Applications of Minimum Spanning Trees

T. M. Murali

March 1, 3, 2021

Minimum Spanning Trees

- We motivated MSTs through the problem of finding a low-cost network connecting a set of nodes.
- MSTs are useful in a number of seemingly disparate applications.
- We will consider two problems: minimum bottleneck graphs (problem 9 in Chapter 4) and clustering (Chapter 4.7).

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - Total road length is not a criterion.

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - ▶ Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
- In an undirected graph G(V, E), let (V, T) be a spanning tree. The bottleneck edge in T is the edge with largest cost in T.

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - ▶ Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
- In an undirected graph G(V, E), let (V, T) be a spanning tree. The bottleneck edge in T is the edge with largest cost in T.

MINIMUM BOTTLENECK SPANNING TREE (MBST)

INSTANCE: An undirected graph G(V, E) and a function $c: E \to \mathbb{R}^+$

SOLUTION: A set $T \subseteq E$ of edges such that (V, T) is a spanning tree and there is no spanning tree in G with a cheaper bottleneck edge.

MBST Examples

- Assume edge costs are distinct.
- Is every MBST tree an MST? Poll
- Is every MST an MBST?

- Assume edge costs are distinct.
- Is every MBST tree an MST? No. It is easy to create a counterexample.
- Is every MST an MBST?

- Assume edge costs are distinct.
- Is every MBST tree an MST? No. It is easy to create a counterexample.
- Is every MST an MBST? Yes. Use the cycle property.

- Assume edge costs are distinct.
- Is every MBST tree an MST? No. It is easy to create a counterexample.
- Is every MST an MBST? Yes. Use the cycle property.
 - ▶ Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 - Every edge in T' is cheaper than e.
 - Adding e to T' creates a cycle consisting only of edges in T' and e.

- Assume edge costs are distinct.
- Is every MBST tree an MST? No. It is easy to create a counterexample.
- Is every MST an MBST? Yes. Use the cycle property.
 - ▶ Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 - Every edge in T' is cheaper than e.
 - Adding e to T' creates a cycle consisting only of edges in T' and e.
 - Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.

Motivation for Clustering

- Given a set of objects and distances between them.
- Objects can be images, web pages, people, species
- Distance function: increasing distance corresponds to decreasing similarity.
- Goal: group objects into clusters, where each cluster is a set of similar objects.

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" $C_1, C_2, \ldots C_k$.

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- We require $d(p_i,p_i)=0$, $d(p_i,p_j)>0$, if $i\neq j$, and $d(p_i,p_j)=d(p_j,p_i)$
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" $C_1, C_2, \ldots C_k$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$\operatorname{spacing}(C_1, C_2, \dots C_k) = \min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_i}} d(p, q)$$

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" $C_1, C_2, \ldots C_k$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$\operatorname{spacing}(C_1, C_2, \dots C_k) = \min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_i}} d(p, q)$$

Clustering of Maximum Spacing

INSTANCE: A set U of objects, a distance function $d: U \times U \to \mathbb{R}^+$, and a positive integer k

SOLUTION: A k-clustering of U whose spacing is the largest over all possible k-clusterings.

• Intuition: greedily cluster objects in increasing order of distance.

• Intuition: greedily cluster objects in increasing order of distance.

- Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of n clusters, with each object in U in its own cluster.
- Process pairs of objects in increasing order of distance.
 - ▶ Let (p,q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - ▶ If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- Stop when there are k clusters in C.

- Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of n clusters, with each object in U in its own cluster.
- Process pairs of objects in increasing order of distance.
 - ▶ Let (p,q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - ▶ If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- Stop when there are k clusters in C.
- Same as Kruskal's algorithm but do not add last k-1 edges in MST.

What is the Spacing of the Algorithm's Clustering?

- ullet Let $\mathcal C$ be the clustering produced by the algorithm.
- What is spacing(C)?

What is the Spacing of the Algorithm's Clustering?

- ullet Let ${\mathcal C}$ be the clustering produced by the algorithm.
- What is spacing(C)? It is the cost of the (k-1)st most expensive edge in the MST. Let this cost be d^* .

Why Does the Algorithm Compute the Clustering of Largest Spacing?

- Let C' be any other clustering (with k clusters).
- We will prove that spacing(C') $\leq d^*$.

Why Does the Algorithm Compute the Clustering of Largest Spacing?

- Let C' be any other clustering (with k clusters).
- We will prove that spacing(C') $\leq d^*$.

▶ Poll

There is a pair of objects in the same cluster in C' but in different clusters in C.

Not useful for proof.

There is a pair of objects in the same cluster in \mathcal{C} but in different clusters in \mathcal{C} '. Can use in proof since they are connected by edges in the tree containing them.

There is a pair of objects in the same cluster in \mathcal{C} but in different clusters in \mathcal{C} '. An MST edge that the algorithm has already added connects these objects.

There is a pair of objects in the same cluster in \mathcal{C} but in different clusters in \mathcal{C} '. An MST edge that the algorithm has already added connects these objects.

 $\operatorname{spacing}(\mathcal{C}') \leq \operatorname{distance}$ between these objects $\leq d^*$

• There must be two objects p_i and p_j that are in the same cluster C_r in C but in different clusters in C':

• There must be two objects p_i and p_j that are in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_i)$.

- There must be two objects p_i and p_j that are in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.
- Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

- There must be two objects p_i and p_j that are in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.
- Suppose $p_i \in C'_s$ and $p_i \in C'_t$ in C'.
- All edges in the path Q connecting p_i and p_j in the MST have length $\leq d^*$.
- In particular, there is an object $p \in C'_s$ and an object $p' \notin C'_s$ such that p and p' are adjacent in Q.
- $d(p, p') \le d^* \Rightarrow \operatorname{spacing}(\mathcal{C}') \le d(p, p') \le d^*$.

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any other clustering can be no larger than that of the clustering found by the single-linkage algorithm.