
Homework 3

CS 4104 (Spring)

Assigned on February 22, 2021.
Submit PDF solutions on Canvas
by 11:59pm on March 1, 2021.

Instructions:

• The Graduate Honor Code applies this to homework.

– You can pair up with another student to solve the homework. Please form teams yourselves. Of
course, you can ask the instructor for help if you cannot find a team-mate. You may choose to
work alone.

– You are allowed to discuss possible algorithms and bounce ideas with your team-mate. Do not
discuss proofs of correctness or running time in detail with your team-mate. You
must write down your solution individually and indepedently. Do not send a written
solution to your team-mate for any reason whatsoever.

– In your solution, write down the name of the other member in your team. If you do not have a
team-mate, please say so.

– Apart from your team-mate, you are not allowed to consult sources other than your textbook, the
slides on the course web page, your own class notes, the TAs, and the instructor. In particular,
do not use a search engine.

• Do not forget to typeset your solutions. Every mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n2 and not as “nˆ2”. You can use the LATEX
version of the homework problems to start entering your solutions.

• Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

• You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

• If you are proposing an algorithm as the solution to a problem, keep the following in mind (the strategies
are based on mistakes made by students over the years):

– Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your
description is not ambiguous. Explain your algorithm in words. A step-wise description is fine.
However, if you submit detailed code or pseudo-code without an explanation, we will not grade
your solutions.

– Do not describe your algorithms only for a specific example you may have worked out.

– Make sure to state and prove the running time of your algorithm. You will only get partial credit
if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

– You will get partial credit if your algorithm is not the most efficient one that is possible to develop
for the problem.

• In general for a graph problem, you may assume that the graph is stored in an adjacency list and that
the input size is m + n, where n is the number of nodes and m is the number of edges in the graph.
Therefore, a linear time graph algorithm will run in O(m + n) time.

1



CS 4104 (Spring): Homework 3

My team-mate is

Problem 1 (20 points) Solve exercise 5 in Chapter 4 (pages 190–191) of “Algorithm Design” by Kleinberg
and Tardos. Let’s consider a long, quiet country road with house scattered very sparsely along it.
(We can picture the road as a long line segment, with an eastern endpoint and a western endpoint.)
Further, let’s suppose that despite the bucolic setting, the residents of all these houses are avid cell
phone users. You want to place cell phone base stations at certain points along the road, so that every
house is within four miles of one of the base stations.

Given an efficient algorithm that achieves this goal, using as few base stations as possible. Just in case
the problem statement is not completely clear, you can assume that the road is the x-axis, that each
house lies directly on the road, and that the position of each house can be specified by its x-coordinate.

Hint: Sort the houses in increasing order of x-coordinate. Develop your algorithm now. To design
your proof of correctness, follow one of the proof strategies we discussed in class (and present in the
textbook) for greedy scheduling problems.

Problem 2 (30 points) Solve exercise 13 in Chapter 4 (pages 194–195) of your textbook. A small business—
say, a photocopying service with a single large machine—faces the following scheduling problem. Each
morning, they get a set of jobs from customers. They want to do the jobs on their single machine in
an order that keeps the customers happiest. Customer i’s job will take ti time to complete. Given a
schedule, i.e., an ordering of jobs, let Ci denote the finishing time of job i. For example, if job j is
the first to be done, we would have Cj = tj , and if job j is done right after job i, then Cj = Ci + tj .
Each customer i also has a given weight wi that represents his or her importance to the business. The
happiness of customer i is expected to be dependent on the finishing time of i’s job. So the company
decides to order the jobs to minimize the weighted sum of completion times,

∑n
i=1 wiCi.

Design an efficient algorithm to solve this problem, i.e., you are given a set of n jobs with a processing
time ti and weight wi for each job. You want to order the jobs so as to minimize the weighted sum of
completion times,

∑n
i=1 wiCi.

Hint: Try to use one of the techniques we have seen for proving the correctness of greedy algorithms.
Working “backwards” from what you need to prove might help you to discover the algorithm. Note
that the completion times are not part of the input. The algorithm has to compute them. So you
cannot sort the jobs by completion time.

Problem 3 (20 points) Consider the version of Dijkstra’s algorithm shown below written by someone with
access to a priority queue data structure that supports only the Insert and ExtractMin operations.
Due to this constraint, the difference between this version and the one discussed in class is that instead
of the ChangeKey(Q, x, d′(x)) operation in Step 8, this version simply inserts the pair (x, d′(x)) into
Q. The danger with this algorithm is that a node x may occur several times in Q with different values
of d′(x). Answer the following questions.

1. (6 points) When the algorithm inserts a pair (x, d1) into Q, suppose the pair (x, d2) is already in
Q. What is the relationship between d1 and d2?

2. (8 points) Using this relationship, how will you fix this algorithm? You just have to describe your
correction in words, e.g., by saying “I will add the following command after Step X: . . . ” You do
not have to prove the correctness of your algorithm.

3. (6 points) What is the running time of this modified algorithm? Just state the bound in terms of
the number of nodes n and the number of edges m in G.

2



CS 4104 (Spring): Homework 3

Algorithm 1 Dijkstra’s Algorithm(G, l, s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v, d′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d′(v)
5: for every node x ∈ V − S such that (v, x) is an edge in G do
6: if d(v) + l(v, x) < d′(x) then
7: d′(x) = d(v) + l(v, x)
8: Insert(Q, x, d′(x))
9: end if

10: end for
11: end while

Problem 4 (30 points) Gasp! Your best friend Will Byers is trapped in The Upside Down yet again!! You
have to rescue him from the Demogorgon!!! Fortunately, due to his repeated forays into The Upside
Down in previous years, you have a very good map of this dimension. Will has figured out several
hiding spots where the Demogorgon cannot see him; he is currently secreted in one of these spots.
Moreover, due to Eleven’s deep sensory perception, you have very good estimates of how safe it is to
travel from one hiding spot to another without being devoured by the Demogorgon. Finally, you also
know the locations of several interdimensional portals between our world and The Upside Down.

Using the algo-fu you have gained in CS 4104, you represent The Upside Down as an undirected graph
G = (V,E), where each node in V is either a hiding place or an interdimensional portal. Every edge
(u, v) connects two nodes in V . The weight w(u, v) of this edge is the probability that as you go from
u to v (or v to u, since the edge is undirected), the Demogorgon will not devour you. Clearly, this
weight is between 0 and 1 since it is a probability. The weight of a path in G is the product of the
weights of its edges. This weight denotes the probability that the Demogorgon will not eat you as you
traverse this path. With this set up, you formulate the OperationSaveWillByers problem:

Given an undirected graph G = (V,E), where every edge (u, v) is associated with a weight
wu,v that lies between 0 and 1, a subset S ⊂ V of nodes, a node t, and a parameter r that
also lies between 0 and 1, is there any node in S such that the weight of the path from this
node to t is at least r?

In this dimension (alas, we are back to the real world), your task is to find a problem X that we have
discussed in class and use an algorithm A that we developed for X to solve OperationSaveWillByers.
You are not allowed to change A. However, you can modify G to your heart’s content and pass this
modified version to A. Moreover, you can further manipulate the output to A to obtain a solution
for OperationSaveWillByers. In other words, you use A purely as a subroutine without changing its
internal steps. Note: The Demogorgon will devour all your points if you deviate from these instructions.
Hint: I set this problem before describing any algorithm for the minimum spanning tree problem.

3


