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_ntervallScheduling L nterval Rartitioning . Minimising Lateness
Algorithm Design

o Start discussion of different ways of designing algorithms.

@ Greedy algorithms, divide and conquer, dynamic programming.

@ Discuss principles that can solve a variety of problem types.

@ Design an algorithm, prove its correctness, analyse its complexity.
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_ntervallScheduling L nterval Rartitioning . Minimising Lateness
Algorithm Design

Start discussion of different ways of designing algorithms.
Greedy algorithms, divide and conquer, dynamic programming.
Discuss principles that can solve a variety of problem types.

Design an algorithm, prove its correctness, analyse its complexity.

Greedy algorithms: make the current best choice.
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Interval Scheduling

@ Input: Start and end time of each ride.
@ Constraint: Cannot be in two places at one time.

@ Goal: Compute the largest number of rides you can be on in one day.
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Interval Scheduling

Interval Partitioning

Time
INTERVAL SCHEDULING

INSTANCE: Set {(s(f),f(i)),1 < i < n} of start and finish times of n
jobs.

SOLUTION: The largest subset of mutually compatible jobs.
@ Two jobs are compatible if they do not overlap.

@ This problem models the situation where you have a resource, a set of fixed
jobs, and you want to schedule as many jobs as possible.

@ For any input set of jobs, algorithm must provably compute the largest set of
compatible jobs.
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Interval Scheduling

Interval Scheduling Example
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Interval Scheduling Interval Partitioning

Interval Scheduling Example

(a) Not compatible (b)  Mutually compatible
. | | . 1 |
| I ] | |D‘ | I ] | |D‘
Time Time
(¢)  Mutually compatible (d) Mutually compatible
. | | 1 I ] |
| I ] | |D‘ | Il ] | |D‘
Time Time

@ Solutions (c) and (d) are optimal.

» Each contains four jobs.
» No set of mutually compatible jobs can contain more than four jobs.
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Template for Greedy Algorithm
@ Process jobs in some order. Add next job to the result if it is compatible with

the jobs already in the result.
o Key question: in what order should we process the jobs?
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Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.
o Key question: in what order should we process the jobs?
Earliest start time Increasing order of start time s(/).
Earliest finish time Increasing order of finish time (/).
Shortest interval Increasing order of length (i) — s(i).
Fewest conflicts Increasing order of the number of conflicting jobs.
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Interval Scheduling Interval Partitioning

Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.
@ Key question: in what order should we process the jobs? @b
Earliest start time Increasing order of start time s().
Earliest finish time Increasing order of finish time (/).
Shortest interval Increasing order of length f(i) — s(i).
Fewest conflicts Increasing order of the number of conflicting jobs.

(a) (b)

[ ] ] [ ]

Time " Time "
(c) (d)
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— — ] I ] —J
Time Time
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Interval Scheduling Interval Partitioning

Template for Greedy Algorithm

@ Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.
o Key question: in what order should we process the jobs?
Earliest start time Increasing order of start time s().
Earliest finish time Increasing order of finish time f(7).
Shortest interval Increasing order of length f (i) — s(i).
Fewest conflicts Increasing order of the number of conflicting jobs.

(a) Shortest interval (b) Earliest start time
L1 I | E—
[ | | ] [ |
Time Time
(c) Minimum conflicts (d) Shortest Interval, Min. conflicts
L1 L1 I | |
[ | | | | | [ I |
[ ] ] | | [ ] | | |
— 1 I I —
Time Time
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Interval Scheduling

Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty

While R is not yet empty
Choose a request i€R that has the smallest finishing time

Add request i to A
Delete all requests from R that are not compatible with request i

EndWhile
Return the set A as the set of accepted requests
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Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request i€R that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

o Claim: A is a compatible set of jobs.
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Interval Scheduling Algorithm: Earliest Finish Time

@ Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request i€R that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

o Claim: A is a compatible set of jobs. Proof follows by construction, i.e., the
algorithm computes a compatible set of jobs.
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Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
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Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
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Interval Scheduling

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?

» This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
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Interval Scheduling

Interval Partitioning

linimising Lateness

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?
» This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
@ Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?
» What does “better” mean?
» How do we measure progress of the algorithm?
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Interval Scheduling Interval Partitioning

Ideas for Analysing the EFT Algorithm

@ We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
@ Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?
» This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
@ Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?
» What does “better” mean?
» How do we measure progress of the algorithm?
@ Basic idea of proof:
» We can sort jobs in any solution in increasing order of their finishing time.

