Coping with NP-Completeness

T. M. Murali

December 2, 7, 2021
Examples of Hard Computational Problems

(from Kevin Wayne’s slides at Princeton University)

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.
How Do We Tackle an \mathcal{NP}-Complete Problem?

“'I can’t find an efficient algorithm, but neither can all these famous people.'”

(Garey and Johnson, *Computers and Intractability*)
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
How Do We Tackle an \(\text{NP} \)-Complete Problem?

My Hobby:

Embedding NP-Complete Problems in Restaurant Orders

<table>
<thead>
<tr>
<th>Appetizers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
</tbody>
</table>

Sandwiches

Barbecue 6.55

We'd like exactly $15.05 worth of appetizers, please.

... exactly? Uhh...

Here, these papers on the knapsack problem might help you out.

Listen, I have six other tables to get to—

As fast as possible, of course. Want something on traveling salesman?
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the \textit{worst case}. Can we come up with better solutions at least in \textit{some} cases?
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?

- Develop algorithms that are exponential in one parameter in the problem.
- Consider special cases of the input, e.g., graphs that “look like” trees.
- Develop algorithms that can provably compute a solution close to the optimal.
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
 - Develop algorithms that are exponential in one parameter in the problem.
 - Consider special cases of the input, e.g., graphs that “look like” trees.
 - Develop algorithms that can provably compute a solution close to the optimal.
Vertex Cover Problem

INSTANCE: Undirected graph \(G \) and an integer \(k \)

QUESTION: Does \(G \) contain a vertex cover of size at most \(k \)?

- The problem has two parameters: \(k \) and \(n \), the number of nodes in \(G \).
- Brute-force algorithm: test every subset of nodes of size \(k \).
- What is the running time of this algorithm?
Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm? $O\left(kn{n \choose k}\right) = O(kn^{k+1})$.
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm? $O(kn^{\binom{n}{k}}) = O(kn^{k+1})$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., $O(2^k n)$?
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most $\binom{n}{k}$ edges.
Designing the Vertex Cover Algorithm

- **Intuition**: if a graph has a small vertex cover, it cannot have too many edges.
- **Claim**: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- **Easy part of algorithm**: Return `no` if G has more than kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.

![Graph diagram]
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return `no` if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- Claim: G has a vertex cover of size at most k iff for any edge (u, v) either $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size at most $k - 1$.

![Diagram](image-url)
To search for a \(k \)-node vertex cover in \(G \):

1. If \(G \) contains no edges, then the empty set is a vertex cover.
2. If \(G \) contains \(> k \ |V| \) edges, then it has no \(k \)-node vertex cover.
3. Else, let \(e = (u, v) \) be an edge of \(G \).
 - Recursively check if either of \(G \setminus \{u\} \) or \(G \setminus \{v\} \)
 has a vertex cover of size \(k - 1 \)
 - If neither of them does, then \(G \) has no \(k \)-node vertex cover.
 - Else, one of them (say, \(G \setminus \{u\} \)) has a \((k - 1) \)-node vertex cover \(T \).
 - In this case, \(T \cup \{u\} \) is a \(k \)-node vertex cover of \(G \).

Endif

Endif
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of Vertex Cover with parameters n and k.

We need $O(kn)$ time to count the number of edges.

Claim: $T(n, k) = O(2^k kn)$.

T. M. Murali December 2, 7, 2021 Coping with NP-Completeness
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of \textsc{Vertex Cover} with parameters n and k.
- $T(n, 1) \leq cn$.

\[
T(n, k) \leq 2T(n, k-1) + ckn.
\]
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of **Vertex Cover** with parameters n and k.
- $T(n, 1) \leq cn$.
- $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n, 1) \leq cn$.
- $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
- Claim: $T(n, k) = O(2^k kn)$.

T. M. Murali December 2, 7, 2021 Coping with NP-Completeness
Approximation Algorithms

- Methods for optimisation versions of \mathcal{NP}-Complete problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution.
Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1. \(C \leftarrow \emptyset \) \{ \(C \) will be the vertex cover\}
2. **while** \(G \) has at least one edge **do**
3. \(\text{Let } (u, v) \text{ be any edge in } G \)
4. \(\text{\{Update } C \text{ using } u \text{ and/or } v \text{\}} \)
5. \(\text{\{Update } G \text{ using } u \text{ and/or } v \text{\}} \)
6.
7. **end while**
8. **return** \(C \)
Approximation Algorithm for VertexCover

EasyVertexCover(*G*) (Gavril, 1974; Yannakakis)

