Divide and Conquer Algorithms

T. M. Murali

March 10, 12, 2021
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - Partition problem into two equal sub-problems of size $n/2$.
 - Solve each part recursively.
 - Combine the two solutions in $O(n)$ time.
 - Resulting running time is $O(n \log n)$.

T. M. Murali March 10, 12, 2021 Divide and Conquer Algorithms
Mergesort

Sort

INSTANCE: Nonempty list $L = x_1, x_2, \ldots, x_n$ of integers.

SOLUTION: A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $y_i \leq y_{i+1}$, for all $1 \leq i < n$.

- Mergesort is a divide-and-conquer algorithm for sorting.
 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
 2. Recursively sort A.
 3. Recursively sort B.
 4. Merge the sorted lists A and B into a single sorted list.
Merging Two Sorted Lists

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots b_l$.

 Maintain a *current* pointer for each list.
 Initialise each pointer to the front of the list.
 While both lists are nonempty:

 Let a_i and b_j be the elements pointed to by the *current* pointers.
 Append the smaller of the two to the output list.
 Advance the current pointer in the list that the smaller element belonged to.

 EndWhile
 Append the rest of the non-empty list to the output.
Merging Two Sorted Lists

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots b_l$.

 Maintain a *current* pointer for each list.
 Initialise each pointer to the front of the list.
 While both lists are nonempty:

 Let a_i and b_j be the elements pointed to by the *current* pointers.
 Append the smaller of the two to the output list.
 Advance the current pointer in the list that the smaller element belonged to.

 EndWhile

 Append the rest of the non-empty list to the output.

- Running time of this algorithm is $O(k + l)$.
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Running time for L:

Running time for A +
Running time for B +
Time to split the input into two lists +
Time to merge two sorted lists.

Running time for L =

Assume n is a power of 2.

Define $T(n)$ ≡ Worst-case running time for n elements, for every $n \geq 1$.

$T(n) \leq 2T(\lfloor n/2 \rfloor) + cn, n > 2$

For Homework 4, assume $T(n) = O(n \log n)$.

Three basic ways of solving this recurrence relation:

1. "Unroll" the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in $O(\cdot)$ form and substitute into recurrence to determine the constants.

Read from the textbook.

T. M. Murali March 10, 12, 2021 Divide and Conquer Algorithms
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements =

- Running time for A +
- Running time for B +
- Time to split the input into two lists +
- Time to merge two sorted lists.
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq

- Worst-case running time for $\lfloor n/2 \rfloor$ elements $+$
- Worst-case running time for $\lceil n/2 \rceil$ elements $+$
- Time to split the input into two lists $+$
- Time to merge two sorted lists.
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq

- Worst-case running time for $\lfloor n/2 \rfloor$ elements $+$
- Worst-case running time for $\lceil n/2 \rceil$ elements $+$
- Time to split the input into two lists $+$
- Time to merge two sorted lists.

- Assume n is a power of 2.
- Define $T(n) \equiv \text{Worst-case running time for } n \text{ elements}$, for every $n \geq 1$.
Analyzing Mergesort

1. Partition \(L \) into two lists \(A \) and \(B \) of size \([n/2]\) and \([n/2]\) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.

Worst-case running time for \(n \) elements \(\leq \)
- Worst-case running time for \([n/2]\) elements +
- Worst-case running time for \([n/2]\) elements +
- Time to split the input into two lists +
- Time to merge two sorted lists.

- Assume \(n \) is a power of 2.
- Define \(T(n) \equiv \text{Worst-case running time for } n \text{ elements} \), for every \(n \geq 1 \).

\[
T(n) \leq 2T(n/2) + cn, n > 2
\]

\[
T(2) \leq c
\]

For Homework 4, assume \(T(n) = O(n \log n) \).
Analysing Mergesort

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.

Worst-case running time for \(n \) elements \(\leq \)
- Worst-case running time for \(\lfloor n/2 \rfloor \) elements +
- Worst-case running time for \(\lceil n/2 \rceil \) elements +
- Time to split the input into two lists +
- Time to merge two sorted lists.

