Coping with NP-Completeness

T. M. Murali

December 2, 7, 2021

Examples of Hard Computational Problems

(from Kevin Wayne's slides at Princeton University)

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.

How Do We Tackle an $\mathcal{N} \mathcal{P}$-Complete Problem?

"I can't find an efficient algorithm, but neither can all these famous people."
(Garey and Johnson, Computers and Intractability)

How Do We Tackle an $\mathcal{N} \mathcal{P}$-Complete Problem?

- These problems come up in real life.

How Do We Tackle an $\mathcal{N} \mathcal{P}$-Complete Problem?

MY HOBBY:
 EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

WED LIKE EXACTLY $\$ 15.05$ WORTH OF APPETIZERS, PLEASE.
... EXACTLY? UHH ...
HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO -

- AS FAST AS POSSIBLE, OF COUREE. WAMT Something on Travéling Salesman?

How Do We Tackle an $\mathcal{N} \mathcal{P}$-Complete Problem?

- These problems come up in real life.
- $\mathcal{N} \mathcal{P}$-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?

How Do We Tackle an $\mathcal{N} \mathcal{P}$-Complete Problem?

- These problems come up in real life.
- $\mathcal{N} \mathcal{P}$-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?

SEUING ON EBAY:

$$
O(1)
$$

STIU WORKING ON YOUR ROUTE?

How Do We Tackle an $\mathcal{N} \mathcal{P}$-Complete Problem?

- These problems come up in real life.
- $\mathcal{N} \mathcal{P}$-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
- Develop algorithms that are exponential in one parameter in the problem.
- Consider special cases of the input, e.g., graphs that "look like" trees.
- Develop algorithms that can provably compute a solution close to the optimal.

Vertex Cover Problem

Vertex cover
INSTANCE: Undirected graph G and an integer k
QUESTION: Does G contain a vertex cover of size at most k ?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm?

Vertex Cover Problem

Vertex cover
INSTANCE: Undirected graph G and an integer k
QUESTION: Does G contain a vertex cover of size at most k ?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm? $O\left(k n\binom{n}{k}\right)=O\left(k n^{k+1}\right)$.

Vertex Cover Problem

Vertex cover
INSTANCE: Undirected graph G and an integer k
QUESTION: Does G contain a vertex cover of size at most k ?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm? $O\left(k n\binom{n}{k}\right)=O\left(k n^{k+1}\right)$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., $O\left(2^{k} n\right)$?

Designing the Vertex Cover Algorithm

- Intution: if a graph has a small vertex cover, it cannot have too many edges.

Designing the Vertex Cover Algorithm

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most Poil edges.

Designing the Vertex Cover Algorithm

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.

Designing the Vertex Cover Algorithm

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G-\{u\}$ is the graph G without node u and the edges incident on u.

Designing the Vertex Cover Algorithm

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G-\{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.

Designing the Vertex Cover Algorithm

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G-\{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- Claim: G has a vertex cover of size at most k iff for any edge (u, v) either $G-\{u\}$ or $G-\{v\}$ has a vertex cover of size at most $k-1$.

Vertex Cover Algorithm

To search for a k-node vertex cover in G :
If G contains no edges, then the empty set is a vertex cover
If G contains $>k|V|$ edges, then it has no k-node vertex cover
Else let $e=(u, v)$ be an edge of G
Recursively check if either of $G-\{u\}$ or $G-\{v\}$ has a vertex cover of size $k-1$

If neither of them does, then G has no k-node vertex cover Else, one of them (say, $G-\{u\}$) has a ($k-1$)-node vertex cover T In this case, $T \cup\{u\}$ is a k-node vertex cover of G
Endif
Endif

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of Vertex Cover with parameters n and k.

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of Vertex Cover with parameters n and k.
- $T(n, 1) \leq c n$.

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of Vertex Cover with parameters n and k.
- $T(n, 1) \leq c n$.
- $T(n, k) \leq 2 T(n, k-1)+c k n$.
- We need $O(k n)$ time to count the number of edges.

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of Vertex Cover with parameters n and k.
- $T(n, 1) \leq c n$.
- $T(n, k) \leq 2 T(n, k-1)+c k n$.
- We need $O(k n)$ time to count the number of edges.
- Claim: $T(n, k)=O\left(2^{k} k n\right)$.