1. \(C \leftarrow \emptyset\) \{ \(C\) will be the vertex cover\}
2. **while** \(G\) has at least one edge **do**
3. \(\text{Let } (u, v) \text{ be any edge in } G\)
4. \(\text{Add } u \text{ and } v \text{ to } C\)
5. \(\text{Update } G \text{ using } u \text{ and/or } v\) \{ \(\text{Update } G \text{ using } u \text{ and/or } v\)\}
6.
7. **end while**
8. **return** \(C\)

![Diagram](image.png)
Approximation Algorithm for VertexCover

`EASYVERTEXCOVER(G)` (Gavril, 1974; Yannakakis)

1: `C ← ∅, E′ ← ∅` \{\(C\) will be the vertex cover\}
2: `while `G` has at least one edge` do
3: Let \((u, v)\) be any edge in `G`
4: Add `u` and `v` to `C` \{Delete `u`, `v`, and all incident edges from `G`.\}
5: `G ← G − {u, v}` \{Keep track of edges for bookkeeping.\}
6: Add \((u, v)\) to `E′` \{Delete `u`, `v`, and all incident edges from `G`.\}
7: `end while`
8: `return `C

\[
\begin{align*}
&x_2 & x_1 & & x_4 \\
&x_3 & & x_5 & x_6 \\
& & x_7 & & \\
\end{align*}
\]
Approximation Algorithm for VertexCover

EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis)

1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset \{ C \text{ will be the vertex cover} \}$
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: $G \leftarrow G - \{u, v\} \{ \text{Delete } u, v, \text{ and all incident edges from } G. \}$
6: Add (u, v) to E' \{Keep track of edges for bookkeeping.\}
7: end while
8: return C
Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \) \{\(C \) will be the vertex cover\}
2: **while** \(G \) has at least one edge **do**
3: \(\) Let \((u, v)\) be any edge in \(G \)
4: \(\) Add \(u \) and \(v \) to \(C \)
5: \(\) \(G \leftarrow G - \{u, v\} \) \{Delete \(u, v, \) and all incident edges from \(G.\}\}
6: \(\) Add \((u, v)\) to \(E' \) \{Keep track of edges for bookkeeping.\}
7: **end while**
8: **return** \(C \)
Approximation Algorithm for VertexCover

\textbf{EASYVERTEXCOVER}(G) \ (Gavril, 1974; Yannakakis)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset\) \ \{C will be the vertex cover\}
2: \textbf{while} \ G \ \textbf{has at least one edge} \ \textbf{do}
3: \quad \text{Let} \ (u, v) \ \text{be any edge in} \ G
4: \quad \text{Add} \ u \ \text{and} \ v \ \text{to} \ C
5: \quad G \leftarrow G - \{u, v\} \ \{\text{Delete} \ u, \ v, \ \text{and all incident edges from} \ G.\}
6: \quad \text{Add} \ (u, v) \ \text{to} \ E' \ \{\text{Keep track of edges for bookkeeping.}\}
7: \textbf{end while}
8: \textbf{return} \ C
Analysis of EasyVertexCover

EasyVertexCover\((G)\)

1. \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2. **while** \(G \) has at least one edge **do**
3. \(\text{Let } (u, v) \text{ be any edge in } G \)
4. \(\text{Add } u \text{ and } v \text{ to } C \)
5. \(G \leftarrow G - \{u, v\} \)
6. \(\text{Add } (u, v) \text{ to } E' \)
7. **end while**
8. **return** \(C \)

- Running time is linear in the size of the graph.

Claim: \(C \) is a vertex cover.

Claim: No two edges in \(E' \) can be covered by the same node.

Claim: The size \(c^* \) of the smallest vertex cover is .

Claim: \(|C| = 2|E'| \leq 2c^* \)

No approximation algorithm with a factor better than \(\sqrt{2} - \varepsilon \) is possible unless \(P = \text{NP} \) (Dinur et al., 2018).

No approximation algorithm with a factor better than 2 is possible if the “unique games conjecture” is true (Khot and Regev, 2008).
Analysis of EasyVertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2: while \(G \) has at least one edge do
3: \(\text{Let } (u, v) \text{ be any edge in } G \)
4: Add \(u \) and \(v \) to \(C \)
5: \(G \leftarrow G - \{u, v\} \)
6: Add \((u, v) \) to \(E' \)
7: end while
8: return \(C \)

- Running time is linear in the size of the graph.

Claim: \(C \) is a vertex cover.

Claim: No two edges in \(E' \) can be covered by the same node.

Claim: The size \(c^* \) of the smallest vertex cover is.

Claim: \(|C| = 2|E'| \leq 2c^* \)

No approximation algorithm with a factor better than \(\sqrt{2} - \epsilon \) is possible unless \(P = NP \) (Dinur et al., 2018).

