n pairs in T such that each element of

X UY is contained in exactly one of these pairs?
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Partitioning Problems

3-Dimensional Matching

BIPARTITE MATCHING

INSTANCE: Disjoint sets X, Y, each of size n, andaset T C X x Y of
pairs

QUESTION: Is there a set of n pairs in T such that each element of

X UY is contained in exactly one of these pairs?
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Partitioning Problems

3-Dimensional Matching

@ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.
BIPARTITE MATCHING
INSTANCE: Disjoint sets X, Y, each of size n, andaset T C X x Y of
pairs
QUESTION: Is there a set of n pairs in T such that each element of
X UY is contained in exactly one of these pairs?
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Partitioning Problems

3-Dimensional Matching

@ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.
3-DIMENSIONAL MATCHING
INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set
T CX XY xZof triples
QUESTION: Is there a set of n triples in T such that each element of
X U Y UCZ is contained in exactly one of these triples?
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Partitioning Problems

3-Dimensional Matching

@ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.
3-DIMENSIONAL MATCHING
INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set
T CX XY xZof triples
QUESTION: Is there a set of n triples in T such that each element of
X U Y UCZ is contained in exactly one of these triples?

@ Easy to show 3-DIMENSIONAL MATCHING <p SET COVER and
3-DIMENSIONAL MATCHING <p SET PACKING.
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3-Dimensional Matching is N’P-Complete

@ Why is the problem in N'P?
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3-Dimensional Matching is N’P-Complete

@ Why is the problem in N'P?
@ Show that 3-SAT <p 3-DIMENSIONAL MATCHING.

o Strategy:

» Start with an input to 3-SAT with n variables and k clauses.

> Create a gadget for each variable x; that encodes the choice of truth
assignment to x;.

» Add gadgets that encode constraints imposed by clauses.
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Partitioning Problems

3-SAT <p 3-Dimensional Matching: Variables

@ Each x; corresponds to a variable gadget
i with 2k core elements
A= {a,-,l, i 2y a,"gk} and 2k tips
B,' = {b,"l, b,',g, . b,',2k}.

@ For each 1 < j < 2k, variable gadget i
includes a triple t;j = (aj, ai j+1, bij)-

@ A triple (tip) is even if j is even.
Otherwise, the triple (tip) is odd.

Variable 1 Variable 2 Variable 3

i 5 Theeduction rom 34T 103 Dimnsionl Macing. @ Only these triples contain elements in
A;.
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Partitioning Problems

3-SAT <p 3-Dimensional Matching: Variables

@ Each x; corresponds to a variable gadget
[ i with 2k core elements

e e
e |

tp e A= {a,-,l, i 2y a,"gk} and 2k tips
B,‘ = {b,"l, b,',g, . b,',2k}.

@ For each 1 < j < 2k, variable gadget i
includes a triple t;j = (aj, ai j+1, bij)-

@ A triple (tip) is even if j is even.
Otherwise, the triple (tip) is odd.

Variable 1 Variable 2 Variable 3

Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching, ° On|y these triples contain elements in
A;.
@ In any perfect matching, we can cover the elements in A;
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Partitioning Problems

3-SAT <p 3-Dimensional Matching: Variables

@ Each x; corresponds to a variable gadget
i with 2k core elements
A= {a,-,l, i 2y a,"gk} and 2k tips
B,‘ = {b,"l, b,',g, . b,',2k}.

@ For each 1 < j < 2k, variable gadget i
includes a triple t;j = (aj, ai j+1, bij)-

@ A triple (tip) is even if j is even.
Otherwise, the triple (tip) is odd.

Variable 1 Variable 2 Variable 3

Pl 80 Toe redocion o 54T 3 Dona Mt @ Only these triples contain elements in
A;.
@ In any perfect matching, we can cover the elements in A; either using all the
even triples in gadget i or all the odd triples in the gadget.

@ Even triples used, odd tips free = x; = 0; odd triples used, even tips free
=x =1

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Partitioning Problems

3-SAT <, 3-Dimensional Matching: Clauses

@ Consider the clause G; = x1 VX V x3.

The clause elements can only be
matched if some variable gadget
leaves the corresponding tip free.

Variable 1 Variable 2 Variable 3

Figure 89 The reduction from 3-SAT to 3-Dimensional Matching.
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Partitioning Problems

3-SAT <, 3-Dimensional Matching: Clauses

@ Consider the clause G; = x1 VX V x3.

