Analysis of Algorithms

T. M. Murali

January 25, 2021
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

Goal

Develop algorithms that provably run quickly and use low amounts of space.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

\[T(n) = \text{worst-case running time of algorithm over all inputs of size } n \]

\[T(n) = \Omega(f(n)) \]

\[T(n) = O(g(n)) \]
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- *Input size* = number of elements in the input.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Input size = number of elements in the input. Values in the input do not matter, except for specific algorithms.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.
Polynomial Time

- Brute force algorithm: Check every possible solution.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given \(n \) numbers, permute them so that they appear in increasing order.

- Try all possible \(n! \) permutations of the numbers.
- For each permutation, check if it is sorted.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given \(n \) numbers, permute them so that they appear in increasing order.

- Try all possible \(n! \) permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is \(n \times n! \). Unacceptable in practice!
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- Try all possible $n!$ permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!

- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c. ▶ Poll
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible $n!$ permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is $n \times n!$. Unacceptable in practice!

- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

- Try all possible $n!$ permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n \times n!$. Unacceptable in practice!

- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition

An algorithm is *efficient* if it has a polynomial running time.
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting:
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

Example:
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.

"Roughly" hides potentially large constants, e.g., running time of merge sort may in reality be $10^n n \log_2 n$.

How can make statements such as the following, in order to compare the running times of different algorithms?

- $100 n \log_2 n \leq n^2$
- $10000 n \leq n^2$
- $5 n^2 - 4 n \geq 1000 n \log_n$
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $10n \log_2 n$.
Comparing Mathematical Functions

- Assume all (mathematical) functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort (only on average) and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $10n \log_2 n$.
- How can make statements such as the following, in order to compare the running times of different algorithms?
 - $100n \log_2 n \leq n^2$
 - $10000n \leq n^2$
 - $5n^2 - 4n \geq 1000n \log n$
"$10000n \leq n^2$"
“$10000n \leq n^2$”

10000n vs. $O(n^2)$
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if
for all n, $f(n) \leq c g(n)$.

$10000n$ is $O(n^2)$,
Upper Bound

Definition

Asymptotic upper bound: A function \(f(n) \) is \(O(g(n)) \) if there exists a constant \(c > 0 \) such that for all \(n \), \(f(n) \leq c g(n) \).

\[10000n \text{ is } O(n^2), \]

\[c = 1, \quad n_0 = 10000 \]
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, $f(n) \leq c g(n)$.

10,000n is $O(n^2)$,
Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

10000n is $O(n^2)$, $c = 1$, $n_0 = 10000$
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$,
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$, $c = 1$, $n_0 = 1500$
100n \log_2 n and \ n^2

100n \log_2 n \ is \ O(n^2), \ c = 100, \ n_0 = 1
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if for all $n \geq n_0$, we have $f(n) \geq c \cdot g(n)$.
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exists constant \(c > 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).
Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

$n \log_2 n/10$ is $\Omega(n)$, $c = 1$, $n_0 = 1024$
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions:

 \[n \log n / 10 = \Omega(n) \]

 This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is \(\Omega(n^2) \).

 There is some input of \(n \) numbers that will cause bubble sort to take at least \(\Omega(n^2) \) time, e.g., input the numbers in decreasing order.

 - But there may be other, faster algorithms.

- Problems:
 - The problem of sorting \(n \) numbers has a lower bound of \(\Omega(n \log n) \).

 For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take \(\Omega(n \log n) \) steps.

 - The stable matching problem has a lower bound of \(\Omega(n^2) \).

 For any algorithm, there is at least one input for which the algorithm will take \(\Omega(n^2) \) steps, even if all the preference matrices are already stored in memory (Ng and Hirschberg, SIAM J. Comput., 1990).
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n / 10$, i.e., $n \log n / 10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of *bubble sort* is $\Omega(n^2)$.

 ▶ There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

 ▶ There may be other, faster algorithms.

- Problems:
 - The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.