No approximation algorithm with a factor better than 2 is possible if the "unique games conjecture" is true (Khot and Regev, 2008).
Analysis of EasyVertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \)
2: while \(G \) has at least one edge do
3: \(\) Let \((u, v) \) be any edge in \(G \)
4: \(\) Add \(u \) and \(v \) to \(C \)
5: \(G \leftarrow G - \{u, v\} \)
6: \(\) Add \((u, v) \) to \(E' \)
7: end while
8: return \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.

Claim: No two edges in \(E' \) can be covered by the same node.

Claim: The size \(c^* \) of the smallest vertex cover is .

Claim: \(|C| = 2|E'| \leq 2c^* \)

No approximation algorithm with a factor better than \(\sqrt{2} - \varepsilon \) is possible unless \(P = NP \) (Dinur et al., 2018).

No approximation algorithm with a factor better than 2 is possible if the "unique games conjecture" is true (Khot and Regev, 2008).
Analysis of EasyVertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2: while \(G \) has at least one edge do
3: Let \((u, v)\) be any edge in \(G \)
4: Add \(u \) and \(v \) to \(C \)
5: \(G \leftarrow G - \{u, v\} \)
6: Add \((u, v)\) to \(E' \)
7: end while
8: return \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.

Claim: The size \(c^* \) of the smallest vertex cover is .

Claim: \(|C| = 2|E'| \leq 2c^* \)

No approximation algorithm with a factor better than \(\sqrt{2} - \varepsilon \) is possible unless \(P = NP \) (Dinur et al., 2018).

No approximation algorithm with a factor better than 2 is possible if the “unique games conjecture” is true (Khot and Regev, 2008).
Analysis of EasyVertexCover

\textbf{EasyVertexCover}(G)

1: \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2: \textbf{while} \(G \) has at least one edge \textbf{do}
3: \hspace{1em} Let \((u, v)\) be any edge in \(G \)
4: \hspace{1em} Add \(u \) and \(v \) to \(C \)
5: \hspace{1em} \(G \leftarrow G - \{u, v\} \)
6: \hspace{1em} Add \((u, v)\) to \(E' \)
7: \textbf{end while}
8: \textbf{return} \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.
- Claim: The size \(c^* \) of the smallest vertex cover is \(\text{Poll} \).
Analysis of EasyVertexCover

EasyVertexCover\((G)\)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \)
2: while \(G \) has at least one edge do
3: Let \((u, v)\) be any edge in \(G \)
4: Add \(u \) and \(v \) to \(C \)
5: \(G \leftarrow G - \{u, v\} \)
6: Add \((u, v)\) to \(E' \)
7: end while
8: return \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.
- Claim: The size \(c^* \) of the smallest vertex cover is at least \(|E'|\).
Analysis of EasyVertexCover

\textbf{EasyVertexCover}(G)

1: \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2: \textbf{while} \(G \) has at least one edge \textbf{do}
3: \hspace{1em} Let \((u, v)\) be any edge in \(G \)
4: \hspace{1em} Add \(u \) and \(v \) to \(C \)
5: \hspace{1em} \(G \leftarrow G - \{u, v\} \)
6: \hspace{1em} Add \((u, v)\) to \(E' \)
7: \textbf{end while}
8: \textbf{return} \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.
- Claim: The size \(c^* \) of the smallest vertex cover is at least \(|E'|\).
- Claim: \(|C| = 2|E'| \leq 2c^*\)
Analysis of EasyVertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2: while \(G \) has at least one edge do
3: Let \((u, v)\) be any edge in \(G \)
4: Add \(u \) and \(v \) to \(C \)
5: \(G \leftarrow G - \{u, v\} \)
6: Add \((u, v)\) to \(E' \)
7: end while
8: return \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.
- Claim: The size \(c^* \) of the smallest vertex cover is at least \(|E'| \).
- Claim: \(|C| = 2|E'| \leq 2c^* \)
- No approximation algorithm with a factor better than \(\sqrt{2} - \varepsilon \) is possible unless \(\mathcal{P} = \mathcal{NP} \) (Dinur et al., 2018).
Analysis of EasyVertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \)
2: **while** \(G \) has at least one edge **do**
3: \(\text{Let } (u, v) \text{ be any edge in } G \)
4: \(\text{Add } u \text{ and } v \text{ to } C \)
5: \(G \leftarrow G - \{u, v\} \)
6: \(\text{Add } (u, v) \text{ to } E' \)
7: **end while**
8: **return** \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.
- Claim: The size \(c^* \) of the smallest vertex cover is at least \(|E'| \).
- Claim: \(|C| = 2|E'| \leq 2c^* \)
- No approximation algorithm with a factor better than \(\sqrt{2} - \varepsilon \) is possible unless \(P = NP \) (Dinur et al., 2018).
- No approximation algorithm with a factor better than 2 is possible if the “unique games conjecture” is true (Khot and Regev, 2008).
Given set of m machines $M_1, M_2, \ldots M_m$.

