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Review: Definitions of NP-Complete and NP-Hard

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard
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Proving Other Problems NP-Complete

P NPc

co-NP NP NP-hard

Claim: If Y is NP-Complete and X ∈ NP such that Y ≤P X , then X is
NP-Complete.

Given a new problem X , a general strategy for proving it NP-Complete is
1 Prove that X ∈ NP.
2 Select a problem Y known to be NP-Complete.
3 Prove that Y ≤P X .

To prove X is NP-Complete, reduce a known NP-Complete problem Y to
X . Do not prove reduction in the opposite direction, i.e., X ≤P Y .
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Proving a Problem NP-Complete with Karp Reduction

1 Prove that X ∈ NP.

2 Select a problem Y known to be NP-Complete.
3 Consider an arbitrary input s to problem Y . Show how to construct, in

polynomial time, an input t to problem X such that
(a) If Y (s) = yes, then X (t) = yes and
(b) If X (t) = yes, then Y (s) = yes (equivalently, if Y (s) = no, then X (t) = no).
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3-SAT is NP-Complete

Why is 3-SAT in NP?

Circuit Satisfiability ≤P 3-SAT.
1 Given an input to Circuit Satisfiability, create an input to SAT, in which

each clause has at most three variables.
2 Convert this input to SAT into an input to 3-SAT.

Skip proof that Circuit Satisfiability ≤P 3-SAT
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Circuit Satisfiability ≤P 3-SAT: Transformation

Given an arbitrary circuit K , associate each node v with a Boolean variable
xv .

Encode the requirements of each gate as a clause.

node v has ¬ and edge entering from node u: guarantee that xv = xu using
clauses (xv ∨ xu) and (xv ∨ xu).

node v has ∨ and edges entering from nodes u and w : ensure xv = xu ∨ xw
using clauses (xv ∨ xu), (xv ∨ xw ), and (xv ∨ xu ∨ xw ).

node v has ∧ and edges entering from nodes u and w : ensure xv = xu ∧ xw
using clauses (xv ∨ xu), (xv ∨ xw ), and (xv ∨ xu ∨ xw ).

Constants at sources: single-variable clauses.

Output: if o is the output node, use the clause (xo).
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Circuit Satisfiability ≤P 3-SAT: Proof

Prove that K is equivalent to the input to SAT.
I K is satisfiable → clauses are satisfiable.

I clauses are satisfiable → K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

Converting input to SAT to an input to 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (zi ∨ z3 ∨ z4), (zi ∨ z3 ∨ z4), (zi ∨ z3 ∨ z4),
and (zi ∨ z3 ∨ z4), for i = 1 and i = 2.

I If a clause has a single term t, replace the clause with (t ∨ z1 ∨ z2).
I If a clause has a two terms t and t′, replace the clause with t ∨ t′ ∨ z1.
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More NP-Complete problems

Circuit Satisfiability is NP-Complete.

We just showed that Circuit Satisfiability ≤P 3-SAT.

We know that

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover

All these problems are in NP.

Therefore, Independent Set, Vertex Cover, and Set Cover are
NP-Complete.
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Hamiltonian Cycle

Problems we have seen so far involve searching over subsets of a collection of
objects.

Another type of computationally hard problem involves searching over the set
of all permutations of a collection of objects.

In a directed graph G (V ,E ), a cycle C is a Hamiltonian cycle if C visits each
vertex exactly once.

Hamiltonian Cycle

INSTANCE: A directed graph G .

QUESTION: Does G contain a Hamiltonian cycle?
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Hamiltonian Cycle is NP-Complete

Why is the problem in NP?

Claim: 3-SAT ≤P Hamiltonian Cycle. Jump to TSP

Consider an arbitrary input to 3-SAT with variables x1, x2, . . . , xn and clauses
C1,C2, . . .Ck .

Strategy:
1 Construct a graph G with O(nk) nodes and edges and 2n Hamiltonian cycles

with a one-to-one correspondence with 2n truth assignments.
2 Add nodes to impose constraints arising from clauses.
3 Construction takes O(nk) time.

G contains n paths P1,P2, . . .Pn, one for each variable.

Each Pi contains b = 3k + 3 nodes vi,1, vi,2, . . . vi,b, three for each clause and
some extra nodes.
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3-SAT ≤P Hamiltonian Cycle: Constructing G
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3-SAT ≤P Hamiltonian Cycle: Modelling clauses

Consider the clause C1 = x1 ∨ x2 ∨ x3.
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3-SAT ≤P Hamiltonian Cycle: Modelling clauses
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Example

Two clauses C1 = x1 ∨ x2, C2 = x1 ∨ x2.
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3-SAT ≤P Hamiltonian Cycle: Proof Part 1

3-SAT input is satisfiable → G has a Hamiltonian cycle.

