Applications of Network Flow

T. M. Murali

April 12, 14, 2021
Maximum Flow and Minimum Cut

- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Network connectivity.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination.
 - Image segmentation.
 - Open-pit mining.
 - Network reliability.
 - Distributed computing.
 - Egalitarian stable matching.
 - Security of statistical data.
 - Network intrusion detection.
 - Multi-camera scene reconstruction.
 - Gene function prediction.

We will only sketch proofs. Read details from the textbook.

T. M. Murali
April 12, 14, 2021
Applications of Network Flow
Maximum Flow and Minimum Cut

- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Network connectivity.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination.
 - Image segmentation.
 - Open-pit mining.
 - Network reliability.
 - Distributed computing.
 - Egalitarian stable matching.
 - Security of statistical data.
 - Network intrusion detection.
 - Multi-camera scene reconstruction.
 - Gene function prediction.
Maximum Flow and Minimum Cut

- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Network connectivity.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination.
 - Image segmentation.
 - Open-pit mining.
 - Network reliability.
 - Distributed computing.
 - Egalitarian stable matching.
 - Security of statistical data.
 - Network intrusion detection.
 - Multi-camera scene reconstruction.
 - Gene function prediction.

We will only sketch proofs. Read details from the textbook.
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph \(G(V, E) \) where
 1. \(V = X \cup Y \), \(X \) and \(Y \) are disjoint and
 2. \(E \subseteq X \times Y \).

- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph \(G(V, E) \) where
 1. \(V = X \cup Y \), \(X \) and \(Y \) are disjoint and
 2. \(E \subseteq X \times Y \).

- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

- A **matching** in a bipartite graph \(G \) is a set \(M \subseteq E \) of edges such that each node of \(V \) is incident on at most edge of \(M \).

- A set of edges \(M \) is a **perfect matching** if every node in \(V \) is incident on exactly one edge in \(M \).

![Graph with matching edges](image.png)

- The graph in the figure does not have a perfect matching because both \(y_4 \) and \(y_5 \) are adjacent only to \(x_5 \).
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph $G(V, E)$ where
 1. $V = X \cup Y$, X and Y are disjoint and
 2. $E \subseteq X \times Y$.

- Bipartite graphs model situations in which objects are matched with or
 assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

- A **matching** in a bipartite graph G is a set $M \subseteq E$ of edges such that each
 node of V is incident on at most one edge of M.

- A set of edges M is a **perfect matching** if every node in V is incident on
 exactly one edge in M.
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph $G(V, E)$ where
 1. $V = X \cup Y$, X and Y are disjoint and
 2. $E \subseteq X \times Y$.

- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

- A **matching** in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most one edge of M.

- A set of edges M is a **perfect matching** if every node in V is incident on exactly one edge in M.

![Diagram of Bipartite Graph](image)
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph $G(V, E)$ where
 1. $V = X \cup Y$, X and Y are disjoint and
 2. $E \subseteq X \times Y$.

- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

- A *matching* in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.

- A set of edges M is a *perfect matching* if every node in V is incident on exactly one edge in M.
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph $G(V, E)$ where
 1. $V = X \cup Y$, X and Y are disjoint and
 2. $E \subseteq X \times Y$.

 Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

- A **matching** in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most one edge of M.

- A set of edges M is a **perfect matching** if every node in V is incident on exactly one edge in M.

 - The graph in the figure does not have a perfect matching because

\[\begin{array}{c}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
\end{array} \quad \begin{array}{c}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
\end{array} \]
Matching in Bipartite Graphs

- **Bipartite Graph**: a graph $G(V, E)$ where
 1. $V = X \cup Y$, X and Y are disjoint and
 2. $E \subseteq X \times Y$.

 Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

- A **matching** in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most one edge of M.

- A set of edges M is a **perfect matching** if every node in V is incident on exactly one edge in M.
 - The graph in the figure does not have a perfect matching because both y_4 and y_5 are adjacent only to x_5.

Bipartite Graph Matching Problem

Bipartite Matching

INSTANCE: A Bipartite graph G.