Approximation Algorithms

- Methods for optimisation versions of $\mathcal{N P}$-Complete problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution

Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)
1: $C \leftarrow \emptyset$
\{ C will be the vertex cover\}

2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad 5. \quad \{Update C using u and/or v \}
\qquad
7: end while
8: return C

Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)
1: $C \leftarrow \emptyset$
\{ C will be the vertex cover\}

2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: \qquad \{Update G using u and/or v \}
6:
7: end while
8: return C

Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset\{C$ will be the vertex cover $\}$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$ \{Delete u, v, and all incident edges from G.\}
6: \quad Add (u, v) to E^{\prime} \{Keep track of edges for bookkeeping.\}
7: end while
8: return C

Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset\{C$ will be the vertex cover $\}$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$ \{Delete u, v, and all incident edges from G.\}
6: Add (u, v) to E^{\prime} \{Keep track of edges for bookkeeping.\}
7: end while
8: return C

Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset\{C$ will be the vertex cover $\}$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$ \{Delete u, v, and all incident edges from G.\}
6: \quad Add (u, v) to E^{\prime} \{Keep track of edges for bookkeeping.\}
7: end while
8: return C

Approximation Algorithm for VertexCover

EasyVertexCover(G) (Gavril, 1974; Yannakakis)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset\{C$ will be the vertex cover $\}$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$ \{Delete u, v, and all incident edges from G.\}
6: \quad Add (u, v) to E^{\prime} \{Keep track of edges for bookkeeping.\}
7: end while
8: return C

Analysis of EasyVertexCover

EasyVertexCover(G)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is

Analysis of EasyVertexCover

EasyVertexCover(G)

1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.

Analysis of EasyVertexCover

EasyVertexCover(G)

1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.

Analysis of EasyVertexCover

EasyVertexCover(G)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E^{\prime} can be covered by the same node.

Analysis of EasyVertexCover

EasyVertexCover(G)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E^{\prime} can be covered by the same node.
- Claim: The size c^{*} of the smallest vertex cover is $>$ Poll

Analysis of EasyVertexCover

EasyVertexCover(G)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E^{\prime} can be covered by the same node.
- Claim: The size c^{*} of the smallest vertex cover is at least $\left|E^{\prime}\right|$.

Analysis of EasyVertexCover

EasyVertexCover(G)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E^{\prime} can be covered by the same node.
- Claim: The size c^{*} of the smallest vertex cover is at least $\left|E^{\prime}\right|$.
- Claim: $|C|=2\left|E^{\prime}\right| \leq 2 c^{*}$

Analysis of EasyVertexCover

EasyVertexCover(G)
1: $C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E^{\prime} can be covered by the same node.
- Claim: The size c^{*} of the smallest vertex cover is at least $\left|E^{\prime}\right|$.
- Claim: $|C|=2\left|E^{\prime}\right| \leq 2 c^{*}$
- No approximation algorithm with a factor better than $\sqrt{2}-\varepsilon$ is possible unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ (Dinur et al., 2018).

Analysis of EasyVertexCover

EasyVertexCover(G)

$C \leftarrow \emptyset, E^{\prime} \leftarrow \emptyset$

while G has at least one edge do
3: \quad Let (u, v) be any edge in G
4: \quad Add u and v to C
5: $\quad G \leftarrow G-\{u, v\}$
6: \quad Add (u, v) to E^{\prime}
7: end while
8: return C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E^{\prime} can be covered by the same node.
- Claim: The size c^{*} of the smallest vertex cover is at least $\left|E^{\prime}\right|$.
- Claim: $|C|=2\left|E^{\prime}\right| \leq 2 c^{*}$
- No approximation algorithm with a factor better than $\sqrt{2}-\varepsilon$ is possible unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ (Dinur et al., 2018).
- No approximation algorithm with a factor better than 2 is possible if the "unique games conjecture" is true (Khot and Regev, 2008).

Load Balancing Problem

- Given set of m machines $M_{1}, M_{2}, \ldots M_{m}$.
- Given a set of n jobs: job j has processing time t_{j}.
- Assign each job to one machine so that the total time spent is minimised.