Assume \(n \) is a power of 2.

Define \(T(n) \equiv \text{Worst-case running time for } n \text{ elements} \), for every \(n \geq 1 \).

\[
T(n) \leq 2T(n/2) + cn, \quad n > 2
\]
\[
T(2) \leq c
\]

For Homework 4, assume \(T(n) = O(n \log n) \).

Three basic ways of solving this recurrence relation:
1. “Unroll” the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in \(O() \) form and substitute into recurrence to determine the constants. Read from the textbook.
Unrolling the recurrence

Level 0: cn

Level 1: $cn/2 + cn/2 = cn$ total

Level 2: $4(cn/4) = cn$ total

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.
Unrolling the recurrence

![Recursion Tree](image)

- Input to each sub-problem on level i has size $\frac{cn}{2^i}$.
- Recursion tree has $\log n$ levels.
- Number of sub-problems on level i has size $\frac{cn}{2^i}$.

$T(n) \leq 2T(n/2) + O(n)$.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.

Level 0: cn

Level 1: $\frac{cn}{2} + \frac{cn}{2} = cn$ total

Level 2: $4(\frac{cn}{4}) = cn$ total
Unrolling the recurrence

Input to each sub-problem on level \(i \) has size \(n/2^i \).

Recursion tree has \(\log n \) levels.

Number of sub-problems on level \(i \) has size \(2^i \).

Figure 5.1 Unrolling the recurrence \(T(n) \leq 2T(n/2) + O(n) \).
Unrolling the recurrence

Input to each sub-problem on level i has size $n/2^i$.
Recursion tree has log n levels.
Number of sub-problems on level i has size 2^i.
Total work done at each level is cn.
Running time of the algorithm is $O(n \log n)$.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.
Unrolling the recurrence

- Input to each sub-problem on level i has size $n/2^i$.
- Recursion tree has $\log n$ levels.
- Number of sub-problems on level i has size 2^i.
- Total work done at each level is cn.
- Running time of the algorithm is $cn \log n$.
- Use this method only to get an idea of the solution.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.
Substituting a Solution into the Recurrence

- Guess that the solution is \(T(n) \leq cn \log n \) (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
 Inductive hypothesis: ??
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
 Inductive hypothesis: ??

- Inductive step: Prove $T(n) \leq cn \log n$.

Why is $T(n) \leq kn^2$ a "loose" bound? Why doesn't an attempt to prove $T(n) \leq kn$ for some $k > 0$ work?
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
 Inductive hypothesis: ??

- Inductive step: Prove $T(n) \leq cn \log n$.

 \[
 T(n) \leq 2T\left(\frac{n}{2}\right) + cn, \text{ from the recurrence itself}
 \]
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.

 Inductive hypothesis: Must include $n/2$.

- Inductive step: Prove $T(n) \leq cn \log n$.