SOLUTION: The matching of largest size in G.
Normal Approach for Solving a Problem

- Develop algorithm for computing maximum matchings in bipartite graphs.
- Prove that the algorithm is correct, i.e., for every possible inputs, it compute the size of the largest matching in the bipartite graph accurately.
- Analyze running time of the algorithm.
Alternative Approach for Solving a Problem
Alternative Approach for Solving a Problem

Input to maximum matching problem

Input to network flow problem
Alternative Approach for Solving a Problem

Algorithm for maximizing network flow
Algorithm for Bipartite Graph Matching

1. Convert G to a flow network G': direct edges from X to Y, add nodes s and t, connect s to each node in X, connect each node in Y to t, set all edge capacities to 1.

2. Compute the maximum flow in G'.

3. Convert the maximum flow in G' into a matching in G.

- Claim: the value of the maximum flow in G' equals the size of the maximum matching in G.
- In general, there is matching with size k in G if and only if there is a (integer-valued) flow of value k in G'.
Matching \Rightarrow flow:
If G has a matching with k edges, then G' must have a flow with value $\geq k$.

Preclude the possibility that G has a matching with k edges but G' has a flow of small value.
Strategy for Proving Correctness

Flow \Rightarrow matching: If G' has a flow of size k, then we can construct a matching in G with k edges.

Preclude the possibility that G' has a flow of value k but we cannot construct a matching in G with k edges.
Correctness of Bipartite Graph Matching Algorithm

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
Matching ⇒ flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.

How do we construct this flow? Thought experiment.
Correctness of Bipartite Graph Matching Algorithm

- **Matching ⇒ flow**: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- **How do we construct this flow?** Thought experiment.
 - Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.
Correctness of Bipartite Graph Matching Algorithm

Matching ⇒ flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.

How do we construct this flow? Thought experiment.
- Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
- Send one unit of flow along the path $s \to u \to v \to t$.

Why have we constructed a flow?
Matching \Rightarrow flow: \text{ if there is a matching with } k \text{ edges in } G, \text{ there is an } s-t \text{ flow of value } k \text{ in } G'.

How do we construct this flow? \textbf{Thought experiment.}
- Consider every edge \((u, v)\) in the matching: \(u \in X \) and \(v \in Y\).
- Send one unit of flow along the path \(s \rightarrow u \rightarrow v \rightarrow t\).

Why have we constructed a flow?
- Capacity constraint:
- Conservation constraint:
Correctness of Bipartite Graph Matching Algorithm

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.

- How do we construct this flow? Thought experiment.
 - Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.

- Why have we constructed a flow?
 - Capacity constraint: No edge receives a flow > 1 because we started with a matching.
 - Conservation constraint:
Correctness of Bipartite Graph Matching Algorithm

Matching ⇒ flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.

How do we construct this flow? Thought experiment.

- Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
- Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.

Why have we constructed a flow?

- Capacity constraint: No edge receives a flow > 1 because we started with a matching.
- Conservation constraint: Every node other than s and t has one incoming unit and one outgoing unit of flow because we started with a matching.
Correctness of Bipartite Graph Matching Algorithm

Matching ⇒ flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.

How do we construct this flow? Thought experiment.

- Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
- Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.

Why have we constructed a flow?

- Capacity constraint: No edge receives a flow > 1 because we started with a matching.
- Conservation constraint: Every node other than s and t has one incoming unit and one outgoing unit of flow because we started with a matching.

What is the value of the flow? k, since exactly that many nodes out of s carry flow.
Flow ⇒ matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.
Correctness of Bipartite Graph Matching Algorithm

Flow \implies matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.
Correctness of Bipartite Graph Matching Algorithm

- Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.
 - There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
Flow ⇒ matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.

- There is an integer-valued flow f' of value k ⇒ flow along any edge is 0 or 1.
- Let M be the set of edges not incident on s or t with flow equal to 1.
Correctness of Bipartite Graph Matching Algorithm

- Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.
 - There is an integer-valued flow f' of value k \Rightarrow flow along any edge is 0 or 1.
 - Let M be the set of edges not incident on s or t with flow equal to 1.
 - Claim: M contains k edges.
Correctness of Bipartite Graph Matching Algorithm

- **Flow ⇒ matching**: if there is a flow f' in G' with value k, there is a matching M in G with k edges.
 - There is an integer-valued flow f' of value k ⇒ flow along any edge is 0 or 1.
 - Let M be the set of edges not incident on s or t with flow equal to 1.
 - Claim: M contains k edges.
 - Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.
Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.