Given a set of n jobs: job j has processing time t_j.

Assign each job to one machine so that the total time spent is minimised.
Given set of \(m \) machines \(M_1, M_2, \ldots, M_m \).

Given a set of \(n \) jobs: job \(j \) has processing time \(t_j \).

Assign each job to one machine so that the total time spent is minimised.

Let \(A(i) \) be the set of jobs assigned to machine \(M_i \).

Total time spent on machine \(i \) is \(T_i = \sum_{k \in A(i)} t_k \).

Minimise makespan \(T = \max_i T_i \), the largest load on any machine.
Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j.
- Assign each job to one machine so that the total time spent is minimised.
- Let $A(i)$ be the set of jobs assigned to machine M_i.
- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
- Minimising makespan is \mathcal{NP}-Complete.
Greedy-Balance Algorithm

- Adopt a greedy approach (Graham, 1966).
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

Greedy-Balance:
Start with no jobs assigned
Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i
For $j = 1, \ldots, n$
 - Let M_i be a machine that achieves the minimum $\min_k T_k$
 - Assign job j to machine M_i
 - Set $A(i) \leftarrow A(i) \cup \{j\}$
 - Set $T_i \leftarrow T_i + t_j$
EndFor
Example of Greedy-Balance Algorithm

Job index

Job time

Jobs

Machines

$T = T_2$

T_1, T_3

M_1

M_2

M_3

T. M. Murali December 2, 7, 2021 Coping with NP-Completeness
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.

We need a lower bound on the optimum makespan T^*.

The two bounds below will suffice:

1. $T^* \geq \frac{1}{m} \sum_j t_j$
2. $T^* \geq \max_j t_j$
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.
- The two bounds below will suffice:
 \[
 T^* \geq \frac{1}{m} \sum_j t_j \\
 T^* \geq \max_j t_j
 \]
Claim: Computed makespan $T \leq 2T^*$.

Let M_i be the machine whose load is T and j be the last job placed on M_i. What was the situation just before placing this job?

M_i had the smallest load and its load was $T - t_j$.

For every machine M_k, $\sum t_k \geq m(T - t_j)$, where k ranges over all machines.

$\sum t_j \geq m(T - t_j)$, where j ranges over all jobs.

$T - t_j \leq \frac{1}{m} \sum t_j \leq T^*$.

$T \leq 2T^*$, since $t_j \leq T^*$.

December 2, 7, 2021
Claim: Computed makespan $T \leq 2T^*$.

Let M_i be the machine whose load is T and j be the last job placed on M_i.

What was the situation just before placing this job?
Claim: Computed makespan $T \leq 2T^*$.
Let M_i be the machine whose load is T and j be the last job placed on M_i.
What was the situation just before placing this job?
M_i had the smallest load and its load was $T - t_j$.
For every machine M_k,

\[\sum t_j \geq m \left(T - t_j \right), \]
where k ranges over all machines
\[\sum t_j \geq m \left(T - t_j \right), \]
where j ranges over all jobs
\[T - t_j \leq \frac{1}{m} \sum t_j \leq T, \]
since $t_j \leq T^*$.

M. Murali December 2, 7, 2021 Coping with NP-Completeness
Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T - t_j$.
- For every machine M_k, load $T_k \geq T - t_j$.

\[T = T_i \]
\[T_i - t_j \]
\[\sum_{k=1}^{m} T_k \geq m(T - t_j) \]
\[\sum_{j=1}^{m} t_j \geq m(T - t_j) \]
\[T - t_j \leq \frac{1}{m} \sum_{j=1}^{m} t_j \leq T^* \]
\[T \leq 2T^* \]
Claim: Computed makespan $T \leq 2T^*$.

Let M_i be the machine whose load is T and j be the last job placed on M_i.

What was the situation just before placing this job?

- M_i had the smallest load and its load was $T - t_j$.
- For every machine M_k, load $T_k \geq T - t_j$.

\[
\sum_{k} T_k \geq m(T - t_j), \text{ where } k \text{ ranges over all machines}
\]

\[
\sum_{j} t_j \geq m(T - t_j), \text{ where } j \text{ ranges over all jobs}
\]

\[
T - t_j \leq \frac{1}{m} \sum_{j} t_j \leq T^*
\]

\[
T \leq 2T^*, \text{ since } t_j \leq T^*
\]
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time? *(Graham, 1969)*
Sorted-Balance Algorithm

Sorted-Balance:

Start with no jobs assigned

Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i

Sort jobs in decreasing order of processing times t_j

Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$

For $j = 1, \ldots, n$

1. Let M_i be the machine that achieves the minimum $\min_k T_k$
2. Assign job j to machine M_i
3. Set $A(i) \leftarrow A(i) \cup \{j\}$
4. Set $T_i \leftarrow T_i + t_j$