 $$T(n) \leq 2T\left(\frac{n}{2}\right) + cn,$$ from the recurrence itself
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- **Strong Inductive hypothesis:** Must include $n/2$.
 Assume $T(m) \leq cm \log_2 m$, for all $m < n$. Therefore,
 $$T\left(\frac{n}{2}\right) \leq \frac{cn}{2} \log \left(\frac{n}{2}\right).$$
- Inductive step: Prove $T(n) \leq cn \log n$.
 $$T(n) \leq 2T\left(\frac{n}{2}\right) + cn,$$ from the recurrence itself
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n/2$.
 Assume $T(m) \leq cm \log_2 m$, for all $m < n$. Therefore,
 \[
 T\left(\frac{n}{2}\right) \leq \frac{cn}{2} \log \left(\frac{n}{2}\right).
 \]
- Inductive step: Prove $T(n) \leq cn \log n$.
 \[
 T(n) \leq 2T\left(\frac{n}{2}\right) + cn, \text{ from the recurrence itself}
 \leq 2\left(\frac{cn}{2} \log \left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}
 = cn \log \left(\frac{n}{2}\right) + cn
 = cn \log n - cn + cn
 = cn \log n.
 \]
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n/2$.
 Assume $T(m) \leq cm \log_2 m$, for all $m < n$. Therefore,
 $$T\left(\frac{n}{2}\right) \leq \frac{cn}{2} \log \left(\frac{n}{2}\right).$$
- Inductive step: Prove $T(n) \leq cn \log n$.
 $$T(n) \leq 2T\left(\frac{n}{2}\right) + cn, \text{ from the recurrence itself}$$
 $$\leq 2\left(\frac{cn}{2} \log \left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$
 $$= cn \log \left(\frac{n}{2}\right) + cn$$
 $$= cn \log n - cn + cn$$
 $$= cn \log n.$$
- Why is $T(n) \leq kn^2$ a “loose” bound?
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include $n/2$. Assume $T(m) \leq cm \log_2 m$, for all $m < n$. Therefore,
 \[T\left(\frac{n}{2}\right) \leq \frac{cn}{2} \log \left(\frac{n}{2}\right). \]
- Inductive step: Prove $T(n) \leq cn \log n$.
 \[T(n) \leq 2T\left(\frac{n}{2}\right) + cn, \text{ from the recurrence itself} \]
 \[\leq 2\left(\frac{cn}{2} \log \left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis} \]
 \[= cn \log \left(\frac{n}{2}\right) + cn \]
 \[= cn \log n - cn + cn \]
 \[= cn \log n. \]
- Why is $T(n) \leq kn^2$ a “loose” bound?
- Why doesn’t an attempt to prove $T(n) \leq kn$, for some $k > 0$ work?
Proof for All Values of n

- We assumed n is a power of 2.
- How do we generalise the proof?
Proof for All Values of n

- We assumed n is a power of 2.
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n + 1)$, for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m)$
Proof for All Values of n

- We assumed n is a power of 2.
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n + 1)$, for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m) = O(n \log n)$, because $m \leq 2n$.

T. M. Murali March 10, 12, 2021 Divide and Conquer Algorithms
Other Recurrence Relations

- Divide into q sub-problems of size $n/2$ and merge in $O(n)$ time. Two distinct cases: $q = 1$ and $q > 2$.
- Divide into two sub-problems of size $n/2$ and merge in $O(n^2)$ time.
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

Each invocation reduces the problem size by a factor of 2 ⇒ there are \(\log n \) levels in the recursion tree.

At level \(i \) of the tree, the problem size is \(n/2^i \) and the work done is \(cn/2^i \).

Therefore, the total work done is

\[
\sum_{i=0}^{\log n} \frac{cn}{2^i} = \frac{cn}{1 - \frac{1}{2}} = 2cn.
\]

Figure 5.3 Unrolling the recurrence \(T(n) \leq T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

Each invocation reduces the problem size by a factor of 2 \(\Rightarrow \) there are \(\log n \) levels in the recursion tree.

At level \(i \) of the tree, the problem size is \(n/2^i \) and the work done is \(cn/2^i \).

Therefore, the total work done is

\[
\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = \text{Poll}.
\]
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

Each invocation reduces the problem size by a factor of 2 ⇒ there are \(\log n \) levels in the recursion tree.

At level \(i \) of the tree, the problem size is \(n/2^i \) and the work done is \(cn/2^i \).

Therefore, the total work done is

\[
\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = O(n).
\]

Figure 5.3 Unrolling the recurrence \(T(n) \leq T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

There are \(\log_2 n \) levels in the recursion tree. At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \). The total work done at level \(i \) is \(q^i cn/2^i \). Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{\log_2 n} q^i cn \frac{1}{2^i} \leq cn \sum_{i=0}^{\log_2 n} (q/2)^i \leq O\left(cn \left(\frac{q}{2}\right)^{\log_2 n} \log_2 \frac{q}{2}\right) \leq O\left(cn n \log_2 \frac{q}{2}\right) = O\left(n \log_2 \frac{q}{2}\right).
\]

Figure 5.2 Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

- There are \(\log n \) levels in the recursion tree.
- At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \).
- The total work done at level \(i \) is \(q^i cn/2^i \). Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq \]

\[\sum_{i=0}^{\log_2 n} \frac{cn}{2^i} \leq \]
There are $\log n$ levels in the recursion tree.