- There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
- Let M be the set of edges not incident on s or t with flow equal to 1.
- Claim: M contains k edges.
- Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.

Conclusion: size of the maximum matching in G is equal to the value of the maximum flow in G'; the edges in this matching are those that carry flow from X to Y in G'.
Correctness of Bipartite Graph Matching Algorithm

- Flow ⇒ matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.
 - There is an integer-valued flow f' of value k ⇒ flow along any edge is 0 or 1.
 - Let M be the set of edges not incident on s or t with flow equal to 1.
 - Claim: M contains k edges.
 - Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.

- Conclusion: size of the maximum matching in G is equal to the value of the maximum flow in G'; the edges in this matching are those that carry flow from X to Y in G'.

- Read the book on what augmenting paths mean in this context.
Running time of Bipartite Graph Matching Algorithm

Suppose G has m edges and n nodes in X and in Y.
Running time of Bipartite Graph Matching Algorithm

- Suppose G has m edges and n nodes in X and in Y.
- $C \leq n$.
- Ford-Fulkerson algorithm runs in $O(mn)$ time.
How do we determine if a bipartite graph G has a perfect matching?
Bipartite Graphs without Perfect Matchings

How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.

Suppose G has no perfect matching. Can we exhibit a short “certificate” of that fact? What can such certificates look like?
Bipartite Graphs without Perfect Matchings

- How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- Suppose G has no perfect matching. Can we exhibit a short “certificate” of that fact? What can such certificates look like?
- G has no perfect matching iff
How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.

Suppose G has no perfect matching. Can we exhibit a short “certificate” of that fact? What can such certificates look like?

G has no perfect matching iff there is a cut in G' with capacity less than n. Therefore, the cut is a certificate.
Bipartite Graphs without Perfect Matchings

- We would like the certificate in terms of G.

Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that $|X| = |Y|$. Then G either has a perfect matching or there is a subset $A \subseteq Y$ such that $|A| > |\Gamma(A)|$. We can compute a perfect matching or such a subset in $O(mn)$ time.

Read proof in the textbook.
We would like the certificate in terms of G.

- For example, two nodes in Y with one incident edge each with the same neighbour in X.
Bipartite Graphs without Perfect Matchings

- We would like the certificate in terms of G.
 - For example, two nodes in Y with one incident edge each with the same neighbour in X.
 - Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.

- Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that $|X| = |Y|$. Then G either has a perfect matching or there is a subset $A \subseteq Y$ such that $|A| > |\Gamma(A)|$. We can compute a perfect matching or such a subset in $O(mn)$ time.
Bipartite Graphs without Perfect Matchings

We would like the certificate in terms of G.

- For example, two nodes in Y with one incident edge each with the same neighbour in X.
- Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.

Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that $|X| = |Y|$. Then G either has a perfect matching or there is a subset $A \subseteq Y$ such that $|A| > |\Gamma(A)|$. We can compute a perfect matching or such a subset in $O(mn)$ time. Read proof in the textbook.
A set of paths in a graph G is **edge disjoint** if each edge in G appears in at most one path.
A set of paths in a graph G is \textit{edge disjoint} if each edge in G appears in at most one path.

Directed Edge-Disjoint Paths

INSTANCE: Directed graph $G(V, E)$ with two distinguished nodes s and t.