> Finishing time of job number r selected by A < finishing time of job number r
selected by any other algorithm.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].
Let i1, ip, ..., ix be the set of jobs in A in order.

Let j1,J/2,...,Jjm be the set of jobs in O in order, m > k.
Claim: For all indices r < k, f(i;) < f(ji).
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, ip, ..., ix be the set of jobs in A in order.

Let j1,J/2,...,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, ip, ..., ix be the set of jobs in A in order.

Let j1,J/2,...,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

[ i ?
" | | .
' | ' i

Jr-1 | Jr

>

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.
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Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let i1, ip, ..., ix be the set of jobs in A in order.

Let j1,J/2,...,Jjm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

[ i ?
" | | .
' | ' i

Jr-1 | Jr

>

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

o Claim: m = k.
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Interval Scheduling

Let iy, ..

Let j1,J2,...
Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

., I be the set of jobs in A in order.
,Jm be the set of jobs in O in order, m > k.

Can the greedy algorithm’s
rthinterval really finish later?

[ ) ) i ?
| '

jr—l | | Jr

>

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

o Claim: m = k.

@ Claim: The greedy algorithm returns an optimal set A.

T. M. Murali
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Implementing the EFT Algorithm

@ Reorder jobs so that they are in
increasing order of finish time. ]
I ]

@ Store starting time of jobs in an
array S.

© k=1 —1
Q@ While k < |5, T
@ Output job k. O
@ Let finish time of job k be f. |
@ lterate over S from index k ]
onwards to find the first index i

such that S[i] > f. T|me
Q k=i

v
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Interval Scheduling Interval Partitioning

Implementing the EFT Algorithm

@ Reorder jobs so that they are in
increasing order of finish time.

@ Store starting time of jobs in an
array S.
Q@ k=1
Q@ While k < |5,
@ Output job k.
@ Let finish time of job k be f.
© lterate over S from index k
onwards to find the first index i
such that S[i] > f.
QO k=i

I
]
]
— ]
—]
—
—
N —
—
1]
Time

@ Must be careful to iterate over S such that we never scan same index more

than once.

@ Running time is O(nlog n), dominated by sorting.
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Interval Partitioning
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Interval Partitioni

12616 CS-4104 Data and Algorithm Analysis L 3 75 CA Shaffer TR 200PM  3:15PM  SURGE 107 14T
18154 CS-4104 Data and Algorithm Analysis L 3 70 T Murali MW 2:30PM  345PM  SURGE104C  14M
12617 CS-4114 Formal Languages L 3 75 L Zhang TR 9:30AM  10:45AM  MCB 129 09T

18155 CS-4204 Computer Graphics L 3 36 D Gracanin TR 11:00AM  12:15PM  MCB 224 nur

19593  CS-4264 Principles Computer Security L 3 50 KE Giles MW 2:30PM  345PM  GOODW 135  14M
12618 (CS-4284 Systems & Networking Capstone L 3 40 GV Back MW 2:30PM  345PM  MCB238 14M
18156  CS-4304 Compiler Design L 3 50 C Jung TR 800AM  915AM  GOODW 125 08T
12620 CS-4604 Int Data Base Mgt Sys L 3 55 RJ Quintin MW  400PM  5:15PM  SURGE 109 16M
12621 CS-4624 Multimedia/Hypertext L 3 70 EA Fox TR 330PM  445PM  SURGE 109 15T
12622 CS-4644 Creative Computing Studio L 3 25 SR Harrison w 230PM  5:15PM  MAC253A 14w

‘Comments for CRN 12622:  Prerequisite: C or better in CS 3724 OR CS 3744

12623  CS-4654 Intermed Data Analytics & ML L 3 50 RB Gramacy MW 400PM  5:15PM  SEITZ313 16M
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‘Comments for CRN 12624:  Prerequisite: C or better in CS 3704 OR CS 3714
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@ Input: Start and end time of each class.

@ Constraint: Cannot schedule two overlapping classes to the same room.

@ Output: Assign each class to a room and use smallest number of rooms
possible.
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Interval Partitioning

Interval Partitioning

INTERVAL PARTITIONING

INSTANCE: Set {(s(f),f(i)),1 < i < n} of start and finish times of n
jobs.

