Applications of Minimum Spanning Trees

T. M. Murali

March 1, 3, 2021
Minimum Spanning Trees

- We motivated MSTs through the problem of finding a low-cost network connecting a set of nodes.
- MSTs are useful in a number of seemingly disparate applications.
- We will consider two problems: minimum bottleneck graphs (problem 9 in Chapter 4) and clustering (Chapter 4.7).
Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - Total road length is not a criterion.
Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
- In an undirected graph $G(V, E)$, let (V, T) be a spanning tree. The *bottleneck edge* in T is the edge with largest cost in T.
Minimum Bottleneck Spanning Tree (MBST)

- The MST minimises the total cost of a spanning network.
- Consider another network design criterion:
 - Build a network of roads to connect all cities in a mountainous region but ensure road with highest elevation is as low as possible.
 - Total road length is not a criterion.
- Idea: compute a spanning tree in which edge with highest cost is as cheap as possible.
- In an undirected graph $G(V, E)$, let (V, T) be a spanning tree. The *bottleneck edge* in T is the edge with largest cost in T.

Minimum Bottleneck Spanning Tree (MBST)

INSTANCE: An undirected graph $G(V, E)$ and a function $c : E \rightarrow \mathbb{R}^+$

SOLUTION: A set $T \subseteq E$ of edges such that (V, T) is a spanning tree and there is no spanning tree in G with a cheaper bottleneck edge.
Minimum Bottleneck Spanning Trees Clustering

MBST Examples

![MBST Examples Diagram](image-url)
Two Questions on MBSTs

1. Assume edge costs are distinct.
2. Is every MBST tree an MST?
3. Is every MST an MBST?
Two Questions on MBSTs

1. Assume edge costs are distinct.
2. Is every MBST tree an MST? No. It is easy to create a counterexample.
3. Is every MST an MBST?
Two Questions on MBSTs

1. Assume edge costs are distinct.
2. Is every MBST tree an MST? No. It is easy to create a counterexample.
3. Is every MST an MBST? Yes. Use the cycle property.

- Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 - Every edge in T' is cheaper than e.
 - Adding e to T' creates a cycle consisting only of edges in T' and e.
 - Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.
Two Questions on MBSTs

1. Assume edge costs are distinct.
2. Is every MBST tree an MST? No. It is easy to create a counterexample.
3. Is every MST an MBST? Yes. Use the cycle property.
 ▶ Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 ▶ Every edge in T' is cheaper than e.
 ▶ Adding e to T' creates a cycle consisting only of edges in T' and e.
 ▶ Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.
Two Questions on MBSTs

1. Assume edge costs are distinct.

2. Is every MBST tree an MST? No. It is easy to create a counterexample.

3. Is every MST an MBST? Yes. Use the cycle property.
 - Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 - Every edge in T' is cheaper than e.
 - Adding e to T' creates a cycle consisting only of edges in T' and e.
 - Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.
Motivation for Clustering

- Given a set of objects and distances between them.
- Objects can be images, web pages, people, species
- Distance function: increasing distance corresponds to decreasing similarity.
- Goal: group objects into clusters, where each cluster is a set of similar objects.
Example of Clustering
Example of Clustering
Example of Clustering
Example of Clustering
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$.
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$.
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or “clusters” C_1, C_2, \ldots, C_k.
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$.
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or “clusters” $C_1, C_2, \ldots C_k$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:
 \[
 \text{spacing}(C_1, C_2, \ldots C_k) = \min_{1 \leq i, j \leq k, \ i \neq j, \ p \in C_i, q \in C_j} d(p, q)
 \]
Formalising the Clustering Problem

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n.
- For every pair p_i and p_j, we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$.
- Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or “clusters” C_1, C_2, \ldots, C_k.
- The \textit{spacing} of a clustering is the smallest distance between objects in two different subsets:

$$\text{spacing}(C_1, C_2, \ldots, C_k) = \min_{1 \leq i, j \leq k, i \neq j, p \in C_i, q \in C_j} d(p, q)$$

Clustering of Maximum Spacing

\textbf{INSTANCE:} A set U of objects, a distance function $d : U \times U \to \mathbb{R}^+$, and a positive integer k

\textbf{SOLUTION:} A k-clustering of U whose spacing is the largest over all possible k-clusterings.
Example of Clustering
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let \(C \) be a set of \(n \) clusters, with each object in \(U \) in its own cluster.

Process pairs of objects in increasing order of distance.

- Let \((p, q)\) be the next pair with \(p \in C_p \) and \(q \in C_q \).
- If \(C_p \neq C_q \), add new cluster \(C_p \cup C_q \) to \(C \), delete \(C_p \) and \(C_q \) from \(C \).