At level i of the tree, there are q^i sub-problems, each of size $n/2^i$.

The total work done at level i is $q^i cn/2^i$. Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq cn \sum_{i=0}^{i=\log_2 n} \left(\frac{q}{2}\right)^i$$

$$= O\left(cn \left(\frac{q}{2}\right)^{\log_2 n}\right) = O\left(cn \left(\frac{q}{2}\right)^{(\log q/2)n}(\log_2 q/2)\right)$$

$$= O(cn n^{\log_2 q/2}) = O(n^{\log_2 q}).$$
$T(n) = 2T(n/2) + cn^2$

- Total work done is

$$
\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i} \right)^2 \leq \Theta(n^2)
$$
\[T(n) = 2T(n/2) + cn^2 \]

- Total work done is

\[\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i} \right)^2 \leq O(n^2). \]
Motivation

Collaborative filtering: match one user’s preferences to those of other users, e.g., purchases, books, music.

Meta-search engines: merge results of multiple search engines into a better search result.
Fundamental Question

- How do we compare a pair of rankings?
 - My ranking of songs: ordered list of integers from 1 to \(n \).
 - Your ranking of songs: \(a_1, a_2, \ldots, a_n \), a permutation of the integers from 1 to \(n \).
Comparing Rankings

- Suggestion: two rankings of songs are very similar if they have few inversions.
Suggestion: two rankings of songs are very similar if they have few inversions.

- The second ranking has an inversion if there exist i, j such that $i < j$ but $a_i > a_j$.
- The number of inversions s is a measure of the difference between the rankings.

Question also arises in statistics: *Kendall's rank correlation* of two lists of numbers is $1 - 2s / (n(n - 1))$.

[Diagram showing two rankings of songs and their inversions]
Counting Inversions

Count Inversions

INSTANCE: A list $L = x_1, x_2, \ldots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \leq i < j \leq n$ such $x_i > x_j$.
Counting Inversions

Count Inversions

INSTANCE: A list $L = x_1, x_2, \ldots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \leq i < j \leq n$ such $x_i > x_j$.

\[
\begin{array}{cccccccccccc}
4 & 1 & 2 & 6 & 8 & 5 & 3 & 9 & 7 & 11 & 12 & 10 \\
\end{array}
\]
Counting Inversions

INSTANCE: A list $L = x_1, x_2, \ldots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \leq i < j \leq n$ such $x_i > x_j$.
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers?
Counting Inversions: Algorithm

• How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in \(O(n \log n) \) time. Can we modify the Mergesort algorithm to count inversions?

```
4 1 2 6 8 5 3 9 7 11 12 10
```

T. M. Murali March 10, 12, 2021 Divide and Conquer Algorithms
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

```
4 1 2 6 8 5 3 9 7 11 12 10
```

T. M. Murali March 10, 12, 2021 Divide and Conquer Algorithms
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

4 1 2 6 8 5 3 9 7 11 12 10
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in \(O(n \log n) \) time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition \(L \) into two lists \(A \) and \(B \) of size \(n/2 \) each.
 2. Recursively count the number of inversions in \(A \).
 3. Recursively count the number of inversions in \(B \).
 4. Count the number of inversions involving one element in \(A \) and one element in \(B \).
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in \(O(n \log n) \) time. Can we modify the Mergesort algorithm to count inversions?

Candidate algorithm:

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(n/2 \) each.
2. Recursively count the number of inversions in \(A \).
3. Recursively count the number of inversions in \(B \).
4. Count the number of inversions involving one element in \(A \) and one element in \(B \).
Counting Inversions: Conquer Step

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
Counting Inversions: Conquer Step

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.

2. Initialise each pointer to the front of the list.

3. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.