SOLUTION: A partition of the jobs into k sets, where each set of jobs is
mutually compatible, and k is minimised.

@ This problem models the situation where you a set of fixed jobs, and you
want to schedule all jobs using as few resources as possible.
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Depth of Intervals
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Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

@ The depth of a set of intervals is the maximum number of intervals that
contain any time point.
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Depth of Intervals
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Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

@ The depth of a set of intervals is the maximum number of intervals that
contain any time point.

@ Claim: In any instance of INTERVAL PARTITIONING, k > depth.
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Interval Partitioning

Depth of Intervals
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Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

@ The depth of a set of intervals is the maximum number of intervals that
contain any time point.
@ Claim: In any instance of INTERVAL PARTITIONING, k > depth.
@ Is it possible to compute the depth efficiently? Is k = depth?
T. M. Murali
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Computing the Depth of the Intervals

@ How efficiently can we compute the depth of a set of intervals?
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Computing the Depth of the Intervals

@ How efficiently can we compute the depth of a set of intervals?

@ Sort the start times and finish times of the jobs into a single list L.

Q@ d<«+0.
© For i ranging from 1 to 2n

@ If L is a start time, increment d by 1.
@ If L; is a finish time, decrement d by 1.

@ Return the largest value of d computed in the loop.
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Computing the Depth of the Intervals

@ How efficiently can we compute the depth of a set of intervals?

@ Sort the start times and finish times of the jobs into a single list L.

Q@ d<«+0.
© For i ranging from 1 to 2n

@ If L is a start time, increment d by 1.
@ If L; is a finish time, decrement d by 1.

@ Return the largest value of d computed in the loop.

@ Algorithm runs in O(nlog n) time.
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Interval Partitioning

Interval Partitioning Algorithm
o First, compute the depth d of the intervals.
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Interval Partitioning

Interval Partitioning Algorithm
o First, compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

o Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.
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Interval Partitioning

Interval Partitioning Algorithm
o First, compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

o Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.
@ Claim: The greedy algorithm is optimal.
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Interval Partitioning

Interval Partitioning Algorithm
o First, compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

o Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

@ Claim: The greedy algorithm is optimal.

@ The running time of the algorithm is O(nlog n).
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Interval Partitioning

Interval Partitioning Algorithm
o First, compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave J; unlabeled
Endif
Endfor

o Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

@ Claim: The greedy algorithm is optimal.

@ The running time of the algorithm is O(nlog n). Can modify algorithm for
computing depth to maintain set of available labels and to assign them
efficiently.
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Scheduling to Minimise Lateness

e Study different model: job i has a length t(i) and a deadline d(/).
@ We want to schedule all n jobs on one resource.

@ Our goal is to assign a starting time s(/) to each job such that each job is
delayed as little as possible.
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Scheduling to Minimise Lateness

e Study different model: job i has a length t(i) and a deadline d(/).
@ We want to schedule all n jobs on one resource.

@ Our goal is to assign a starting time s(/) to each job such that each job is
delayed as little as possible.

e A job iis delayed if f(i) > d(i); the lateness of the job is
max(0, f(i) — d(1)).
@ The lateness of a schedule is

max (max (0, f(i) — d(i))).

1<i<n
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Minimising Lateness

Examples of Lateness
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Minimising Lateness

Examples of Lateness
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Minimising Lateness

Examples of Lateness
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Interval Partitioning Minimising Lateness

Examples of Lateness
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Interval Partitioning

Examples of Lateness
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Minimising Lateness

Scheduling to Minimise Lateness
MINIMISE LATENESS

INSTANCE: Set {(t(i),d(/)),1 < i < n} of lengths and deadlines of n jobs.

SOLUTION: Set {s(i),1 < i < n} of start times such that
maxi<i<n (max (0, s(i) + t(i) — d(i))) is as small as possible.
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Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness
MINIMISE LATENES

INSTANCE: Set {(t(i),d(i)),1 < i < n} of lengths and deadlines of n jobs.
SOLUTION: Set {s(i),1 < i < n} of start times such that
maxi<i<n (max (0,s(i) + t(i) — d(i))) is as small as possible.
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Template for Greedy Algorithm

@ Key question: In what order should we schedule the jobs?
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Template for Greedy Algorithm

@ Key question: In what order should we schedule the jobs?
Shortest length Increasing order of length t(/).