SOLUTION: The maximum number of edge-disjoint paths between s and t.
Convert G into a flow network:
Mapping to the Max-Flow Problem

- Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if there is a s-t flow in G with value $\geq k$.

\[
\text{Paths } \Rightarrow \text{flow: if there are } k \text{ edge-disjoint paths from } s \text{ to } t, \text{ send one unit of flow along each to yield a flow with value } k.
\]

\[
\text{Flow } \Rightarrow \text{paths: Suppose there is an integer-valued flow of value at least } k. \text{ Are there } k \text{ edge-disjoint paths? If so, what are they?}
\]

- Construct k edge-disjoint paths from a flow of value $\geq k$ as follows:
 - There is an integral flow. Therefore, flow on each edge is 0 or 1.
 - Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow $f(e) = 1$ contains a set of k edge-disjoint paths.
Mapping to the Max-Flow Problem

- Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if there is a s-t flow in G with value ≥ k.
- Paths ⇒ flow: if there are k edge-disjoint paths from s to t,
Mapping to the Max-Flow Problem

- Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if there is a s-t flow in G with value $\geq k$.
- Paths \Rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.

\[s \rightarrow x_1, y_1, t \]
\[s \rightarrow x_2, y_2 \]
\[s \rightarrow x_3, y_3 \]
\[s \rightarrow x_4, y_4 \]
\[s \rightarrow x_5, y_5 \]
Mapping to the Max-Flow Problem

- Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if there is an s-t flow in G with value $\geq k$.
- Paths \Rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.
- Flow \Rightarrow paths: Suppose there is an integer-valued flow of value at least k. Are there k edge-disjoint paths? If so, what are they?
Mapping to the Max-Flow Problem

- Convert \(G \) into a flow network: \(s \) is the source, \(t \) is the sink, each edge has capacity 1.
- Claim: There are \(k \) edge-disjoint paths from \(s \) to \(t \) in a directed graph \(G \) if and only if there is a \(s-t \) flow in \(G \) with value \(\geq k \).
- Paths \(\Rightarrow \) flow: if there are \(k \) edge-disjoint paths from \(s \) to \(t \), send one unit of flow along each to yield a flow with value \(k \).
- Flow \(\Rightarrow \) paths: Suppose there is an integer-valued flow of value at least \(k \). Are there \(k \) edge-disjoint paths? If so, what are they?
- Construct \(k \) edge-disjoint paths from a flow of value \(\geq k \) as follows:
 - There is an integral flow. Therefore, flow on each edge is 0 or 1.

T. M. Murali
April 12, 14, 2021
Mapping to the Max-Flow Problem

- Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if there is a s-t flow in G with value $\geq k$.
- Paths ⇒ flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.
- Flow ⇒ paths: Suppose there is an integer-valued flow of value at least k. Are there k edge-disjoint paths? If so, what are they?
- Construct k edge-disjoint paths from a flow of value $\geq k$ as follows:
 - There is an integral flow. Therefore, flow on each edge is 0 or 1.
 - Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow $f(e) = 1$ contains a set of k edge-disjoint paths.
Completing the Proof

- Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow $f(e) = 1$ contains a set of k edge-disjoint paths.

- Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

 Base case: $\nu = 0$. Nothing to prove.
Completing the Proof

Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow $f(e) = 1$ contains a set of k edge-disjoint paths.

Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

Base case: $\nu = 0$. Nothing to prove.

Inductive hypothesis: For every flow f' in G with

(a) value $\nu(f') < k$ carrying flow on $\kappa(f') < \kappa(f)$ edges or
(b) value $\nu(f') = k$ carrying flow on $\kappa(f') < \kappa(f)$ edges,

the set of edges with $f'(e) = 1$ contains a set of $\nu(f')$ edge-disjoint s-t paths.
Completing the Proof

Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow $f(e) = 1$ contains a set of k edge-disjoint paths.

Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

Base case: $\nu = 0$. Nothing to prove.

Inductive hypothesis: For every flow f' in G with

(a) value $\nu(f') < k$ carrying flow on $\kappa(f') < \kappa(f)$ edges or
(b) value $\nu(f') = k$ carrying flow on $\kappa(f') < \kappa(f)$ edges,

the set of edges with $f'(e) = 1$ contains a set of $\nu(f')$ edge-disjoint s-t paths.

Inductive step: Construct a set of k s-t paths from f. Work out by hand.
Completing the Proof

- Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow $f(e) = 1$ contains a set of k edge-disjoint paths.
- Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

 Base case: $\nu = 0$. Nothing to prove.

 Inductive hypothesis: For every flow f' in G with

 (a) value $\nu(f') < k$ carrying flow on $\kappa(f') < \kappa(f)$ edges or

 (b) value $\nu(f') = k$ carrying flow on $\kappa(f') < \kappa(f)$ edges,

 the set of edges with $f'(e) = 1$ contains a set of $\nu(f')$ edge-disjoint s-t paths.