@ (3 says “The matching on the cores of
the gadgets should leave the even tips
of gadget 1 free; or it should leave the
odd tips of gadget 2 free; or it should
leave the even tips of gadget 3 free.”

Variable 1 Variable 2 Variable 3

Figure 89 The reduction from 3-SAT to 3-Dimension: al Matching.
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Partitioning Problems

3-SAT <, 3-Dimensional Matching: Clauses

@ Consider the clause G; = x1 VX V x3.

@ (3 says “The matching on the cores of
the gadgets should leave the even tips
of gadget 1 free; or it should leave the
odd tips of gadget 2 free; or it should
leave the even tips of gadget 3 free.”

o Clause gadget j for clause C; contains
two core elements P; = {p;, pj/} and

Variable 1 Variable 2 Variable 3

i 89 Theedctionf 36AT o3 Dins Mt three triples:

> G contains x;: add triple (p;, p}, bi 2)).
» C; contains X;: add triple
(pi, P}, bigj-1).
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Partitioning Problems

3-SAT <p 3-Dimensional Matching: Example

matched if some variable gadget
leaves the corresponding tip free

The clause elements can only be]

Variable 1 Variable 2 Variable 3

Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching.
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.

» Make appropriate choices for the core of each variable gadget.
> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.
» Make appropriate choices for the core of each variable gadget.
> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.
» We have not covered all the tips!
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.

» Make appropriate choices for the core of each variable gadget.

> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.

» We have not covered all the tips!

» Add (n— 1)k cleanup gadgets to allow the remaining (n — 1)k tips to be
covered: cleanup gadget i contains two core elements Q = {q;, g/} and triple
(gi, g}, b) for every tip b in variable gadget i.
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.

» Make appropriate choices for the core of each variable gadget.

> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.

» We have not covered all the tips!

» Add (n— 1)k cleanup gadgets to allow the remaining (n — 1)k tips to be
covered: cleanup gadget i contains two core elements Q = {q;, g/} and triple
(gi, g}, b) for every tip b in variable gadget i.

@ Matching — satisfying assignment.
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.
» Make appropriate choices for the core of each variable gadget.
> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.
» We have not covered all the tips!
» Add (n— 1)k cleanup gadgets to allow the remaining (n — 1)k tips to be
covered: cleanup gadget i contains two core elements Q = {q;, g/} and triple
(gi, g}, b) for every tip b in variable gadget i.
@ Matching — satisfying assignment.
» Matching chooses all even aj; (x; = 0) or all odd a; (x; = 1).
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3-SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.
» Make appropriate choices for the core of each variable gadget.
> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.
» We have not covered all the tips!
» Add (n— 1)k cleanup gadgets to allow the remaining (n — 1)k tips to be
covered: cleanup gadget i contains two core elements Q = {q;, g/} and triple
(gi, g}, b) for every tip b in variable gadget i.
@ Matching — satisfying assignment.
» Matching chooses all even aj; (x; = 0) or all odd a; (x; = 1).
> Is clause C; satisfied?
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Partitioning Problems

3- SAT <p 3-Dimensional Matching: Proof

@ Satisfying assignment — matching.
» Make appropriate choices for the core of each variable gadget.
> At least one free tip available for each clause gadget, allowing core elements of
clause gadgets to be covered.
» We have not covered all the tips!
» Add (n— 1)k cleanup gadgets to allow the remaining (n — 1)k tips to be
covered: cleanup gadget i contains two core elements Q = {q;, g/} and triple
(gi, g}, b) for every tip b in variable gadget i.
@ Matching — satisfying assignment.
» Matching chooses all even aj; (x; = 0) or all odd a; (x; = 1).
> Is clause C; satisfied? Core in clause gadget j is covered by some triple =
other element in the triple must be a tip element from the correct odd/even
set in the three variable gadgets corresponding to a term in ;.
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3-SAT <p 3-Dimensional Matching: Finale

@ Did we create an input to 3-DIMENSIONAL MATCHING?
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3-SAT <p 3-Dimensional Matching: Finale

@ Did we create an input to 3-DIMENSIONAL MATCHING?
@ We need three sets X, Y, and Z of equal size.
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3-SAT <p 3-Dimensional Matching: Finale

@ Did we create an input to 3-DIMENSIONAL MATCHING?

@ We need three sets X, Y, and Z of equal size.
@ How many elements do we have?

2nk ajj elements.
2nk bj; elements.

k p;j elements.

k p; elements.
(n—1)k q; elements.
(n— 1)k gj elements.

vV vyvYVvVvyVvyy
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3-SAT <p 3-Dimensional Matching: Finale

@ Did we create an input to 3-DIMENSIONAL MATCHING?
@ We need three sets X, Y, and Z of equal size.
@ How many elements do we have?