Shortest slack time Increasing order of d(i) — ().

Earliest deadline Increasing order of deadline d(/).
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Template for Greedy Algorithm

@ Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/). Ignores deadlines completely!
Shortest job may have a very late deadline.

i 1 2
t(1) 1 10
d(i) | 100 | 10

Shortest slack time Increasing order of d(i) — ().

Earliest deadline Increasing order of deadline d(/).
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Template for Greedy Algorithm

@ Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/). Ignores deadlines completely!
Shortest job may have a very late deadline.

i 1 2
t(1) 1 10
d(i) | 100 | 10

Shortest slack time Increasing order of d(i) — t(i). Job with smallest slack
may take a long time.

I 1| 2
t(i) 1 1]10
d(i)| 2|10

Earliest deadline Increasing order of deadline d(/).

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Template for Greedy Algorithm

@ Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/). Ignores deadlines completely!
Shortest job may have a very late deadline.

i 1 2
t(1) 1 10
d(i) | 100 | 10

Shortest slack time Increasing order of d(i) — t(i). Job with smallest slack
may take a long time.

I 1| 2
t(i) 1 1]10
d(i)| 2|10

Earliest deadline Increasing order of deadline d(/i). Correct? Does it make
sense to tackle jobs with earliest deadlines first?

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Minimising Lateness: Earliest Deadline First

Order the jobs in order of their deadlines
Assume for simplicity of notation that d;<...<d,
Initially, f=s

Consider the jobs i=1,...,n in this order
Assign job i to the time interval from s@)=f to f())=f+¢
Let f=f+¢
End
Return the set of scheduled intervals [s(i), f(i)] for i=1,...,n
1
L}
|
| |
———
0 2 4 8 10 12 14 16
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Minimising Lateness: Earliest Deadline First

Order the jobs in order of their deadlines
Assume for simplicity of notation that d;<...<d,
Initially, f=s

Consider the jobs i=1,...,n in this order
Assign job i to the time interval from s@)=f to f())=f+¢
Let f=f+¢
End
Return the set of scheduled intervals [s(i), f(i)] for i=1,...,n
|
L}
|
| |
———
0 2 4 8 10 12 14 16
ey
0 2 4 6 8 10 12 14 16
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Minimising Lateness: Earliest Deadline First

Order the jobs in order of their deadlines
Assume for simplicity of notation that d;<...<d,
Initially, f=s

Consider the jobs i=1,...,n in this order
Assign job i to the time interval from s@)=f to f())=f+¢
Let f=f+¢
End
Return the set of scheduled intervals [s(i), f(i)] for i=1,...,n
|
L}
|
| |
———
0 2 4 8 10 12 14 16
5 6 10 9 10
ey
0 2 4 6 8 10 12 14 16
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Inversions

6 10 9 10
3 4 5

2
| }

6 8 10 12 14 16
8 15

£
—
6

! | —
0 4 8 10 12 14 16

T. M. Murali

February 10, 15, 2021 CS 4104: Greed is Good



Interval Partitioning Minimising Lateness

Inversions
5 6 10 9 10

[ l—l — 8
0 2 4 6 8 10 12 14 16
0 1 0 8 15
4 2 5 3 1
| l—l —
0 2 4 6 In8version 10 12 14 16
[ | I | | | IFA | ]

1
d(j) < d(i) but s(i) < s(5)
@ A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» If i and j have the same deadlines, they cannot cause an inversion.
» Examples:
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Interval Partitioning Minimising Lateness

Inversions
5 6 10 9 10

[ l—l — 8
0 2 4 6 8 10 12 14 16
0 1 0 8 15
4 2 5 3 1
| l—l —
0 2 4 6 In8version 10 12 14 16
[ | I | | | IFA | ]

1
d(j) < d(i) but 5(5) < s(j)
@ A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» If i and j have the same deadlines, they cannot cause an inversion.
» Examples: 2and 1,3 and 1,4 and 1, 5and 1, 4 and 3.
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Interval Scheduling Interval Partitioning Minimising Lateness

Inversions
5 6 10 9 10

Ny |
o = N

0 2 8 10 12 14 16
0 1 0 8 15

4 2 5 3 1

| l—l — &

0 2 4 6 mSVersion 10 12 14 16

—_—

| | I | 1 | IFE | |
d(j) < d(i) but s(i) < s(j)
@ A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» If i and j have the same deadlines, they cannot cause an inversion.
» Examples: 2and 1,3 and 1,4 and 1, 5and 1, 4 and 3.
o Claim: If a schedule has an inversion, then there is a pair of jobs / and j such
that j is scheduled immediately after i and d(j) < d(/).
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Minimising Lateness
Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
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Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines.
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Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline.