4. Advance *current* in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.

6. Return the merged list.
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. Do something clever in $O(1)$ time.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

T. M. Murali March 10, 12, 2021 Divide and Conquer Algorithms
Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the current pointers.
 2. Append the smaller of the two to the output list.
 3. Do something clever in \(O(1) \) time.
 4. Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. Do something clever in $O(1)$ time.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. Do something clever in $O(1)$ time.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), poll
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

```java
int[] mergeAndCount(int[] A, int[] B) {
    int count = 0;
    int i = 0, j = 0,
    while (i < A.length && j < B.length) {
        if (A[i] < B[j]) {
            i++;
        } else {
            count += A.length - i;
            j++;
        }
    }
    // Append rest of non-empty list
    if (i < A.length) {
        System.arraycopy(A, i, res, res.length - A.length + i, A.length - i);
    } else {
        System.arraycopy(B, j, res, res.length - B.length + j, B.length - j);
    }
    return count;
}
```
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots, b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a `current` pointer for each list.
2. Maintain a variable `count` initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the `current` pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), increment `count` by the number of elements remaining in \(A \).
 4. Advance `current` in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return `count` and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:
1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

$\text{count} = 5$

1 2 4 5 6 8 3 7 9 10 11 12
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

Example:

Given lists $A = 4, 12, 6, 85, 3, 9, 7, 11, 12$ and $B = 10$, compute the number of pairs a_i and b_j such $a_i > b_j$.

count = 5

1 2 4 5 6 8 3 7 9 10 11 12
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

Counting Inversions: Conquer Step

Counting Inversions: Conquer Step

```
Given lists A = a1, a2, ..., am and B = b1, b2, ..., bm, compute the number of pairs a_i and b_j such a_i > b_j.
```

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the current pointers.
 2. Append the smaller of the two to the output list.
 3. If b_j < a_i, increment count by the number of elements remaining in A.
 4. Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

Running time of this algorithm is O(m).
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Final Algorithm

Sort-and-Count(L)

If the list has one element then
 there are no inversions

Else
 Divide the list into two halves:
 A contains the first $\left\lfloor n/2 \right\rfloor$ elements
 B contains the remaining $\left\lfloor n/2 \right\rfloor$ elements
 $(r_A, A) = \text{Sort-and-Count}(A)$
 $(r_B, B) = \text{Sort-and-Count}(B)$
 $(r, L) = \text{Merge-and-Count}(A, B)$

Endif

Return $r = r_A + r_B + r$, and the sorted list L
Counting Inversions: Final Algorithm

Sort-and-Count(L)

If the list has one element then

there are no inversions

Else

Divide the list into two halves:

A contains the first $[n/2]$ elements

B contains the remaining $[n/2]$ elements

$(r_A, A) = \text{Sort-and-Count}(A)$

$(r_B, B) = \text{Sort-and-Count}(B)$

$(r, L) = \text{Merge-and-Count}(A, B)$

Endif

Return $r = r_A + r_B + r$, and the sorted list L

- Running time $T(n)$ of the algorithm is $O(n \log n)$ because $T(n) \leq 2T(n/2) + O(n)$.

Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: \(n = 1 \).
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \):
 - \(k, l \geq \lceil n/2 \rceil \):
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \):

When \(x_l \) is output, it is smaller than all remaining elements in \(A \), since \(A \) is sorted.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.

- Base case: \(n = 1 \).

- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.

- Inductive step: Consider an arbitrary inversion, i.e., any pair \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \): \(x_k, x_l \in A \), counted in \(r_A \), by the inductive hypothesis.
 - \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \), by the inductive hypothesis.
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \):

\[
\begin{array}{ccccccccccccc}
4 & 1 & 2 & 6 & 8 & 5 & 3 & 9 & 7 & 11 & 12 & 10
\end{array}
\]
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- **Base case:** \(n = 1 \).
- **Inductive hypothesis:** Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- **Inductive step:** Consider an arbitrary inversion, i.e., any pair \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \): \(x_k, x_l \in A \), counted in \(r_A \), by the inductive hypothesis.
 - \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \), by the inductive hypothesis.
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \): \(x_k \in A, x_l \in B \). Is this inversion counted by **Merge-and-Count**?

\[\text{count} = 5 \]

```
1 2 4 5 6 8 3 7 9 10 11 12
```
Counting Inversions: Correctness of Sort-and-Count

Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.