> 2nk aj elements.

> 2nk bj; elements.

> k p; elements.

> k p; elements.

» (n—1)k g; elements.

» (n—1)k q; elements.
@ X is the union of a; with even j, the set of all p; and the set of all g;.
e Y is the union of aj; with odd j, the set if all p; and the set of all ;.
o Z is the set of all bj;.
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3-SAT <p 3-Dimensional Matching: Finale

@ Did we create an input to 3-DIMENSIONAL MATCHING?
@ We need three sets X, Y, and Z of equal size.
@ How many elements do we have?
> 2nk aj elements.
> 2nk bj; elements.
> k p; elements.
> k p; elements.
» (n—1)k g; elements.
» (n—1)k q; elements.
@ X is the union of a; with even j, the set of all p; and the set of all g;.
e Y is the union of aj; with odd j, the set if all p; and the set of all ;.
o Z is the set of all bj;.
@ Each triple contains exactly one element from X, Y, and Z.
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Colouring maps
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Colouring maps

@ Any map can be coloured with four colours (Appel and Hakken, 1976).
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Partitioning Problems

Graph Colouring

o Given an undirected graph G(V, E), a k-colouring of G is a function
f:V —{1,2,... k} such that for every edge (u,v) € E, f(u) # f(v).
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Partitioning Problems

Graph Colouring

o Given an undirected graph G(V, E), a k-colouring of G is a function
f:V —{1,2,... k} such that for every edge (u,v) € E, f(u) # f(v).
GRAPH COLOURING (k-COLOURING)

INSTANCE: An undirected graph G(V/, E) and an integer k > 0.

QUESTION: Does G have a k-colouring?
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Applications of Graph Colouring

@ Job scheduling: assign jobs to n processors under constraints that certain
pairs of jobs cannot be scheduled at the same time.

@ Compiler design: assign variables to k registers but two variables being used
at the same time cannot be assigned to the same register.

© Wavelength assignment: assign one of k transmitting wavelengths to each of
n wireless devices. If two devices are close to each other, they must get
different wavelengths.
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2-Colouring

@ How hard is 2-COLOURING?
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2-Colouring

@ How hard is 2-COLOURING?
@ Claim: A graph is 2-colourable if and only if it is bipartite.
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2-Colouring

o How hard is 2-COLOURING?
@ Claim: A graph is 2-colourable if and only if it is bipartite.
@ Testing 2-colourability is possible in O(|V/| + |E|) time.
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2-Colouring

@ How hard is 2-COLOURING?

@ Claim: A graph is 2-colourable if and only if it is bipartite.

@ Testing 2-colourability is possible in O(|V/| + |E|) time.

@ What about 3-COLOURING? Is it easy to exhibit a certificate that a graph
cannot be coloured with three colours?

Figure 8.10 A graph that is
not 3-colorable.
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3-Colouring is N'P-Complete

@ Why is 3-Colouring in N'P?
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3-Colouring is N'P-Complete

@ Why is 3-Colouring in N'P?
@ 3-SAT <p 3-COLOURING.
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3-SAT <p 3-Colouring: Encoding Variables

3-SAT 3-COLOURING
Boolean variables
True or False
Clauses
Is there a satisfying assignment? Does a 3-colouring exist?
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3-SAT <p 3-Colouring: Encoding Variables

3-SAT 3-COLOURING
Boolean variables Nodes
True or False Colours called True, False, and Base
Clauses
Is there a satisfying assignment? Does a 3-colouring exist?
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3-SAT <p 3-Colouring: Encoding Variables

3-SAT 3-COLOURING
Boolean variables Nodes
True or False Colours called True, False, and Base
Clauses “Gadget”
Is there a satisfying assignment? Does a 3-colouring exist?
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Partitioning Problems

3-SAT <p 3-Colouring: Encoding Variables

3-SAT 3-COLOURING
Boolean variables Nodes
True or False Colours called True, False, and Base
Clauses “Gadget”
Is there a satisfying assignment? Does a 3-colouring exist?

Figure 8.11 The beginning of the reduction for 3-Coloring.
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Partitioning Problems

3-SAT <p 3-Colouring: Encoding Variables

3-SAT 3-COLOURING
Boolean variables Nodes
True or False Colours called True, False, and Base
Clauses “Gadget”
Is there a satisfying assignment? Does a 3-colouring exist?