 ▶ The stable matching problem has a lower bound of $\Omega(n^2)$. For any algorithm, there is at least one input for which the algorithm will take $\Omega(n^2)$ steps, even if all the preference matrices are already stored in memory (Ng and Hirschberg, *SIAM J. Comput.* 1990).
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: \(n \) is a lower bound for \(n \log n/10 \), i.e., \(n \log n/10 = \Omega(n) \). This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of \textit{bubble sort} is \(\Omega(n^2) \). There is some input of \(n \) numbers that will cause bubble sort to take at least \(\Omega(n^2) \) time, e.g.,
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: \(n \) is a lower bound for \(n \log n/10 \), i.e., \(n \log n/10 = \Omega(n) \). This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is \(\Omega(n^2) \). There is some input of \(n \) numbers that will cause bubble sort to take at least \(\Omega(n^2) \) time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms.

- Problems:
 - The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms.

- Problems:
 - The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n / 10$, i.e.,
 \[n \log n / 10 = \Omega(n). \] This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms.

- Problems:
 - The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
 - The stable matching problem has a lower bound of $\Omega(n^2)$.
Meaning of “Lower Bound” in Different Contexts

- Mathematical functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two functions. Not in the context of any algorithm or problem.

- Algorithms:
 - The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
 - But there may be other, faster algorithms.

- Problems:
 - The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
 - The stable matching problem has a lower bound of $\Omega(n^2)$. For any algorithm, there is at least one input for which the algorithm will take $\Omega(n^2)$ steps, even if all the preference matrices are already stored in memory (Ng and Hirschberg, *SIAM J. Comput.*, 1990).
Tight Bound

Definition

Asymptotic tight bound: A function \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is \(O(g(n)) \) and \(f(n) \) is \(\Omega(g(n)) \).
Tight Bound

Definition

Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

- In all these definitions, c and n_0 are constants independent of n.
- Abuse of notation: say $g(n) = O(f(n))$, $g(n) = \Omega(f(n))$, $g(n) = \Theta(f(n))$.
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity

- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.

Similar statements hold for lower and tight bounds.

If k is a constant and there are k functions $f_i = O(h)$, $1 \leq i \leq k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

If $f = O(g)$, then $f + g = \Theta(g)$.

T. M. Murali January 25, 2021 Analysis of Algorithms
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$,

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then

$$f_1 + f_2 + \ldots + f_k =$$
Dropping argument n on this slide for visual clarity.

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then

$$f_1 + f_2 + \ldots + f_k = O(h).$$
Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.

Transitivity

- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then
 \[f_1 + f_2 + \ldots + f_k = O(h). \]

- If $f = O(g)$, then $f + g =$
Properties of Asymptotic Growth Rates

Dropping argument \(n \) on this slide for visual clarity.

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h) \), \(1 \leq i \leq k \), then

\[
 f_1 + f_2 + \ldots + f_k = O(h).
\]

- If \(f = O(g) \), then \(f + g = \Theta(g) \).
Examples

<table>
<thead>
<tr>
<th>(f(n))</th>
<th>(g(n))</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pn^2 + qn + r)</td>
<td>(O(n^3))</td>
<td>(n^2 \leq n^3), if (n \geq 1)</td>
</tr>
<tr>
<td>(pn^2 + qn + r)</td>
<td>(O(n^d))</td>
<td>(d) is an integer constant and (a_d > 0)</td>
</tr>
<tr>
<td>(\sum_{0 \leq i \leq d} a_i n^i)</td>
<td>(O(n^d))</td>
<td>(d) is the definition of polynomial time.</td>
</tr>
<tr>
<td>(O(n^{1.59}))</td>
<td>(O(n^{1.59}))</td>
<td>For every constant (r > 1) and every constant (d > 0), (n^d = O(r^n)), e.g., (n^3 = O(1.1^n)).</td>
</tr>
<tr>
<td>(\log_a n)</td>
<td>(O(n))</td>
<td>For every constant (x > 0), (\log n = O(n^x)), e.g., (\log n = O(n^{0.00001})).</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td></td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td></td>
</tr>
<tr>
<td>$\sum_{0\leq i\leq d} a_i n^i$</td>
<td>$O(n^{1.59})$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>$O(n^{1.59})$</td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>(f(n))</th>
<th>(g(n))</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pn^2 + qn + r)</td>
<td>(\Theta(n^2))</td>
<td></td>
</tr>
<tr>
<td>(pn^2 + qn + r)</td>
<td>(O(n^3))?</td>
<td></td>
</tr>
<tr>
<td>(\sum_{0 \leq i \leq d} a_i n^i)</td>
<td>(O(n^{1.59}))</td>
<td></td>
</tr>
<tr>
<td>(\log_a n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For every constant \(x > 0 \), \(\log n = O(n^x) \), e.g., \(\log n = n^{0.00001} \).

