
All Connected Components Testing Bipartiteness

Linear-Time Graph Algorithms

T. M. Murali

February 8, 2021

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u’s component, is u in v ’s component?
I If v is not in u’s component, can u be in v ’s component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint. Read proof in page 86 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u’s component, is u in v ’s component?
I If v is not in u’s component, can u be in v ’s component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint. Read proof in page 86 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u’s component, is u in v ’s component?
I If v is not in u’s component, can u be in v ’s component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint. Read proof in page 86 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Computing All Connected Components

1 Pick an arbitrary node s in G .
2 Compute its connected component using BFS (or DFS).
3 Find a node (say v , not already visited) and repeat the BFS from v .
4 Repeat this process until all nodes are visited.

Time spent to compute each component is

linear in the size of the
component.
Running time of the algorithm is linear in the total sizes of the components,
i.e., O(m + n).
Connectivity in directed graphs: Read Chapter 3.5 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Computing All Connected Components

1 Pick an arbitrary node s in G .
2 Compute its connected component using BFS (or DFS).
3 Find a node (say v , not already visited) and repeat the BFS from v .
4 Repeat this process until all nodes are visited.

Time spent to compute each component is linear in the size of the
component.
Running time of the algorithm is

linear in the total sizes of the components,
i.e., O(m + n).
Connectivity in directed graphs: Read Chapter 3.5 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Computing All Connected Components

1 Pick an arbitrary node s in G .
2 Compute its connected component using BFS (or DFS).
3 Find a node (say v , not already visited) and repeat the BFS from v .
4 Repeat this process until all nodes are visited.

Time spent to compute each component is linear in the size of the
component.
Running time of the algorithm is linear in the total sizes of the components,
i.e., O(m + n).

Connectivity in directed graphs: Read Chapter 3.5 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Computing All Connected Components

1 Pick an arbitrary node s in G .
2 Compute its connected component using BFS (or DFS).
3 Find a node (say v , not already visited) and repeat the BFS from v .
4 Repeat this process until all nodes are visited.

Time spent to compute each component is linear in the size of the
component.
Running time of the algorithm is linear in the total sizes of the components,
i.e., O(m + n).
Connectivity in directed graphs: Read Chapter 3.5 of your textbook.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Bipartite Graphs

A graph G = (V ,E ) is bipartite if V can be partitioned into two subsets X
and Y such that every edge in E has one endpoint in X and one endpoint in
Y .

I (X × X ) ∩ E = ∅ and (Y × Y ) ∩ E = ∅.
I Colour the nodes in X red and the nodes in Y blue. Then no edge in E

connects nodes of the same colour.

Examples of bipartite graphs:

medical residents and hospitals, COVID-19
vaccines and countries in which they are being adminsitered, jobs and
processors they can be scheduled on, professors and courses they can teach.
TestBipartiteness
INSTANCE: An undirected graph G = (V ,E )

QUESTION: Is G bipartite?

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Bipartite Graphs

A graph G = (V ,E ) is bipartite if V can be partitioned into two subsets X
and Y such that every edge in E has one endpoint in X and one endpoint in
Y .

I (X × X ) ∩ E = ∅ and (Y × Y ) ∩ E = ∅.
I Colour the nodes in X red and the nodes in Y blue. Then no edge in E

connects nodes of the same colour.

Examples of bipartite graphs: medical residents and hospitals, COVID-19
vaccines and countries in which they are being adminsitered, jobs and
processors they can be scheduled on, professors and courses they can teach.
TestBipartiteness
INSTANCE: An undirected graph G = (V ,E )

QUESTION: Is G bipartite?

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Examples
(a) (b)

(d)(c)

A triangle is not bipartite.
Generalisation: No cycle of odd length is bipartite.
Claim: If a graph is bipartite, then it cannot contain a cycle of odd length.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Examples
(a) (b)

(d)(c)

?

?

?

A triangle is not bipartite.
Generalisation: No cycle of odd length is bipartite.
Claim: If a graph is bipartite, then it cannot contain a cycle of odd length.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red.

Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.
Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue.

Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.
Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured.

Check if very edge has endpoints of different colours.
Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.

Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.
Algorithm is just like BFS!

Algorithm:
1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.
Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.
Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is

O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Algorithm for Testing Bipartiteness

Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.
Idea: Pick an arbitrary node s and colour it red. Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of different colours.
Algorithm is just like BFS!
Algorithm:

1 Run BFS on G . Maintain an additional array Colour.
2 When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3 At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm

Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.

2 If G is not bipartite, can we determine the reason from the output of the
algorithm?

The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer:

then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer:

then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm

Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.
2 If G is not bipartite, can we determine the reason from the output of the

algorithm?

The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer:

then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer:

then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm

Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.
2 If G is not bipartite, can we determine the reason from the output of the

algorithm? The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer:

then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer:

then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm

Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.
2 If G is not bipartite, can we determine the reason from the output of the

algorithm? The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer:

then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer:

then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm

Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.
2 If G is not bipartite, can we determine the reason from the output of the

algorithm? The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer: then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer:

then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm

Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.
2 If G is not bipartite, can we determine the reason from the output of the

algorithm? The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer: then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer: then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms



All Connected Components Testing Bipartiteness

Correctness of the Algorithm
Need to prove two separate claims.

1 If the algorithm says that G is bipartite, then G is indeed bipartite.
2 If G is not bipartite, can we determine the reason from the output of the

algorithm? The algorithm has effectively found a cycle of odd length in G .

Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1 No edge of G joins two nodes in
the same layer: then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2 There is an edge of G that joins
two nodes in the same layer: then
G contains a cycle of odd length
and cannot be bipartite.

T. M. Murali February 8, 2021 Linear-Time Graph Algorithms


	All Connected Components
	Testing Bipartiteness