Stop when there are \(k \) clusters in \(C \).

Same as Kruskal's algorithm but do not add last \(k - 1 \) edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let \(C \) be a set of \(n \) clusters, with each object in \(U \) in its own cluster.

Process pairs of objects in increasing order of distance.

- Let \((p, q)\) be the next pair with \(p \in C_p \) and \(q \in C_q \).
- If \(C_p \neq C_q \), add new cluster \(C_p \cup C_q \) to \(C \), delete \(C_p \) and \(C_q \) from \(C \).

Stop when there are \(k \) clusters in \(C \).

Same as Kruskal's algorithm but do not add last \(k-1 \) edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let C be a set of n clusters, with each object in U in its own cluster.

1. Process pairs of objects in increasing order of distance.
2. Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
3. If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
4. Stop when there are k clusters in C.

Same as Kruskal’s algorithm but do not add last $k-1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let C be a set of n clusters, with each object in U in its own cluster.

Process pairs of objects in increasing order of distance.

- Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.

- If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.

Stop when there are k clusters in C.

Same as Kruskal's algorithm but do not add last $k-1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.
Let C be a set of n clusters, with each object in U in its own cluster.
Process pairs of objects in increasing order of distance.
 ▶ Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
 ▶ If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
Stop when there are k clusters in C.

Same as Kruskal’s algorithm but do not add last $k - 1$ edges in MST.
Algorithm for Clustering of Maximum Spacing

- Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of n clusters, with each object in U in its own cluster.
- Process pairs of objects in increasing order of distance.
 - Let (p, q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- Stop when there are k clusters in C.
- Same as Kruskal’s algorithm but do not add last $k - 1$ edges in MST.
What is the Spacing of the Algorithm’s Clustering?

- Let C be the clustering produced by the algorithm.
- What is spacing(C)?
What is the Spacing of the Algorithm’s Clustering?

- Let C be the clustering produced by the algorithm.
- What is spacing(C)? It is the cost of the $(k - 1)$st most expensive edge in the MST. Let this cost be d^*.
Why Does the Algorithm Compute the Clustering of Largest Spacing?

Let C' be any other clustering (with k clusters).

We will prove that $\text{spacing}(C') \leq d^*$.

T. M. Murali

March 1, 3, 2021

Applications of Minimum Spanning Trees
Let C' be any other clustering (with k clusters).
We will prove that $\text{spacing}(C') \leq d^*$.
spacing$(C') \leq d^*$: Intuition

Poll
spacing(C') $\leq d^*$: Intuition

There is a pair of objects in the same cluster in C' but in different clusters in C. Not useful for proof.
\[\text{spacing}(C') \leq d^* : \text{Intuition} \]

There is a pair of objects in the same cluster in \(C \) but in different clusters in \(C' \). Can use in proof since they are connected by edges in the tree containing them.
$\text{spacing}(C') \leq d^*$: Intuition

There is a pair of objects in the same cluster in C but in different clusters in C'. An MST edge that the algorithm has already added connects these objects.
\textbf{spacing}(C') \leq d^*: \text{ Intuition}

There is a pair of objects in the same cluster in C but in different clusters in C'. An MST edge that the algorithm has already added connects these objects.
\[\text{spacing}(C') \leq d^*: \text{Intuition} \]

\[\text{spacing}(C') \leq \text{distance between these objects} \leq d^* \]
\[\text{spacing}(C') \leq d^* \]

- There must be two objects \(p_i \) and \(p_j \) that are in the same cluster \(C_r \) in \(C \) but in different clusters in \(C' \):
Minimum Bottleneck Spanning Trees Clustering

\[\text{spacing}(C') \leq d^* \]

There must be two objects \(p_i \) and \(p_j \) that are in the same cluster \(C_r \) in \(C \) but in different clusters in \(C' \): \(\text{spacing}(C') \leq d(p_i, p_j) \).
There must be two objects p_i and p_j that are in the same cluster C_r in C but in different clusters in C': $\text{spacing}(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.

Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

\[\text{spacing}(C') \leq d^* \]
There must be two objects p_i and p_j that are in the same cluster C_r in C but in different clusters in C': $\text{spacing}(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.

Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

All edges in the path Q connecting p_i and p_j in the MST have length $\leq d^*$.

In particular, there is an object $p \in C'_s$ and an object $p' \notin C'_s$ such that p and p' are adjacent in Q.

$$d(p, p') \leq d^* \Rightarrow \text{spacing}(C') \leq d(p, p') \leq d^*.$$

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any other clustering can be no larger than that of the clustering found by the single-linkage algorithm.