EndFor
Sorted-Balance Algorithm

Sorted-Balance:

Start with no jobs assigned

Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i

Sort jobs in decreasing order of processing times t_j

Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$

For $j = 1, \ldots, n$

- Let M_i be the machine that achieves the minimum $\min_k T_k$
- Assign job j to machine M_i
- Set $A(i) \leftarrow A(i) \cup \{j\}$
- Set $T_i \leftarrow T_i + t_j$

EndFor

- This algorithm assigns the first m jobs to m distinct machines.
Example of Sorted-Balance Algorithm

Jobs

<table>
<thead>
<tr>
<th>Jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Machines

- M_1: [1, 10]
- M_2: [7, 8, 1, 6]
- M_3: [5, 2, 3, 4]

$T = T_1$

T_2, T_3
Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2tm+1 \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time \(\geq tm+1 \).
 - This machine will have load at least \(2tm+1 \).
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider \textit{any} assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time \(\geq t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2 \).
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider \textit{any} assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time \(\geq t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).

- Claim: \(T \leq 3T^*/2 \).

Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs; otherwise, solution is optimal.)
Analyzing Sorted-Balance

- **Claim:** if there are fewer than \(m \) jobs, algorithm is optimal.
- **Claim:** if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider *any* assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time \(\geq t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).

- **Claim:** \(T \leq 3T^*/2 \).

Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs; otherwise, solution is optimal.)

\[
t_j \leq t_{m+1} \leq T^*/2, \text{ since } j \geq m + 1
\]

\[
T - t_j \leq T^*, \text{ Greedy-Balance proof}
\]

\[
T \leq 3T^*/2
\]
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time \(\geq t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2 \).
- Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs; otherwise, solution is optimal.)

\[
t_j \leq t_{m+1} \leq T^*/2, \text{ since } j \geq m + 1
\]

\[
T - t_j \leq T^*, \text{ GREEDY-BALANCE proof}
\]

\[
T \leq 3T^*/2
\]

- Better bound: \(T \leq 4T^*/3 \) (Graham, 1969).
Analyzing Sorted-Balance

- **Claim:** if there are fewer than \(m \) jobs, algorithm is optimal.
- **Claim:** if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider *any* assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time \(\geq t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).

- **Claim:** \(T \leq \frac{3}{2} T^* \).

Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs; otherwise, solution is optimal.)

\[
t_j \leq t_{m+1} \leq \frac{T^*}{2}, \text{ since } j \geq m + 1
\]

\[
T - t_j \leq T^*, \text{ **Greedy-Balance proof**}
\]

\[
T \leq \frac{3}{2} T^*
\]

- Better bound: \(T \leq \frac{4}{3} T^* \) (Graham, 1969).

Polynomial-time approximation scheme: for every \(\varepsilon > 0 \), compute solution with makespan \(T \leq (1 + \varepsilon)T^* \) in \(O((n/\varepsilon)^{(1/\varepsilon)^2}) \) time (Hochbaum and Shmoys, 1987).
The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.
The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.
The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i, and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.
The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i, and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- 3D Matching \leq_P Partition \leq_P Subset Sum \leq_P Knapsack
- All problems have dynamic programming algorithms with pseudo-polynomial running times.
Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

OPT(i, w) is the largest sum possible using only the first i numbers with target w.

$$OPT(i, w) = \begin{cases} 0 & i = 0, w \leq 0 \lor w > 0 \land OPT(i-1, w) = 0 \\ OPT(i-1, w) & i > 0, w \leq 0 \\ \max(OPT(i-1, w), w + OPT(i-1, w-w_i)) & i > 0, w > 0 \land w_i \leq w \end{cases}$$

Running time is $O(nW)$.

T. M. Murali December 2, 7, 2021 Coping with NP-Completeness
Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- $OPT(i, w)$ is the largest sum possible using only the first i numbers with target w.

Running time is $O(nW)$.
Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- $OPT(i, w)$ is the largest sum possible using only the first i numbers with target w.

$$OPT(i, w) = OPT(i - 1, w), \quad i > 0, w_i > w$$
$$OPT(i, w) = \max \left(OPT(i - 1, w), w_i + OPT(i - 1, w - w_i) \right), \quad i > 0, w_i \leq w$$
$$OPT(0, w) = 0$$

- Running time is $O(nW)$.
Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of \(n \) elements, with each element \(i \) having a weight \(w_i \) and a value \(v_i \), and a knapsack capacity \(W \).

SOLUTION: A subset \(S \) of items such that \(\sum_{i \in S} v_i \) is maximised subject to the constraint \(\sum_{i \in S} w_i \leq W \).

Can generalize the dynamic program for Subset Sum. But we will develop a different dynamic program that will be useful later.