 Inductive step: Construct a set of k s-t paths from f. Work out by hand.

- Note: Formulating the inductive hypothesis precisely can be tricky.
- Strategy is to try to prove the inductive step first.
- During this proof, you will observe two types of “smaller” flows:

 (i) When you succeed in finding an s-t path, you get a new flow f' that is smaller, i.e., $\nu(f') < k$ carrying flow on fewer edges, i.e., $\kappa(f') < \kappa(f)$.

 (ii) When you run into a cycle, you get a new flow f' with $\nu(f') = k$ but carrying flow on fewer edges, i.e., $\kappa(f') < \kappa(f)$ edges.

- You can combine both situations in the inductive hypothesis.
Running Time of the Edge-Disjoint Paths Algorithm

- Given a flow of value k, how quickly can we determine the k edge-disjoint paths?
Running Time of the Edge-Disjoint Paths Algorithm

- Given a flow of value k, how quickly can we determine the k edge-disjoint paths? $O(mn)$ time.

- Corollary: The Ford-Fulkerson algorithm can be used to find a maximum set of edge-disjoint s-t paths in a directed graph G in $O(mn)$ time.
Certificate for Edge-Disjoint Paths Algorithm

- A set $F \subseteq E$ of edge separates s and t if the graph $(V, E - F)$ contains no s-t paths.
A set $F \subseteq E$ of edge separates s and t if the graph $(V, E - F)$ contains no s-t paths.

Menger’s Theorem: In every directed graph with nodes s and t, the maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal disconnects s from t.
Can extend the theorem to *undirected* graphs.
Edge-Disjoint Paths in Undirected Graphs

- Can extend the theorem to *undirected* graphs.
- Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
Can extend the theorem to *undirected* graphs.

Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.

Problem: Both counterparts of an undirected edge \((u, v)\) may be used by different edge-disjoint paths in the directed graph.
Can extend the theorem to *undirected* graphs.

Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.

Problem: Both counterparts of an undirected edge \((u, v)\) may be used by different edge-disjoint paths in the directed graph.

Can obtain an integral flow where only one of the directed counterparts of \((u, v)\) has non-zero flow.
Can extend the theorem to *undirected* graphs.

Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.

Problem: Both counterparts of an undirected edge \((u, v)\) may be used by different edge-disjoint paths in the directed graph.

Can obtain an integral flow where only one of the directed counterparts of \((u, v)\) has non-zero flow.

We can find the maximum number of edge-disjoint paths in \(O(mn)\) time.

We can prove a version of Menger’s theorem for undirected graphs: in every undirected graph with nodes \(s\) and \(t\), the maximum number of edge-disjoint \(s–t\) paths is equal to the minimum number of edges whose removal separates \(s\) from \(t\).
A fundamental problem in computer vision is that of segmenting an image into coherent regions.

A basic segmentation problem is that of partitioning an image into a foreground and a background: label each pixel in the image as belonging to the foreground or the background.

- Note that the image on the right shows segmentation into multiple regions but we are interested in the segmentation into two regions.
Let V be the set of pixels in an image.
- Let E be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph $G(V, E)$.
Let V be the set of pixels in an image. Let E be the set of pairs of neighbouring pixels. V and E yield an undirected graph $G(V, E)$. Each pixel i has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background. These likelihoods are specified in the input to the problem.
Introduction Bipartite Matching Edge-Disjoint Paths Image Segmentation

Formulating the Image Segmentation Problem

- Let V be the set of pixels in an image.
- Let E be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph $G(V, E)$.
- Each pixel i has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- These likelihoods are specified in the input to the problem.
- We want the foreground/background boundary to be smooth:
Let V be the set of pixels in an image.
Let E be the set of pairs of neighbouring pixels.
V and E yield an undirected graph $G(V, E)$.
Each pixel i has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
These likelihoods are specified in the input to the problem.
We want the foreground/background boundary to be smooth: For each pair (i, j) of pixels, there is a separation penalty $p_{ij} \geq 0$ for placing one of them in the foreground and the other in the background.
The Image Segmentation Problem

Image Segmentation

INSTANCE: Pixel graphs $G(V, E)$, likelihood functions $a, b : V \rightarrow \mathbb{R}^+$, penalty function $p : E \rightarrow \mathbb{R}^+$

SOLUTION: *Optimum labelling:* partition of the pixels into two sets A and B that maximises

$$q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i, j) \in E} p_{ij}$$

where $|A \cap \{i, j\}| = 1$.
Developing an Algorithm for Image Segmentation

There is a similarity between cuts and labellings.