Load Balancing Problem

- Given set of m machines $M_{1}, M_{2}, \ldots M_{m}$.
- Given a set of n jobs: job j has processing time t_{j}.
- Assign each job to one machine so that the total time spent is minimised.
- Let $A(i)$ be the set of jobs assigned to machine M_{i}.
- Total time spent on machine i is $T_{i}=\sum_{k \in A(i)} t_{k}$.
- Minimise makespan $T=\max _{i} T_{i}$, the largest load on any machine.

Load Balancing Problem

- Given set of m machines $M_{1}, M_{2}, \ldots M_{m}$.
- Given a set of n jobs: job j has processing time t_{j}.
- Assign each job to one machine so that the total time spent is minimised.
- Let $A(i)$ be the set of jobs assigned to machine M_{i}.
- Total time spent on machine i is $T_{i}=\sum_{k \in A(i)} t_{k}$.
- Minimise makespan $T=\max _{i} T_{i}$, the largest load on any machine.
- Minimising makespan is $\mathcal{N P}$-Complete.

Greedy-Balance Algorithm

- Adopt a greedy approach (Graham, 1966).
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

Greedy-Balance:
Start with no jobs assigned
Set $T_{i}=0$ and $A(i)=\emptyset$ for all machines M_{i}
For $j=1, \ldots, n$
Let M_{i} be a machine that achieves the minimum $\min _{k} T_{k}$
Assign job j to machine M_{i}
Set $A(i) \leftarrow A(i) \cup\{j\}$
Set $T_{i} \leftarrow T_{i}+t_{j}$
EndFor

Example of Greedy-Balance Algorithm

$3 \longleftarrow$ Job time Jobs Machines
$2 \longleftarrow$ Job index

Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^{*}. Poll

Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^{*}.
- The two bounds below will suffice:

$$
\begin{aligned}
T^{*} & \geq \frac{1}{m} \sum_{j} t_{j} \\
T^{*} & \geq \max _{j} t_{j}
\end{aligned}
$$

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2 T^{*}$.

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2 T^{*}$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}.
- What was the situation just before placing this job?

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2 T^{*}$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}.
- What was the situation just before placing this job?
- M_{i} had the smallest load and its load was $T-t_{j}$.
- For every machine M_{k}, Poll

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2 T^{*}$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}.
- What was the situation just before placing this job?
- M_{i} had the smallest load and its load was $T-t_{j}$.
- For every machine M_{k}, load $T_{k} \geq T-t_{j}$.

Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2 T^{*}$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}.
- What was the situation just before placing this job?
- M_{i} had the smallest load and its load was $T-t_{j}$.
- For every machine M_{k}, load $T_{k} \geq T-t_{j}$.
$\sum_{k} T_{k} \geq m\left(T-t_{j}\right)$, where k ranges over all machines
$\sum_{j} t_{j} \geq m\left(T-t_{j}\right)$, where j ranges over all jobs
$T-t_{j} \leq 1 / m \sum_{j} t_{j} \leq T^{*}$
$T \leq 2 T^{*}$, since $t_{j} \leq T^{*}$

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time? (Graham, 1969)

Sorted-Balance Algorithm

Sorted-Balance:
Start with no jobs assigned
Set $T_{i}=0$ and $A(i)=\emptyset$ for all machines M_{i}
Sort jobs in decreasing order of processing times t_{j}
Assume that $t_{1} \geq t_{2} \geq \ldots \geq t_{n}$
For $j=1, \ldots, n$
Let M_{i} be the machine that achieves the minimum $\min _{k} T_{k}$
Assign job j to machine M_{i}
Set $A(i) \leftarrow A(i) \cup\{j\}$
Set $T_{i} \leftarrow T_{i}+t_{j}$
EndFor

Sorted-Balance Algorithm

Sorted-Balance:
Start with no jobs assigned
Set $T_{i}=0$ and $A(i)=\emptyset$ for all machines M_{i}
Sort jobs in decreasing order of processing times t_{j}
Assume that $t_{1} \geq t_{2} \geq \ldots \geq t_{n}$
For $j=1, \ldots, n$
Let M_{i} be the machine that achieves the minimum $\min _{k} T_{k}$
Assign job j to machine M_{i}
Set $A(i) \leftarrow A(i) \cup\{j\}$
Set $T_{i} \leftarrow T_{i}+t_{j}$
EndFor

- This algorithm assigns the first m jobs to m distinct machines.