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 8 10 9 10
1 3 2 4 5
[ l—l —

0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

@ Claim 3: There is an optimal schedule with no idle time.
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Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

@ Claim 3: There is an optimal schedule with no idle time.

@ Claim 4: There is an optimal schedule with no inversions and no idle time.
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Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

@ Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

@ Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

@ Claim 3: There is an optimal schedule with no idle time.

@ Claim 4: There is an optimal schedule with no inversions and no idle time. 7!
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Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

Claim 3: There is an optimal schedule with no idle time.

Claim 4: There is an optimal schedule with no inversions and no idle time. 7!

Claim 5: The greedy algorithm produces an optimal schedule.
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Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

5 6 10 9 10
1 2 3 4 5
[ l—l — 5
0 2 4 6 8 10 12 14 16

Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

Claim 3: There is an optimal schedule with no idle time.

Claim 4: There is an optimal schedule with no inversions and no idle time. 7!

Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.
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Minimising Lateness

Proving Claim 4

0
4 2 D 3 1
| l—l —
0 2 4 6 8 10 12 14 16

@ Claim 4: There is an optimal schedule with no inversions and no idle time.
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Interval Partitioning Minimising Lateness

Proving Claim 4

0
4 2 D 3 1
| l—l —
0 2 4 6 8 10 12 14 16

@ Claim 4: There is an optimal schedule with no inversions and no idle time.

@ Approach: Start with an optimal schedule O (that may have inversions) and
use an exchange argument to convert O into a schedule that satisfies Claim 4
and has lateness not larger than O.
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Interval Partitioning Minimising Lateness

Proving Claim 4

0
4 2, 5 3 1
:l—l:l:l:::'::::::

0 2 4 6 8 10 12 14 16
@ Claim 4: There is an optimal schedule with no inversions and no idle time.

@ Approach: Start with an optimal schedule O (that may have inversions) and
use an exchange argument to convert O into a schedule that satisfies Claim 4
and has lateness not larger than O.

@ If O has an inversion,
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Interval Partitioning Minimising Lateness

:lz—l:l:l:::'::::::

0 2 4 6 8 10 12 14 16
@ Claim 4: There is an optimal schedule with no inversions and no idle time.

@ Approach: Start with an optimal schedule O (that may have inversions) and
use an exchange argument to convert O into a schedule that satisfies Claim 4
and has lateness not larger than O.

@ If O has an inversion, let i and j be consecutive inverted jobs in O. After
swapping i and j, we get a schedule O’ with one less inversion.
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Interval Partitioning Minimising Lateness

Proving Claim 4

L]
0 2 4 6 8 10 12 14 16
@ Claim 4: There is an optimal schedule with no inversions and no idle time.
@ Approach: Start with an optimal schedule O (that may have inversions) and
use an exchange argument to convert O into a schedule that satisfies Claim 4
and has lateness not larger than O.
@ If O has an inversion, let i and j be consecutive inverted jobs in O. After
swapping i and j, we get a schedule O’ with one less inversion.
@ Claim: The lateness of O’ is no larger than the lateness of O.
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Interval Sche g Interval Partitioning Minimising Lateness

Proving Claim 4

0 1 5 4 15
4 2 3 ) 1
| l—l —r &
0 2 4 6 8 10 12 14 16

@ Claim 4: There is an optimal schedule with no inversions and no idle time.

@ Approach: Start with an optimal schedule O (that may have inversions) and
use an exchange argument to convert O into a schedule that satisfies Claim 4
and has lateness not larger than O.

@ If O has an inversion, let i and j be consecutive inverted jobs in O. After
swapping i and j, we get a schedule O’ with one less inversion.

@ Claim: The lateness of O’ is no larger than the lateness of O.