@ x; corresponds to node v; and X;
corresponds to node v;.

Figure 8.11 The beginning of the reduction for 3-Coloring.
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Partitioning Problems

3-SAT <p 3-Colouring: Encoding Variables

3-SAT 3-COLOURING
Boolean variables Nodes
True or False Colours called True, False, and Base
Clauses “Gadget”
Is there a satisfying assignment? Does a 3-colouring exist?

@ x; corresponds to node v; and X;
corresponds to node v;.

@ In any 3-Colouring, nodes v; and v;
get a colour different from Base.
@ True colour: colour assigned to the

True node; False colour: colour
assigned to the False node.

@ Set x; to 1 iff v; gets the True
colour.

Figure 8.11 The beginning of the reduction for 3-Coloring.
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3-SAT <p 3-Colouring: Encoding Clauses

@ Consider the clause
CG=x1VXxV x3.
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Partitioning Problems

3-SAT <p 3-Colouring: Encoding Clauses

o Consider the clause
The top node can o J—
colored if one of vy, U, or v3 C1 = X1 V X2 V X3.

does not get the False color.

o Attach a six-node subgraph
for this clause to the rest of
the graph.

Figure 8.12 Attaching a subgraph to represent the clause x; v X, v x3.
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Partitioning Problems

3-SAT <p 3-Colouring: Encoding Clauses

o Consider the clause
The top node can only be P
colored if one of v, ¥y, or v3 Cl = X1 V X2 V X3.

does not get the False color.

o Attach a six-node subgraph
for this clause to the rest of
the graph.

@ Attach a copy of six-node
subgraph similarly for every
other clause.

Figure 8.12 Attaching a subgraph to represent the clause x; v X, v x3.
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Partitioning Problems

3-SAT <p 3-Colouring: Encoding Clauses

o Consider the clause
The top node can only be P
colored if one of C1 =x1 VX2V X3.

does not get the

o Attach a six-node subgraph
for this clause to the rest of
the graph.

@ Attach a copy of six-node
subgraph similarly for every
other clause.

Figure 8.12 Attaching a subgraph to represent the clause x; v X, v x3.

o Claim: If all of of vy, v, or v3 get the False colour, then the top node in the
subgraph cannot be coloured in a 3-colouring.
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Partitioning Problems

3- SAT <p 3- Colourmg Encoding Clauses

The top node can only be
colored if one of vy, U, or v3
does not get the False color.

Figure 8.12 Attaching a subgraph to represent the clause x; v X, v x3.

@ Consider the clause
CG=x1VXxV x3.

o Attach a six-node subgraph
for this clause to the rest of
the graph.

@ Attach a copy of six-node
subgraph similarly for every
other clause.

o Claim: If all of of vy, v, or v3 get the False colour, then the top node in the
subgraph cannot be coloured in a 3-colouring.

@ Claim: If at least one of vq, V3, or v3 does not get the False colour, then the
top node in the subgraph can be coloured in a 3-colouring.

T. M. Murali

November 30, December 2, 2021

NP-Complete Problems



Partitioning Problems Other Problems

3- SAT <p 3-Colouring: Encoding Clauses

@ Consider the clause
o o o o e G =x VXV xs.
does not get the False color. ° Attach a six-node subgraph
for this clause to the rest of
the graph.

@ Attach a copy of six-node
subgraph similarly for every
other clause.

Figure 8.12 Attaching a subgraph to represent the clause x; v X, v x3.

o Claim: If all of of vy, v, or v3 get the False colour, then the top node in the
subgraph cannot be coloured in a 3-colouring.

@ Claim: If at least one of vq, V3, or v3 does not get the False colour, then the
top node in the subgraph can be coloured in a 3-colouring.

@ Claim: Graph is 3-colourable iff input to 3-SAT is satisfiable.
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Subset Sum

SUBSET SUM
INSTANCE: A set of n natural numbers wy, ws, ..., w, and a target W.
QUESTION: Is there a subset of {wy, ws,...,w,} whose sum is W?
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Subset Sum
SUBSET SUM

INSTANCE: A set of n natural numbers wy, ws, ..., w, and a target W.
QUESTION: Is there a subset of {wy, ws,...,w,} whose sum is W?

@ SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter
6.4 of the textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Other Problems

Subset Sum

SUBSET SUM

INSTANCE: A set of n natural numbers wy, wy,

.., Wy, and a target W.
QUESTION: Is there a subset of {w, ws,

..., Wn} whose sum is W?

@ SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter
6.4 of the textbook).