I Construct a Hamiltonian cycle C as follows:
I If xi = 1, traverse Pi from left to right in C.
I Otherwise, traverse Pi from right to left in C.
I For each clause Cj , there is at least one term set to 1. If the term is xi , splice

cj into C using edge from vi,3j and edge to vi,3j+1. Analogous construction if
term is xi .
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I If xi = 1, traverse Pi from left to right in C.
I Otherwise, traverse Pi from right to left in C.
I For each clause Cj , there is at least one term set to 1. If the term is xi , splice

cj into C using edge from vi,3j and edge to vi,3j+1. Analogous construction if
term is xi .
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3-SAT ≤P Hamiltonian Cycle: Proof Part 2

G has a Hamiltonian cycle C → Input to 3-SAT is satisfiable.
I If C enters cj on an edge from vi,3j , it must leave cj along the edge to vi,3j+1.
I Analogous statement if C enters cj on an edge from vi,3j+1.

I Nodes immediately before and after cj in C are themselves connected by an
edge e in G .

I If we remove all such edges e from C, we get a Hamiltonian cycle C′ in
G − {c1, c2, . . . , ck}.

I Use C′ to construct truth assignment to variables; prove assignment is
satisfying.
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The Travelling Salesman Problem

A salesman must visit n cities v1, v2, . . . vn starting at home city v1.

Salesman must find a tour, an order in which to visit each city exactly once,
and return home.

Goal is to find as short a tour as possible.

For every pair of cities vi and vj , d(vi , vj) > 0 is the distance from vi to vj .

A tour is a permutation vi1 = v1, vi2 , . . . vin .

The length of the tour is
∑n−1

j=1 d(vij vij+1) + d(vin , vi1).

Travelling Salesman

INSTANCE: A set V of n cities, a function d : V × V → R+, and a
number D > 0.

QUESTION: Is there a tour of length at most D?
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Travelling Salesman is NP-Complete

Why is the problem in NP?

Why is the problem NP-Complete?

Claim: Hamiltonian Cycle ≤P Travelling Salesman.

Hamiltonian Cycle Travelling Salesman
Directed graph G (V ,E ) Cities

Edges have identical weights Distances between cities can vary
Not all pairs of nodes are connected in G Every pair of cities has a distance

(u, v) and (v , u) may both be edges d(vi , vj) 6= d(vj , vi ), in general
Does a cycle exist? Does a tour of length ≤ D exist?

Given a directed graph G (V ,E ) (input to Hamiltonian Cycle),
I Create a city vi for each node i ∈ V .
I Define d(vi , vj) = 1 if (i , j) ∈ E .
I Define d(vi , vj) = 2 if (i , j) 6∈ E .

Claim: G has a Hamiltonian cycle iff the input to Travelling Salesman has a
tour of length at most n.
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Special Cases and Extensions that are NP-Complete

Hamiltonian Cycle for undirected graphs.

Hamiltonian Path for directed and undirected graphs.

Travelling Salesman with symmetric distances (by reducing
Hamiltonian Cycle for undirected graphs to it).

Travelling Salesman with distances defined by points on the plane.

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

2-Dimensional Matching

3-Dimensional Matching is a harder version of Bipartite Matching.

Bipartite Matching

INSTANCE: Disjoint sets X , Y , each of size n, and a set T ⊆ X × Y of
pairs

QUESTION: Is there a set of n pairs in T such that each element of
X ∪ Y is contained in exactly one of these pairs?

Easy to show 3-Dimensional Matching ≤P Set Cover and
3-Dimensional Matching ≤P Set Packing.
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INSTANCE: Disjoint sets X , Y , and Z , each of size n, and a set
T ⊆ X × Y × Z of triples
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3-Dimensional Matching is NP-Complete

Why is the problem in NP?

Show that 3-SAT ≤P 3-Dimensional Matching. Jump to Colouring

Strategy:
I Start with an input to 3-SAT with n variables and k clauses.
I Create a gadget for each variable xi that encodes the choice of truth

assignment to xi .
I Add gadgets that encode constraints imposed by clauses.
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3-SAT ≤P 3-Dimensional Matching: Variables

Each xi corresponds to a variable gadget
i with 2k core elements
Ai = {ai,1, ai,2, . . . ai,2k} and 2k tips
Bi = {bi,1, bi,2, . . . bi,2k}.
For each 1 ≤ j ≤ 2k , variable gadget i
includes a triple tij = (ai,j , ai,j+1, bi,j).

A triple (tip) is even if j is even.
Otherwise, the triple (tip) is odd.

Only these triples contain elements in
Ai .

In any perfect matching, we can cover the elements in Ai either using all the
even triples in gadget i or all the odd triples in the gadget.

Even triples used, odd tips free ≡ xi = 0; odd triples used, even tips free
≡ xi = 1.
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3-SAT ≤P 3-Dimensional Matching: Clauses

Consider the clause C1 = x1 ∨ x2 ∨ x3.

C1 says “The matching on the cores of
the gadgets should leave the even tips
of gadget 1 free; or it should leave the
odd tips of gadget 2 free; or it should
leave the even tips of gadget 3 free.”

Clause gadget j for clause Cj contains
two core elements Pj = {pj , p′j} and
three triples:

I Cj contains xi : add triple (pj , p
′
j , bi,2j).