For every constant \(r > 1 \) and every constant \(d > 0 \), \(n^d = O(r^n) \), e.g., \(n^3 = O(1.1^n) \).
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td></td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$O(n^{1.59})$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_in^i$</td>
<td>$\Theta(n^d)$</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td></td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.

T. M. Murali
January 25, 2021
Analysis of Algorithms
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_in^i$</td>
<td>$\Theta(n^d)$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time? Poll</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, for any pair of constants $a, b > 1$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td>$O(n^d)$ is the definition of polynomial time.</td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.

T. M. Murali January 25, 2021 Analysis of Algorithms
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td></td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td>Yes, for any pair of constants $a, b > 1$</td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
- For every constant $x > 0$, $\log n = O(n^x)$, e.g., $\log n = n^{0.00001}$.

T. M. Murali January 25, 2021 Analysis of Algorithms
Examples

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$\Theta(n^2)$</td>
<td>$n^2 \leq n^3$, if $n \geq 1$</td>
</tr>
<tr>
<td>$pn^2 + qn + r$</td>
<td>$O(n^3)$?</td>
<td>if $d > 0$ is an integer constant and $a_d > 0$</td>
</tr>
<tr>
<td>$\sum_{0 \leq i \leq d} a_i n^i$</td>
<td>$\Theta(n^d)$</td>
<td>Yes, since $n^{1.59}$ is $O(n^2)$</td>
</tr>
<tr>
<td>$O(n^{1.59})$</td>
<td>Polynomial time?</td>
<td>Yes, for any pair of constants $a, b > 1$</td>
</tr>
<tr>
<td>$\log_a n$</td>
<td>$O(\log_b n)$</td>
<td></td>
</tr>
</tbody>
</table>

- $O(n^d)$ is the definition of *polynomial time*.
- For every constant $x > 0$, $\log n = O(n^x)$, e.g., $\log n = n^{0.00001}$.
- For every constant $r > 1$ and every constant $d > 0$, $n^d = O(r^n)$, e.g., $n^3 = O(1.1^n)$.
Different functions of n

- n
- $n \log n$
- n^2
- n^3
- 2^n
More functions of n

- n
- $\log_2 n$
- $\log_3 n$
- $n^{0.5}$
Running time is at most a constant factor times the size of the input.
Running time is at most a constant factor times the size of the input.
Finding the minimum, merging two sorted lists.
• Running time is at most a constant factor times the size of the input.
• Finding the minimum, merging two sorted lists.
• Computing the median (or kth smallest) element in an unsorted list.
Running time is at most a constant factor times the size of the input.
Finding the minimum, merging two sorted lists.
Computing the median (or kth smallest) element in an *unsorted* list. “Median-of-medians” algorithm.
Sub-linear time.

Linear Time

- n
- $n \log n$
- n^2
- n^3
- 2^n
• Running time is at most a constant factor times the size of the input.
• Finding the minimum, merging two sorted lists.
• Computing the median (or kth smallest) element in an unsorted list. “Median-of-medians” algorithm.
• Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.
Any algorithm where the costliest step is sorting.
Enumerate all pairs of elements.
Enumerate all pairs of elements.

Given a set of n points in the plane, find the pair that are the closest.
Enumerate all pairs of elements.

Given a set of n points in the plane, find the pair that are the closest. Surprising fact: will solve this problem in $O(n \log n)$ time later in the semester.
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

- Some subgraphs can have high potential for virus transmission.

\[O(n^k) \text{ Time} \]
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a \textit{clique} of size \(k\), where \(k\) is a constant, i.e. there are \(k\) nodes such that every pair is connected by an edge?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a *clique* of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a **clique** of size k, where k is a constant, i.e., there are k nodes such that every pair is connected by an edge? How do we find such a clique?
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a clique of size \(k \), where \(k \) is a constant, i.e. there are \(k \) nodes such that every pair is connected by an edge? How do we find such a clique?

Algorithm: For each subset \(S \) of \(k \) nodes, check if \(S \) is a clique. If the answer is yes, report it.
COVID-19 proximity graph: each node is a person shopping in Kroger, an edge connects two people who came within six feet of each other.

Some subgraphs can have high potential for virus transmission.

Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes such that every pair is connected by an edge? How do we find such a clique?

Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes, report it.

Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.

$O(n^k)$ Time

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>400</td>
<td>800</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>1,500</td>
<td>1,000</td>
<td>2,400</td>
<td>256</td>
</tr>
<tr>
<td>6</td>
<td>5,000</td>
<td>5,000</td>
<td>12,000</td>
<td>6,553</td>
</tr>
<tr>
<td>8</td>
<td>15,000</td>
<td>15,000</td>
<td>36,000</td>
<td>262,144</td>
</tr>
<tr>
<td>10</td>
<td>45,000</td>
<td>45,000</td>
<td>100,000</td>
<td>1,099,511</td>
</tr>
<tr>
<td>12</td>
<td>135,000</td>
<td>135,000</td>
<td>270,000</td>
<td>4,194,304</td>
</tr>
</tbody>
</table>
What is the largest size of a clique in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has a clique of size i. Output largest clique found.

What is the running time? $O(n^2)$.
What is the largest size of a clique in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has a clique of size i. Output largest clique found.
What is the largest size of a clique in a graph with \(n \) nodes?

Algorithm: For each \(1 \leq i \leq n \), check if the graph has a clique of size \(i \). Output largest clique found.

What is the running time?

\[O\left(n^2 \right) \]
What is the largest size of a clique in a graph with \(n \) nodes?

Algorithm: For each \(1 \leq i \leq n \), check if the graph has a clique of size \(i \). Output largest clique found.

What is the running time? \(O(n^2 2^n) \).
Results of Poll on Teaching Style

Thank you for the responses!

1. Class speed: Just right (73%)
2. iPad+doodling was helpful: Yes (94%)
Results of Poll on Teaching Style

Thank you for the responses!

1. Class speed: Just right (73%)
2. iPad+doodling was helpful: Yes (94%)
 - But improve your handwriting!
 - iPad screen is small and a little blurry in video recording.

Polls
- Zoom help me think (98%)
- There should be more Zoom polls (71%)

Other suggestions:
- Use Discord for TA office hours (I am open, if there are many more requests)
- Please upload videos (Yes, I do later in the day)
- What type of notes should I take?
 - Post slides with drawings (Will video recording suffice as a substitute?)
- Like, love, super engaging, favorite class, enjoying, fun.
Results of Poll on Teaching Style

Thank you for the responses!

1. Class speed: Just right (73%)

2. iPad+doodling was helpful: Yes (94%)
 - But improve your handwriting!
 - iPad screen is small and a little blurry in video recording.

3. Polls
 - Zoom help me think (98%)
 - There should be more Zoom polls (71%)
 - Some suggestions to give less time

4. Web-based forum for questions and answers: Piazza (70%)
Results of Poll on Teaching Style

Thank you for the responses!

1. Class speed: Just right (73%)
2. iPad+doodling was helpful: Yes (94%)
 - But improve your handwriting!
 - iPad screen is small and a little blurry in video recording.
3. Polls
 - Zoom help me think (98%)
 - There should be more Zoom polls (71%)
 - Some suggestions to give less time
4. Web-based forum for questions and answers: Piazza (70%)
5. Other suggestions:
 - Use Discord for TA office hours (I am open, if there are many more requests)
 - Please upload videos (Yes, I do later in the day)
 - What type of notes should I take?
 - Post slides with drawings (Will video recording suffice as a substitute?)
Results of Poll on Teaching Style

Thank you for the responses!

1. Class speed: Just right (73%)
2. iPad+doodling was helpful: Yes (94%)
 ▶ But improve your handwriting!
 ▶ iPad screen is small and a little blurry in video recording.
3. Polls
 ▶ Zoom help me think (98%)
 ▶ There should be more Zoom polls (71%)
 ▶ Some suggestions to give less time
4. Web-based forum for questions and answers: Piazza (70%)
5. Other suggestions:
 ▶ Use Discord for TA office hours (I am open, if there are many more requests)
 ▶ Please upload videos (Yes, I do later in the day)
 ▶ What type of notes should I take?
 ▶ Post slides with drawings (Will video recording suffice as a substitute?)
 ▶ Like, love, super engaging, favorite class, enjoying, fun.
Results of Poll on PQs and Graph Searches

1. Priority queues: Refresher (57%), Summary (31%)
2. Breadth-first search: Refresher (47%), Summary (39%)
3. Depth-first search: Refresher (49%), Summary (39%)