@ There is a dynamic programming algorithm for SUBSET SUM that runs in
O(nW) time.
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Other Problems

Subset Sum

SUBSET SUM
INSTANCE: A set of n natural numbers wy, ws, .

.., Wy, and a target W.
QUESTION: Is there a subset of {wy, ws,.

.., Wy} whose sum is W?

@ SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter
6.4 of the textbook).

@ There is a dynamic programming algorithm for SUBSET SUM that runs in

O(nW) time. This algorithm’s running time is exponential in the size of the
input.
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Other Problems

Subset Sum

SUBSET SUM
INSTANCE: A set of n natural numbers wy, ws, .

.., Wy, and a target W.
QUESTION: Is there a subset of {wy, ws,.

.., Wy} whose sum is W?

@ SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter
6.4 of the textbook).

@ There is a dynamic programming algorithm for SUBSET SUM that runs in
O(nW) time. This algorithm’s running time is exponential in the size of the
input.

o Claim: SUBSET SuM is N'P-Complete,
3-DIMENSIONAL MATCHING <p SUBSET SUM.
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Partitioning Problems Other Problems

Subset Sum

SUBSET SUM
INSTANCE: A set of n natural numbers wy, ws, ..., w, and a target W.
QUESTION: Is there a subset of {wy, ws,...,w,} whose sum is W?

@ SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter
6.4 of the textbook).

@ There is a dynamic programming algorithm for SUBSET SUM that runs in
O(nW) time. This algorithm’s running time is exponential in the size of the
input.

o Claim: SUBSET SuM is N'P-Complete,
3-DIMENSIONAL MATCHING <p SUBSET SUM.

o Caveat: Special case of SUBSET SUM in which W is bounded by a

polynomial function of n is not NP-Complete (read pages 494—495 of your
textbook).
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Examples of Hard Computational Problems
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Other Problems

Search or Article | e arXiv  All papers Broaden )

elp | Advanced search)

Computer Science > Computational Complexity

Bejeweled, Candy Crush and other Match-Three Games are (NP-)Hard

Luciano Guala, Stefano Leucci, Emanuele Natale
(Submitted on 24 Mar 2014)

The twentieth century has seen the rise of a new type of video games targeted at a mass audience of "casual" gamers. Many of these
games require the player to swap items in order to form matches of three and are collectively known as \emphitile-matching match-
three games}. Among these, the most influential one is arguably \emph{Bejeweled} in which the matched items (gems) pop and the
above gems fall in their place. Bejeweled has been ported to many different platforms and influenced an incredible number of similar
games. Very recently one of them, named \emph{Candy Crush Saga} enjoyed a huge popularity and quickly went viral on social
networks. We generalize this kind of games by only parameterizing the size of the board, while all the other elements (such as the rules
or the number of gems) remain unchanged. Then, we prove that answering many natural questions regarding such games is actually
\NP-Hard. These questions include determining if the player can reach a certain score, play for a certain number of turns, and others.
M. Murali November 3|
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Examples of Hard Computational Problems
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Fig.1 A Typical Minesweeper Fig.2 Impossible
Position Minesweeper position.
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Examples of Hard Computational Problems
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Fig.1 A Typical Minesweeper Fig.2 Impossible
Position Minesweeper position.
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Other Problems
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Tetris is Hard, Even to Approximate

Erik D. Demaine, Susan Hohenberger, David Liben-Nowell
(Submitted on 21 Oct 2002)

In the popular computer game of Tetris, the player is given a sequence of tetromino pieces and must pack them into a rectangular gameboard initially occupied by a given
configuration of filled squares; any filled row of the is cleared and all pieces above it drop by one row. We prove that in the offline version of Tetris,
itis NP-complete to maximize the number of cleared rows, maximize the number of tetrises (quadruples of rows simultaneously filled and cleared), minimize the maximum
height of an occupied square, or maximize the number of pieces placed before the game ends. We furthermore show the extreme inapproximability of the first and last of
these objectives to within a factor of p*(1-epsilon), when given a sequence of p pieces, and the inapproximability of the third objective to within a factor of (2 - epsilon), for
any epsilon>0. Our results hold under several variations on the rules of Tetris, including different models of rotation, limitations on player agility, and restricted piece sets.
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Strateg 3-SAT Sequencing Problems Partitioning Problems Other Problems

More Examples of Hard Computational Problems

(from Kevin Wayne's slides at Princeton University)
Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.

Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.

Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.
Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency.

Statistics: optimal experimental design.
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