\(\text{OPT}(i, v) \) is the smallest knapsack weight so that there is a solution with total value \(\geq v \) that uses only the first \(i \) items.

What are the ranges of \(i \) and \(v \)?

- \(i \) ranges between 0 and \(n \), the number of items.
- \(v \) ranges between 0 and \(\sum_{1 \leq j \leq i} v_j \).
- Largest value of \(v \) is \(\sum_{1 \leq j \leq n} v_j \leq nv^* \), where \(v^* = \max_i v_i \).

The solution we want is the largest value \(v \) such that \(\text{OPT}(n, v) \leq W \).

\(\text{OPT}(i, 0) = 0 \) for every \(i \geq 1 \).

\(\text{OPT}(i, v) = \max(\text{OPT}(i-1, v), w_i + \text{OPT}(i-1, v - v_i)) \), otherwise.

Can find items in the solution by tracing back.

Running time is \(O(n^2 v^*) \), which is pseudo-polynomial in the input size.
Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i, and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for **Subset Sum**.
- But we will develop a different dynamic program that will be useful later.
- $OPT(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v?
Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i, and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for **Subset Sum**.
- But we will develop a different dynamic program that will be useful later.
- $OPT(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v?
 - i ranges between 0 and n, the number of items.
 - Given i, v ranges between 0 and $\sum_{1\leq j\leq i} v_j$.
 - Largest value of v is $\sum_{1\leq j\leq n} v_j \leq nv^*$, where $v^* = \max_i v_i$.
- The solution we want is
Dynamic Programming for Knapsack

Knapsack

Instance: A set of n elements, with each element i having a weight w_i and a value v_i, and a knapsack capacity W.

Solution: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for *Subset Sum*.
- But we will develop a different dynamic program that will be useful later.
- $OPT(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v?
 - i ranges between 0 and n, the number of items.
 - Given i, v ranges between 0 and $\sum_{1 \leq j \leq i} v_j$.
 - Largest value of v is $\sum_{1 \leq j \leq n} v_j \leq nv^*$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \leq W$.

Can find items in the solution by tracing back.

Running time is $O(n^2 v^*)$, which is pseudo-polynomial in the input size.
Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i, and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for **Subset Sum**.
- But we will develop a different dynamic program that will be useful later.
- $OPT(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.

What are the ranges of i and v?
- i ranges between 0 and n, the number of items.
- Given i, v ranges between 0 and $\sum_{1 \leq j \leq i} v_j$.
- Largest value of v is $\sum_{1 \leq j \leq n} v_j \leq nv^*$, where $v^* = \max_i v_i$.

The solution we want is the largest value v such that $OPT(n, v) \leq W$.

$OPT(i, 0) = 0$ for every $i \geq 1$

$OPT(i, v) = \max \left(OPT(i - 1, v), w_i + OPT(i - 1, v - v_i) \right)$, otherwise
Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of \(n \) elements, with each element \(i \) having a weight \(w_i \) and a value \(v_i \), and a knapsack capacity \(W \).

SOLUTION: A subset \(S \) of items such that \(\sum_{i \in S} v_i \) is maximised subject to the constraint \(\sum_{i \in S} w_i \leq W \).

- Can generalize the dynamic program for **Subset Sum**.
- But we will develop a different dynamic program that will be useful later.
- \(\text{OPT}(i, v) \) is the smallest knapsack weight so that there is a solution with total value \(\geq v \) that uses only the first \(i \) items.
- What are the ranges of \(i \) and \(v \)?
 - \(i \) ranges between 0 and \(n \), the number of items.
 - Given \(i \), \(v \) ranges between 0 and \(\sum_{1 \leq j \leq i} v_j \).
 - Largest value of \(v \) is \(\sum_{1 \leq j \leq n} v_j \leq nv^* \), where \(v^* = \max_i v_i \).

- The solution we want is the largest value \(v \) such that \(\text{OPT}(n, v) \leq W \).

\[
\begin{align*}
\text{OPT}(i, 0) &= 0 \quad \text{for every } i \geq 1 \\
\text{OPT}(i, v) &= \max \left(\text{OPT}(i - 1, v), w_i + \text{OPT}(i - 1, v - v_i) \right), \quad \text{otherwise}
\end{align*}
\]

- Can find items in the solution by tracing back.
- Running time is \(O(n^2 v^*) \), which is pseudo-polynomial in the input size.
Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same?
Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers?
Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers? Also polynomial.
- Idea:
 - Round and scale all the values to lie in a smaller range.
 - Run the dynamic programming algorithm with the modified new values.
 - Return the items in this optimal solution.
 - Prove that the value of this solution is not much smaller than the true optimum.
Polynomial-Time Approximation Scheme for Knapsack