Example of Sorted-Balance Algorithm

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.
- Consider only the first $m+1$ jobs in sorted order.
- Consider any assignment of these $m+1$ jobs to machines.
- Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
- This machine will have load at least $2 t_{m+1}$.

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.
- Consider only the first $m+1$ jobs in sorted order.
- Consider any assignment of these $m+1$ jobs to machines.
- Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
- This machine will have load at least $2 t_{m+1}$.
- Claim: $T \leq 3 T^{*} / 2$.

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.
- Consider only the first $m+1$ jobs in sorted order.
- Consider any assignment of these $m+1$ jobs to machines.
- Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
- This machine will have load at least $2 t_{m+1}$.
- Claim: $T \leq 3 T^{*} / 2$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}. (M_{i} has at least two jobs; otherwise, solution is optimal.)

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.
- Consider only the first $m+1$ jobs in sorted order.
- Consider any assignment of these $m+1$ jobs to machines.
- Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
- This machine will have load at least $2 t_{m+1}$.
- Claim: $T \leq 3 T^{*} / 2$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}. (M_{i} has at least two jobs; otherwise, solution is optimal.)

$$
\begin{aligned}
t_{j} \leq t_{m+1} & \leq T^{*} / 2, \text { since } j \geq m+1 \\
T-t_{j} & \leq T^{*}, \text { GreEdY-BALANCE proof } \\
T & \leq 3 T^{*} / 2
\end{aligned}
$$

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.
- Consider only the first $m+1$ jobs in sorted order.
- Consider any assignment of these $m+1$ jobs to machines.
- Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
- This machine will have load at least $2 t_{m+1}$.
- Claim: $T \leq 3 T^{*} / 2$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}. (M_{i} has at least two jobs; otherwise, solution is optimal.)

$$
\begin{aligned}
t_{j} \leq t_{m+1} & \leq T^{*} / 2, \text { since } j \geq m+1 \\
T-t_{j} & \leq T^{*}, \text { Greedy-BALANCE proof } \\
T & \leq 3 T^{*} / 2
\end{aligned}
$$

- Better bound: $T \leq 4 T^{*} / 3$ (Graham, 1969).

Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^{*} \geq 2 t_{m+1}$.
- Consider only the first $m+1$ jobs in sorted order.
- Consider any assignment of these $m+1$ jobs to machines.
- Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
- This machine will have load at least $2 t_{m+1}$.
- Claim: $T \leq 3 T^{*} / 2$.
- Let M_{i} be the machine whose load is T and j be the last job placed on M_{i}. $\left(M_{i}\right.$ has at least two jobs; otherwise, solution is optimal.)

$$
\begin{aligned}
t_{j} \leq t_{m+1} & \leq T^{*} / 2, \text { since } j \geq m+1 \\
T-t_{j} & \leq T^{*}, \text { GREEDY-BALANCE proof } \\
T & \leq 3 T^{*} / 2
\end{aligned}
$$

- Better bound: $T \leq 4 T^{*} / 3$ (Graham, 1969).
- Polynomial-time approximation scheme: for every $\varepsilon>0$, compute solution with makespan $T \leq(1+\varepsilon) T^{*}$ in $O\left((n / \varepsilon)^{\left(1 / \varepsilon^{2}\right)}\right)$ time (Hochbaum and Shmoys, 1987).

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$.
SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}=\sum_{i \notin S} w_{i}$.

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$.
SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}=\sum_{i \notin S} w_{i}$.
Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W. SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$.
SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}=\sum_{i \notin S} w_{i}$.
Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W. SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.
Knapsack
INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

The Knapsack Problem

Partition

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$.
SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}=\sum_{i \notin S} w_{i}$.
Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.
Knapsack
INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- 3D Matching \leq_{p} Partition \leq_{p} Subset Sum \leq_{p} Knapsack
- All problems have dynamic programming algorithms with pseudo-polynomial running times.

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W. SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W. SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- $\operatorname{OPT}(i, w)$ is the largest sum possible using only the first i numbers with target w.