@ It is enough to prove the last item, since after (’2’) swaps, we obtain a

schedule with no inversions whose lateness is no larger than that of O.
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
[
4 4
(a)
After swapping:
[ Jobj [ Job i
[
4 d
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

@ In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /I'(r).
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
[
4 4
(a)
After swapping:
[ Jobj [ Job i
[
4 d
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

@ In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /I'(r).

o Claim: /'(k) = I(k), for all k # i,j.
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
[
4 4
(a)
After swapping:
[ Jobj [ Job i
[
4 d
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

@ In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /I'(r).

o Claim: /'(k) = I(k), for all k # i,j.

e Claim: I'(j) < I()).
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
I
4 4
(a)
After swapping:
[ Jobj [ Job i
[
4 d
(b)

Figure 4.6 The effect of swapping two consecutive, nverted Jobs.
@ In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /I'(r).

Claim: I'(k) = I(k), for all k # i,j.

Claim: I'(j) < I(j).

Claim: I'(i) < I(j)
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
I
4 4
(a)

After swapping:

[ Jobj [ Job i
[
4 d

(b)

Figure 4.6 The effect of swapping two consecutive, nverted Jobs.
@ In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /I'(r).

Claim: I'(k) = I(k), for all k # i,j.

Claim: I'(j) < I(j).

Claim: /(i) < I(j) because I'(i) = f(j) — d; < f(j) — d; = I(j).
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Summary of Proof

@ Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.
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Summary of Proof

@ Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.
© Where does the schedule A produced by the algorithm lie?
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Minimising Lateness

Summary of Proof

@ Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

© Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

© Where does some other schedule B with no inversions lie?
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Minimising Lateness

Summary of Proof

@ Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

© Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

© Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

T. M. Murali February 10, 15, 2021 CS 4104: Greed is Good



Minimising Lateness

Summary of Proof

@ Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

© Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

© Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

@ Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie?
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Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

@ Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

© Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

© Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

@ Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (7, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia
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Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (7, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

Swap the jobs to get a new schedule X;_;. Where does X;_; lie?
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Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (7, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

Swap the jobs to get a new schedule X;_1. Where does X;_1 lie? X;_1 has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”
Repeat until we have X; with one inversion at
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Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (7, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

Swap the jobs to get a new schedule X;_1. Where does X;_1 lie? X;_1 has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”
Repeat until we have X; with one inversion at (1, /x) or “below”, where Ix < /a.
Repeat one more step: Xo has no inversions. What is Xj's location?
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Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (7, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

Swap the jobs to get a new schedule X;_1. Where does X;_1 lie? X;_1 has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”
Repeat until we have X; with one inversion at (1, /x) or “below”, where Ix < /a.
Repeat one more step: Xo has no inversions. What is Xp's location? (0, Ix) or
“below” because of #7 and (0, /a) because of #3.
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Interval Scheduling Interval Partitioning Minimising Lateness

60 00 o o

Summary of Proof

Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (7, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

Swap the jobs to get a new schedule X;_1. Where does X;_1 lie? X;_1 has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”
Repeat until we have X; with one inversion at (1, /x) or “below”, where Ix < /a.
Repeat one more step: Xo has no inversions. What is Xp's location? (0, Ix) or
“below” because of #7 and (0, /a) because of #3.

We have a contradiction!

Lateness of A cannot be larger than that of O!
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Minimising Lateness

Common Mistakes with Exchange Arguments

@ Wrong: start with algorithm's schedule A and argue that A cannot be
improved by swapping two jobs.

@ Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that is essentially the
same as the one the algorithm produces without increasing the lateness.
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Interval Partitioning Minimising Lateness

Common Mistakes with Exchange Arguments

@ Wrong: start with algorithm's schedule A and argue that A cannot be
improved by swapping two jobs.

@ Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that is essentially the
same as the one the algorithm produces without increasing the lateness.

@ Wrong: Swap two jobs that are not neighbouring in O. Pitfall is that the
completion times of all intervening jobs changes.

o Correct: Show that an inversion exists between two neighbouring jobs and
swap them.
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Summary

@ Greedy algorithms make local decisions.
@ Three analysis strategies:

Greedy algorithm stays ahead Show that after each step in the greedy
algorithm, its solution is at least as good as that produced by
any other algorithm.

Structural bound First, discover a property that must be satisfied by every
possible solution. Then show that the (greedy) algorithm
produces a solution with this property.

Exchange argument Transform the optimal solution in steps into the solution
by the greedy algorithm without worsening the quality of the
optimal solution.
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