Base case: \(n = 1 \).

Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.

Inductive step: Consider an arbitrary inversion, i.e., any pair \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?

- \(k, l \leq \lfloor n/2 \rfloor \): \(x_k, x_l \in A \), counted in \(r_A \), by the inductive hypothesis.
- \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \), by the inductive hypothesis.
- \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \): \(x_k \in A, x_l \in B \). Is this inversion counted by \texttt{MERGE-AND-COUNT}? Yes, when \(x_l \) is output.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: \(n = 1 \).
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \): \(x_k, x_l \in A \), counted in \(r_A \), by the inductive hypothesis.
 - \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \), by the inductive hypothesis.
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \): \(x_k \in A, x_l \in B \). Is this inversion counted by \textsc{Merge-and-Count}? Yes, when \(x_l \) is output.

\[
\text{count} = 4
\]

\[
\begin{array}{cccccccccc}
1 & 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 10 & 11 & 12 \\
\end{array}
\]
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- **Base case:** $n = 1$.
- **Inductive hypothesis:** Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- **Inductive step:** Consider an arbitrary inversion, i.e., any pair k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A, by the inductive hypothesis.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B, by the inductive hypothesis.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by **Merge-and-Count**? Yes, when x_l is output.
 - Why is no non-inversion counted, i.e., **Why does every pair counted correspond to an inversion?** When x_l is output, it is smaller than all remaining elements in A, since A is sorted.

```
count = 4
```

```
1 2 4 5 6 8 3 7 9 10 11 12
```
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra,
 Idots.

- Started in 1975 by Shamos and Hoey.

- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .
Closest Pair of Points on the Plane

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.
Closest Pair of Points on the Plane

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.
Closest Pair of Points on the Plane

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.

- At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.

How do we solve the problem in 1D?

- Sort: closest pair must be adjacent in the sorted order.
- Divide and conquer after sorting:
 - closest pair in left half: distance δ_Q.
 - closest pair in right half: distance δ_R.
 - closest among pairs that span the left and right halves and are at most $\min(\delta_Q, \delta_R)$ apart. How many such pairs do we need to consider?
 - Just one!

Generalize the second idea to 2D.
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance \(\delta_Q \).
 2. closest pair in right half: distance \(\delta_R \).
 3. closest among pairs that span the left and right halves and are at most \(\min(\delta_Q, \delta_R) \) apart. How many such pairs do we need to consider?

![Diagram of closest pair set-up](image-url)
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance δ_Q.
 2. closest pair in right half: distance δ_R.
 3. closest among pairs that span the left and right halves and are at most $\min(\delta_Q, \delta_R)$ apart. How many such pairs do we need to consider? Just one!
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance \(\delta_Q \).
 2. closest pair in right half: distance \(\delta_R \).
 3. closest among pairs that span the left and right halves and are at most \(\min(\delta_Q, \delta_R) \) apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.

2. Recursively compute closest pair in Q and in R, respectively.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.

2. Recursively compute closest pair in Q and in R, respectively.

3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.
4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and $d(q, r)$ is the smallest possible.
Closest Pair: Proof Sketch

- Prove by induction: Let \((s, t)\) be the closest pair.
 - (i) both are in \(Q\): computed correctly by recursive call.
 - (ii) both are in \(R\): computed correctly by recursive call.
 - (iii) one is in \(Q\) and the other is in \(R\): computed correctly in \(O(n)\) time by the procedure we will discuss.

- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.