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W. SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- $\operatorname{OPT}(i, w)$ is the largest sum possible using only the first i numbers with target w.

$$
\operatorname{OPT}(i, w)=\operatorname{OPT}(i-1, w), \quad i>0, w_{i}>w
$$

$$
\operatorname{OPT}(i, w)=\max \left(\operatorname{OPT}(i-1, w), w_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right), \quad i>0, w_{i} \leq w
$$

$$
\operatorname{OPT}(0, w)=0
$$

- Running time is $O(n W)$.

Dynamic Programming for Knapsack

KnAPsACK

INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

Dynamic Programming for Knapsack

KnAPSACK

INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- OPT(i,v) is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v ?

Dynamic Programming for Knapsack

KnAPSACK

INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- $\operatorname{OPT}(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v ?
- i ranges between 0 and n, the number of items.
- Given i, v ranges between 0 and $\sum_{1 \leq j \leq i} v_{j}$.
- Largest value of v is $\sum_{1 \leq j \leq n} v_{j} \leq n v^{*}$, where $v^{*}=\max _{i} v_{i}$.
- The solution we want is

Dynamic Programming for Knapsack

KnAPSACK

INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- $\operatorname{OPT}(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v ?
- i ranges between 0 and n, the number of items.
- Given i, v ranges between 0 and $\sum_{1 \leq j \leq i} v_{j}$.
- Largest value of v is $\sum_{1 \leq j \leq n} v_{j} \leq n v^{*}$, where $v^{*}=\max _{i} v_{i}$.
- The solution we want is the largest value v such that $\operatorname{OPT}(n, v) \leq W$.

Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- OPT(i,v) is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v ?
- i ranges between 0 and n, the number of items.
- Given i, v ranges between 0 and $\sum_{1 \leq j \leq i} v_{j}$.
- Largest value of v is $\sum_{1 \leq j \leq n} v_{j} \leq n v^{*}$, where $v^{*}=\max _{i} v_{i}$.
- The solution we want is the largest value v such that $\mathrm{OPT}(n, v) \leq W$.
$\operatorname{OPT}(i, 0)=0 \quad$ for every $i \geq 1$
$\operatorname{OPT}(i, v)=\max \left(\operatorname{OPT}(i-1, v), w_{i}+\operatorname{OPT}\left(i-1, v-v_{i}\right)\right), \quad$ otherwise

Dynamic Programming for Knapsack

KnAPSACK

INSTANCE: A set of n elements, with each element i having a weight w_{i} and a value v_{i}, and a knapsack capacity W.
SOLUTION: A subset S of items such that $\sum_{i \in S} v_{i}$ is maximised subject to the constraint $\sum_{i \in S} w_{i} \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- $O P T(i, v)$ is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v ?
- i ranges between 0 and n, the number of items.
- Given i, v ranges between 0 and $\sum_{1 \leq j \leq i} v_{j}$.
- Largest value of v is $\sum_{1 \leq j \leq n} v_{j} \leq n v^{*}$, where $v^{*}=\max _{i} v_{i}$.
- The solution we want is the largest value v such that $\operatorname{OPT}(n, v) \leq W$.
$\operatorname{OPT}(i, 0)=0 \quad$ for every $i \geq 1$
$\operatorname{OPT}(i, v)=\max \left(\operatorname{OPT}(i-1, v), w_{i}+\operatorname{OPT}\left(i-1, v-v_{i}\right)\right)$, otherwise
- Can find items in the solution by tracing back.
- Running time is $O\left(n^{2} v^{*}\right)$, which is pseudo-polynomial in the input size.

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same?

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers?

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers? Also polynomial.
- Idea:
- Round and scale all the values to lie in a smaller range.
- Run the dynamic programming algorithm with the modified new values.
- Return the items in this optimal solution.
- Prove that the value of this solution is not much smaller than the true optimum.

Polynomial-Time Approximation Scheme for Knapsack

- $0<\varepsilon<1$ is a "precision" parameter; assume that $1 / \varepsilon$ is an integer.
- Scaling factor $\theta=\frac{\varepsilon v^{*}}{2 n}$.
- For every item i, set

$$
\tilde{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil \theta, \quad \hat{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil
$$

Polynomial-Time Approximation Scheme for Knapsack

- $0<\varepsilon<1$ is a "precision" parameter; assume that $1 / \varepsilon$ is an integer.
- Scaling factor $\theta=\frac{\varepsilon v^{*}}{2 n}$.
- For every item i, set

$$
\tilde{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil \theta, \quad \hat{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil
$$

Knapsack-Approx (ε)
Solve the Knapsack problem using the dynamic program with the values \hat{v}_{i}. Return the set S of items found.