- $0 < \varepsilon < 1$ is a “precision” parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item i, set
 $$\tilde{v}_i = \left\lfloor \frac{v_i}{\theta} \right\rfloor \theta, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil$$

Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$. For every item i, set
$$\tilde{v}_i = \left\lfloor \frac{v_i}{\theta} \right\rfloor \theta, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil$$
Polynomial-Time Approximation Scheme for Knapsack

- $0 < \varepsilon < 1$ is a “precision” parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item i, set
 \[
 \tilde{v}_i = \left\lfloor \frac{v_i}{\theta} \right\rfloor \theta, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil
 \]

$\text{Knapsack-Approx}(\varepsilon)$
- Solve the Knapsack problem using the dynamic program with the values \hat{v}_i.
- Return the set S of items found.

What is the running time of Knapsack-Approx?
$$O(n^2 \max_i \hat{v}_i) = O(n^2 \frac{v^*}{\theta}) = O(n^3 / \varepsilon).$$

We need to show that the value of the solution returned by Knapsack-Approx is good.
Polynomial-Time Approximation Scheme for Knapsack

- $0 < \varepsilon < 1$ is a “precision” parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item i, set
 \[\tilde{v}_i = \left\lfloor \frac{v_i}{\theta} \right\rfloor \theta, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil \theta \]

Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i. Return the set S of items found.

- What is the running time of Knapsack-Approx?
Polynomial-Time Approximation Scheme for Knapsack

- $0 < \varepsilon < 1$ is a “precision” parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item i, set

 $\tilde{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil \theta, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil$

Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i. Return the set S of items found.

- What is the running time of Knapsack-Approx?

 $O(n^2 \max_i \hat{v}_i) = O(n^2 v^* / \theta) = O(n^3 / \varepsilon)$.

- We need to show that the value of the solution returned by Knapsack-Approx is good.
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.

Can improve running time to $O(n \log \frac{1}{\epsilon} + \frac{1}{\epsilon^4})$ (Lawler, 1979).
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{j \in S^*} v_j \leq \sum_{i \in S} v_i$.

Polynomial-time approximation scheme. Since Knapsack-Approx is optimal for the values \tilde{v}_i, $\sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i$. Since for each i, $v_i \leq \tilde{v}_i \leq v_i + \theta$, $\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n \theta = \sum_{i \in S} v_i + \varepsilon v^*$, i.e., $v^* \leq 2 \sum_{i \in S} v_i + \varepsilon v^*$. Therefore, $\sum_{j \in S^*} v_j \leq \sum_{i \in S} v_i + \varepsilon v^* \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Can improve running time to $O(n \log \frac{1}{\varepsilon} + \frac{1}{\varepsilon^4})$ (Lawler, 1979).
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{j \in S^*} v_j \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq \mathcal{W}$.
- Claim: $\sum_{j \in S^*} v_j \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i,

$$\sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i$$
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{j \in S^*} v_j \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i,
 $$\sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i$$

- Since for each i, $v_i \leq \tilde{v}_i \leq v_i + \theta$,
 $$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{j \in S^*} v_j \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i,

$$\sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i$$

- Since for each i, $v_i \leq \tilde{v}_i \leq v_i + \theta$,

$$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

- Apply argument to S^* containing only the item with largest value:

$$v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$$

i.e., $v^* \leq 2 \sum_{i \in S} v_i$.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{j \in S^*} v_j \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i,
 $$\sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i$$

- Since for each i, $v_i \leq \tilde{v}_i \leq v_i + \theta$,
 $$\sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

- Apply argument to S^* containing only the item with largest value:
 $v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \leq 2 \sum_{i \in S} v_i$.
- Therefore,
 $$\sum_{j \in S^*} v_j \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq (1 + \varepsilon) \sum_{i \in S} v_i$$
Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{j \in S^*} v_j \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i,
 \[
 \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i
 \]
- Since for each i, $v_i \leq \tilde{v}_i \leq v_i + \theta$,
 \[
 \sum_{j \in S^*} v_j \leq \sum_{j \in S^*} \tilde{v}_j \leq \sum_{i \in S} \tilde{v}_i \leq \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}
 \]
- Apply argument to S^* containing only the item with largest value:
 $v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \leq 2\sum_{i \in S} v_i$.
- Therefore,
 \[
 \sum_{j \in S^*} v_j \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq (1 + \varepsilon) \sum_{i \in S} v_i
 \]
- Can Improve running time to $O(n \log_2 \frac{1}{\varepsilon} + \frac{1}{\varepsilon^4})$ (Lawler, 1979).
Set Cover

Set Cover

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w.