- Overall running time is \(O(n \log n)\).
Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)

$$\delta = \min(\delta_Q, \delta_R)$$
Closest Pair: Conquer Step

- Line \(L \) passes through right-most point in \(Q \).
- Let \(S \) be the set of points within distance \(\delta \) of \(L \). (In image, \(\delta = \delta_R \).)
- Claim: There exist \(q \in Q, r \in R \) such that \(d(q, r) < \delta \) if and only if \(q, r \in S \).

\[
\delta = \min(\delta_Q, \delta_R)
\]
Closest Pair: Conquer Step

- Line \(L \) passes through right-most point in \(Q \).
- Let \(S \) be the set of points within distance \(\delta \) of \(L \). (In image, \(\delta = \delta_R \).)
- Claim: There exist \(q \in Q, r \in R \) such that \(d(q, r) < \delta \) if and only if \(q, r \in S \).
- Corollary: If \(t \in Q - S \) or \(u \in R - S \), then \((t, u)\) cannot be the closest pair.
Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

![Diagram showing points and line segments](image-url)
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

![Diagram of points and line segment](image)
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.

![Diagram of points and distance δ]
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.

- Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y.

- Other pairs of points cannot be candidates for the closest pair.
Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
Closest Pair: Proof of Packing Argument

- **Claim:** If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- **Pack the plane with squares of side \(\delta/2 \).**
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).

- Pack the plane with squares of side \(\delta/2 \).

- Each square contains at most one point.
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta/2 \).
- Each square contains at most one point.
- Let \(s \) lie in one of the squares.

\[\delta/2 \]
Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_y.

\[\text{Poll} \]
Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_y.
- We get a count of 12 or more indices (textbook says 16).
Closest Pair: Final Algorithm

Closest-Pair(P)
Construct P_x and P_y (O(n log n) time)
$(q_0^*, r_0^*) = \text{Closest-Pair-Rec}(P_x, P_y)$

Closest-Pair-Rec(P_x, P_y)
If $|P| \leq 3$ then
 find closest pair by measuring all pairwise distances
Endif

Construct Q_x, Q_y, R_x, R_y (O(n) time)
$(q_0^*, q_0^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)$
$(r_0^*, r_0^*) = \text{Closest-Pair-Rec}(R_x, R_y)$

$x^* = \text{maximum x-coordinate of a point in set Q}$
$L = \{(x, y) : x = x^*\}$
$S = \text{points in P within distance} \delta \text{ of L.}$

Construct S_y (O(n) time)
For each point $s \in S_y$, compute distance from s
 to each of next 15 points in S_y
 Let s, s' be pair achieving minimum of these distances
 (O(n) time)

If $d(s, s') < \delta$ then
 Return (s, s')
Else if $d(q_0^*, q_0^*) < d(r_0^*, r_0^*)$ then
 Return (q_0^*, q_0^*)
Else
 Return (r_0^*, r_0^*)
Endif
Closest Pair: Final Algorithm

Closest-Pair(P)

Construct P_x and P_y ($O(n \log n)$ time)

$(p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)$

Closest-Pair-Rec(P_x, P_y)

If $|P| \leq 3$ then

find closest pair by measuring all pairwise distances

Endif

Construct Q_x, Q_y, R_x, R_y ($O(n)$ time)

$(q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)$

$(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)$

$\delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))$

$x^* = \text{maximum } x\text{-coordinate of a point in set } Q$

$r^* = x^*$
Closest Pair: Final Algorithm

\[x^* = \text{maximum } x\text{-coordinate of a point in set } Q \]

\[L = \{(x,y) : x = x^*\} \]

\[S = \text{points in } P \text{ within distance } \delta \text{ of } L. \]

Construct \(S_y \) (\(O(n) \) time)

For each point \(s \in S_y \), compute distance from \(s \) to each of next 15 points in \(S_y \)

Let \(s, s' \) be pair achieving minimum of these distances (\(O(n) \) time)

If \(d(s, s') < \delta \) then

Return \((s, s')\)

Else if \(d(q_0^*, q_1^*) < d(r_0^*, r_1^*) \) then

Return \((q_0^*, q_1^*)\)

Else

Return \((r_0^*, r_1^*)\)

End if