Polynomial-Time Approximation Scheme for Knapsack

- $0<\varepsilon<1$ is a "precision" parameter; assume that $1 / \varepsilon$ is an integer.
- Scaling factor $\theta=\frac{\varepsilon v^{*}}{2 n}$.
- For every item i, set

$$
\tilde{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil \theta, \quad \hat{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil
$$

Knapsack-Approx (ε)
Solve the Knapsack problem using the dynamic program with the values \hat{v}_{i}. Return the set S of items found.

- What is the running time of Knapsack-Approx?

Polynomial-Time Approximation Scheme for Knapsack

- $0<\varepsilon<1$ is a "precision" parameter; assume that $1 / \varepsilon$ is an integer.
- Scaling factor $\theta=\frac{\varepsilon v^{*}}{2 n}$.
- For every item i, set

$$
\tilde{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil \theta, \quad \hat{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil
$$

Knapsack-Approx (ε)
Solve the Knapsack problem using the dynamic program with the values \hat{v}_{i}. Return the set S of items found.

- What is the running time of Knapsack-Approx?

$$
O\left(n^{2} \max _{i} \hat{v}_{i}\right)=O\left(n^{2} v^{*} / \theta\right)=O\left(n^{3} / \varepsilon\right)
$$

- We need to show that the value of the solution returned by Knapsack-Approx is good.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq \quad \sum_{i \in S} v_{i}$.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq(1+\varepsilon) \sum_{i \in S} v_{i}$. Polynomial-time approximation scheme.

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq(1+\varepsilon) \sum_{i \in S} v_{i}$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_{i},

$$
\sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i}
$$

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq(1+\varepsilon) \sum_{i \in S} v_{i}$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_{i},

$$
\sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i}
$$

- Since for each $i, v_{i} \leq \tilde{v}_{i} \leq v_{i}+\theta$,

$$
\sum_{j \in S^{*}} v_{j} \leq \sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S} v_{i}+n \theta=\sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2}
$$

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq(1+\varepsilon) \sum_{i \in S} v_{i}$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_{i},

$$
\sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i}
$$

- Since for each $i, v_{i} \leq \tilde{v}_{i} \leq v_{i}+\theta$,

$$
\sum_{j \in S^{*}} v_{j} \leq \sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S} v_{i}+n \theta=\sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2}
$$

- Apply argument to S^{*} containing only the item with largest value:

$$
v^{*} \leq \sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2} \leq \sum_{i \in S} v_{i}+\frac{v^{*}}{2}, \text { i.e., } v^{*} \leq 2 \sum_{i \in S} v_{i} .
$$

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq(1+\varepsilon) \sum_{i \in S} v_{i}$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_{i},

$$
\sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i}
$$

- Since for each $i, v_{i} \leq \tilde{v}_{i} \leq v_{i}+\theta$,

$$
\sum_{j \in S^{*}} v_{j} \leq \sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S} v_{i}+n \theta=\sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2}
$$

- Apply argument to S^{*} containing only the item with largest value: $v^{*} \leq \sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2} \leq \sum_{i \in S} v_{i}+\frac{v^{*}}{2}$, i.e., $v^{*} \leq 2 \sum_{i \in S} v_{i}$.
- Therefore,

$$
\sum_{j \in S^{*}} v_{j} \leq \sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2} \leq(1+\varepsilon) \sum_{i \in S} v_{i}
$$

Approximation Guarantee for Knapsack-Approx

- Let S be the solution computed by Knapsack-Approx.
- Let S^{*} be any other solution satisfying $\sum_{j \in S^{*}} w_{j} \leq W$.
- Claim: $\sum_{j \in S^{*}} v_{j} \leq(1+\varepsilon) \sum_{i \in S} v_{i}$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_{i},

$$
\sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i}
$$

- Since for each $i, v_{i} \leq \tilde{v}_{i} \leq v_{i}+\theta$,

$$
\sum_{j \in S^{*}} v_{j} \leq \sum_{j \in S^{*}} \tilde{v}_{j} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S} v_{i}+n \theta=\sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2}
$$