I Cj contains xi : add triple
(pj , p

′
j , bi,2j−1).
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3-SAT ≤P 3-Dimensional Matching: Example
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3-SAT ≤P 3-Dimensional Matching: Proof

Satisfying assignment → matching.

I Make appropriate choices for the core of each variable gadget.
I At least one free tip available for each clause gadget, allowing core elements of

clause gadgets to be covered.
I We have not covered all the tips!
I Add (n − 1)k cleanup gadgets to allow the remaining (n − 1)k tips to be

covered: cleanup gadget i contains two core elements Q = {qi , q′i } and triple
(qi , q

′
i , b) for every tip b in variable gadget i .

Matching → satisfying assignment.
I Matching chooses all even aij (xi = 0) or all odd aij (xi = 1).
I Is clause Cj satisfied? Core in clause gadget j is covered by some triple ⇒

other element in the triple must be a tip element from the correct odd/even
set in the three variable gadgets corresponding to a term in Cj .
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i , b) for every tip b in variable gadget i .

Matching → satisfying assignment.
I Matching chooses all even aij (xi = 0) or all odd aij (xi = 1).
I Is clause Cj satisfied? Core in clause gadget j is covered by some triple ⇒

other element in the triple must be a tip element from the correct odd/even
set in the three variable gadgets corresponding to a term in Cj .
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3-SAT ≤P 3-Dimensional Matching: Finale

Did we create an input to 3-Dimensional Matching?

We need three sets X ,Y , and Z of equal size.

How many elements do we have?
I 2nk aij elements.
I 2nk bij elements.
I k pj elements.
I k p′j elements.
I (n − 1)k qi elements.
I (n − 1)k q′i elements.

X is the union of aij with even j , the set of all pj and the set of all qi .

Y is the union of aij with odd j , the set if all p′j and the set of all q′i .

Z is the set of all bij .

Each triple contains exactly one element from X , Y , and Z .
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Colouring maps

Any map can be coloured with four colours (Appel and Hakken, 1976).
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Graph Colouring

Given an undirected graph G (V ,E ), a k-colouring of G is a function
f : V → {1, 2, . . . k} such that for every edge (u, v) ∈ E , f (u) 6= f (v).

Graph Colouring (k-Colouring)

INSTANCE: An undirected graph G (V ,E ) and an integer k > 0.

QUESTION: Does G have a k-colouring?
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Applications of Graph Colouring

1 Job scheduling: assign jobs to n processors under constraints that certain
pairs of jobs cannot be scheduled at the same time.

2 Compiler design: assign variables to k registers but two variables being used
at the same time cannot be assigned to the same register.

3 Wavelength assignment: assign one of k transmitting wavelengths to each of
n wireless devices. If two devices are close to each other, they must get
different wavelengths.
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2-Colouring

How hard is 2-Colouring?

Claim: A graph is 2-colourable if and only if it is bipartite.

Testing 2-colourability is possible in O(|V |+ |E |) time.

What about 3-colouring? Is it easy to exhibit a certificate that a graph
cannot be coloured with three colours?
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3-Colouring is NP-Complete

Why is 3-Colouring in NP?

3-SAT ≤P 3-Colouring. Jump to other problems
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3-SAT ≤P 3-Colouring: Encoding Variables

3-SAT 3-Colouring
Boolean variables

Nodes

True or False

Colours called True, False, and Base

Clauses

“Gadget”

Is there a satisfying assignment? Does a 3-colouring exist?

xi corresponds to node vi and xi
corresponds to node vi .

In any 3-Colouring, nodes vi and vi
get a colour different from Base.

True colour: colour assigned to the
True node; False colour: colour
assigned to the False node.

Set xi to 1 iff vi gets the True
colour.
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3-SAT ≤P 3-Colouring: Encoding Clauses

Consider the clause
C1 = x1 ∨ x2 ∨ x3.

Attach a six-node subgraph
for this clause to the rest of
the graph.

Attach a copy of six-node
subgraph similarly for every
other clause.

Claim: If all of of v1, v2, or v3 get the False colour, then the top node in the
subgraph cannot be coloured in a 3-colouring.

Claim: If at least one of v1, v2, or v3 does not get the False colour, then the
top node in the subgraph can be coloured in a 3-colouring.

Claim: Graph is 3-colourable iff input to 3-SAT is satisfiable.
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Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is W ?

Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time. This algorithm’s running time is exponential in the size of the
input.

Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is W ?

Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time. This algorithm’s running time is exponential in the size of the
input.

Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is W ?

Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time.

This algorithm’s running time is exponential in the size of the
input.

Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is W ?

Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time. This algorithm’s running time is exponential in the size of the
input.

Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is W ?

Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time. This algorithm’s running time is exponential in the size of the
input.

Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is W ?

Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time. This algorithm’s running time is exponential in the size of the
input.

Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).

T. M. Murali November 30, December 2, 2021 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Examples of Hard Computational Problems
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More Examples of Hard Computational Problems
(from Kevin Wayne’s slides at Princeton University)

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.
Chemical engineering: heat exchanger network synthesis.
Civil engineering: equilibrium of urban traffic flow.
Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.
Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.
Operations research: optimal resource allocation.
Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency.
Statistics: optimal experimental design.
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