SOLUTION: A collection C of sets in the collection such that $\bigcup_{S_i \in C} S_i = U$ and $\sum_{S_i \in C} w_i$ is minimised.
Greedy Approach

1.1 1.1

1 1

3 4

5 6

7 8

T. M. Murali December 2, 7, 2021 Coping with NP-Completeness
Solving NP-Complete Problems
Small Vertex Covers
Approx. Vertex Cover
Load Balancing
Knapsack
Other Problems

Greedy Approach

1.1

1
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.5

0.5

0.25

0.25

0.25

0.25

0.25

0.25

T. M. Murali
December 2, 7, 2021
Coping with NP-Completeness
Greedy Approach
Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

Greedy-Set-Cover:

Start with $R = U$ and no sets selected

While $R \neq \emptyset$

- Select set S_i that minimizes $w_i/|S_i \cap R|$
- Delete set S_i from R

EndWhile

Return the selected sets
Set Cover Problem

 - d^* is the size of the largest set in the collection
 - The harmonic function

\[
H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).
\]
Set Cover Problem

 - d^* is the size of the largest set in the collection
 - The harmonic function
 \[
 H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).
 \]
- No polynomial time algorithm can achieve an approximation bound better than $(1 - \Omega(1)) \ln n$ times optimal unless $\mathcal{P} = \mathcal{NP}$ (Dinur and Steurer, 2014)
Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).

Metric TSP (distances are symmetric, positive, satisfy triangle inequality):
3/2-factor approximation algorithm (Christofides, 1976), inapproximable to better than $\frac{123}{122}$ ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).

1-2 TSP: $\frac{8}{7}$ approximation factor (Berman, Karpinski, 2006).

Euclidean TSP (distances defined by points in d dimensions): PTAS in $O\left(n (\log n)^{1/\epsilon}\right)$ time (Arora, 1997; Mitchell, 1999) (second algorithm is slower).
Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).
Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless \(\mathcal{P} = \mathcal{NP} \) (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), inapproximable to better than 123/122 ratio unless \(\mathcal{P} = \mathcal{NP} \) (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).
Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).
- Euclidean TSP (distances defined by points in d dimensions): PTAS in $O(n(\log n)^{1/\varepsilon})$ time (Arora, 1997; Mithcell, 1999) (second algorithm is slower).
Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0?
3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.

Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?

Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.

All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
Problems in \(\mathcal{P} \)

- 3-SUM: Given a set of \(n \) numbers, are there three elements in it whose sum is 0? Can be solved in \(O(n^2) \) time.

- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given \(n \) lines in the plane, are any three concurrent?

- Conjecture: Any algorithm for this problem requires \(n^{2-o(1)} \) time.

- All pairs shortest paths: Any algorithm for this problem requires \(n^{3-o(1)} \) time.

- Strongly exponential time hypothesis (SETH): For every \(\varepsilon > 0 \), there exists an integer \(k \) such that \(k \)-SAT on \(n \) variables cannot be solved in \(O(2^{(1-\varepsilon)n \text{poly}(n)}) \) time.
Problems in \(\mathcal{P} \)

- **3-SUM**: Given a set of \(n \) numbers, are there three elements in it whose sum is 0? Can be solved in \(O(n^2) \) time.

- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given \(n \) lines in the plane, are any three concurrent?

- **Conjecture**: Any algorithm for this problem requires \(n^{2-o(1)} \) time.

- **All pairs shortest paths**: Any algorithm for this problem requires \(n^{3-o(1)} \) time.

- **Strongly exponential time hypothesis (SETH)**: For every \(\epsilon > 0 \), there exists an integer \(k \) such that \(k \)-SAT on \(n \) variables cannot be solved in \(O(2^{(1-\epsilon)n}\text{poly}(n)) \) time.

- **Edit distance (sequence alignment)** between two strings of length \(n \):
Problems in \(\mathcal{P} \)

- **3-SUM**: Given a set of \(n \) numbers, are there three elements in it whose sum is 0? Can be solved in \(O(n^2) \) time.

- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given \(n \) lines in the plane, are any three concurrent?

- Conjecture: Any algorithm for this problem requires \(n^{2-o(1)} \) time.

- All pairs shortest paths: Any algorithm for this problem requires \(n^{3-o(1)} \) time.

- Strongly exponential time hypothesis (SETH): For every \(\varepsilon > 0 \), there exists an integer \(k \) such that \(k \)-SAT on \(n \) variables cannot be solved in \(O(2^{(1-\varepsilon)n}\text{poly}(n)) \) time.

- Edit distance (sequence alignment) between two strings of length \(n \): If it can be computed in \(O(n^{2-\delta}) \) time (for some constant \(\delta > 0 \)), then SAT with \(n \) variables and \(m \) clauses can be solved in \(m^{O(1)}2^{(1-\varepsilon)n} \) time, for some \(\varepsilon > 0 \) (Backurs, Indyk, 2015).