- Apply argument to S^{*} containing only the item with largest value: $v^{*} \leq \sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2} \leq \sum_{i \in S} v_{i}+\frac{v^{*}}{2}$, i.e., $v^{*} \leq 2 \sum_{i \in S} v_{i}$.
- Therefore,

$$
\sum_{j \in S^{*}} v_{j} \leq \sum_{i \in S} v_{i}+\frac{\varepsilon v^{*}}{2} \leq(1+\varepsilon) \sum_{i \in S} v_{i}
$$

- Can Improve running time to $O\left(n \log _{2} \frac{1}{\varepsilon}+\frac{1}{\varepsilon^{4}}\right)$ (Lawler, 1979).

Set Cover

Set Cover

INSTANCE: A set U of n elements, a collection $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U, each with an associated weight w.
SOLUTION: A collection \mathcal{C} of sets in the collection such that $U_{S_{i} \in C} S_{i}=U$ and $\sum_{S_{i} \in C} w_{i}$ is minimised.

Greedy Approach

Greedy Approach

Greedy Approach

Greedy Approach

Greedy Approach

Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?

Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_{i} /\left|S_{i} \cap R\right|$.

Greedy-Set-Cover:
Start with $R=U$ and no sets selected
While $R \neq \emptyset$
Select set S_{i} that minimizes $w_{i} /\left|S_{i} \cap R\right|$
Delete set S_{i} from R
EndWhile
Return the selected sets

Set Cover Problem

- Greedy algorithm achieves an approximation ratio of $H\left(d^{*}\right)$ (Johnson 1974, Lovász 1975, Chvatal 1979).
- d^{*} is the size of the largest set in the collection
- The harmonic function

$$
H(n)=\sum_{i=1}^{n} \frac{1}{i}=\Theta(\ln n) .
$$

Set Cover Problem

- Greedy algorithm achieves an approximation ratio of $H\left(d^{*}\right)$ (Johnson 1974, Lovász 1975, Chvatal 1979).
- d^{*} is the size of the largest set in the collection
- The harmonic function

$$
H(n)=\sum_{i=1}^{n} \frac{1}{i}=\Theta(\ln n)
$$

- No polynomial time algorithm can achieve an approximation bound better than $(1-\Omega(1)) \ln n$ times optimal unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ (Dinur and Steurer, 2014)

Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P}=\mathcal{N P}$ (Sahni, Gonzalez, 1976).

Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P}=\mathcal{N P}$ (Karpinski, Lampis, Schmied, 2013).

Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P}=\mathcal{N P}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P}=\mathcal{N P}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

Traveling Salesman Problem

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P}=\mathcal{N P}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).
- Euclidean TSP (distances defined by points in d dimensions): PTAS in $O\left(n(\log n)^{1 / \varepsilon}\right)$ time (Arora, 1997; Mithcell, 1999) (second algorithm is slower).

Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0 ?

Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0 ? Can be solved in $O\left(n^{2}\right)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.

Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0 ? Can be solved in $O\left(n^{2}\right)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.

Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0 ? Can be solved in $O\left(n^{2}\right)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon>0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O\left(2^{(1-\varepsilon) n}\right.$ poly $\left.(n)\right)$ time.

Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0 ? Can be solved in $O\left(n^{2}\right)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon>0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O\left(2^{(1-\varepsilon) n}\right.$ poly $\left.(n)\right)$ time.
- Edit distance (sequence alighment) between two strings of length n :

Problems in \mathcal{P}

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0 ? Can be solved in $O\left(n^{2}\right)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon>0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O\left(2^{(1-\varepsilon) n}\right.$ poly $\left.(n)\right)$ time.
- Edit distance (sequence alighment) between two strings of length n : If it can be computed in $O\left(n^{2-\delta}\right)$ time (for some constant $\delta>$), then SAT with n variables and m clauses can be solved in $m^{O(1)} 2^{(1-\varepsilon) n}$ time, for some $\varepsilon>0$ (Backurs, Indyk, 2015).