But there are differences:

- We are maximising an objective function rather than minimising it.
- There is no source or sink in the segmentation problem.
- We have values on the nodes.
- The graph is undirected.

\[
q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i, j) \in E} p_{ij}
\]

\(q(A, B)\) for pixel \(i: a_i, b_i\) and pixel \(j: a_j, b_j\).

Edge \((i, j)\): penalty \(p_{i,j}\)
Maximization to Minimization

- Let $Q = \sum_i (a_i + b_i)$.
Maximization to Minimization

- Let $Q = \sum_i (a_i + b_i)$.
- Notice that $\sum_{i \in A} a_i + \sum_{j \in B} b_j = Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j$.
- Therefore, maximising
 $$q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, |A \cup \{i,j\}|=1} p_{ij}$$

 $$= Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j - \sum_{(i,j) \in E, |A \cap \{i,j\}|=1} p_{ij}$$

is identical to minimising
 $$q'(A, B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E, |A \cap \{i,j\}|=1} p_{ij}$$
Solving the Other Issues

- Solve the other issues like we did earlier.

Add a new “super-source” \(s \) to represent the foreground. Add a new “super-sink” \(t \) to represent the background. Connect \(s \) and \(t \) to every pixel and assign capacity \(a_i \) to edge \((s, i)\) and capacity \(b_i \) to edge \((i, t)\). Direct edges away from \(s \) and into \(t \).

Replace each edge \((i, j)\) in \(E \) with two directed edges of capacity \(p_{ij} \).
Solving the Other Issues

- Solve the other issues like we did earlier.
- Add a new “super-source” s to represent the foreground.
- Add a new “super-sink” t to represent the background.
Solving the Other Issues

- Solve the other issues like we did earlier.
- Add a new “super-source” \(s \) to represent the foreground.
- Add a new “super-sink” \(t \) to represent the background.
- Connect \(s \) and \(t \) to every pixel and assign capacity \(a_i \) to edge \((s, i)\) and capacity \(b_i \) to edge \((i, t)\).
- Direct edges away from \(s \) and into \(t \).
- Replace each edge \((i, j)\) in \(E \) with two directed edges of capacity \(p_{ij} \).
Cuts in the Flow Network

- Let G' be this flow network and (A, B) an s-t cut.
- What does the capacity of the cut represent?
Let G' be this flow network and (A, B) an s-t cut.

What does the capacity of the cut represent?

Edges crossing the cut are of three types:

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for $q'(A, B)$ are captured by the cut.
Cuts in the Flow Network

- Let G' be this flow network and (A, B) an s-t cut.
- What does the capacity of the cut represent?
- Edges crossing the cut are of three types:
 - (s, w), $w \in B$ contributes a_w.
 - (u, t), $u \in A$ contributes b_u.
 - (u, w), $u \in A$, $w \in B$ contributes p_{uw}.

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for $q(A, B)$ are captured by the cut.
Let G' be this flow network and (A, B) an s-t cut.

What does the capacity of the cut represent?

Edges crossing the cut are of three types:

- $(s, w), w \in B$ contributes a_w.
- $(u, t), u \in A$ contributes b_u.
- $(u, w), u \in A, w \in B$ contributes p_{uw}.

$$c(A, B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i, j) \in E \mid |A \cap \{i, j\}| = 1} p_{ij} = q'(A, B).$$
Solving the Image Segmentation Problem

- The capacity of a s-t cut $c(A, B)$ exactly measures the quantity $q'(A, B)$.
- To maximise $q(A, B)$, we simply compute the s-t cut (A, B) of minimum capacity.
- Deleting s and t from the cut yields the desired segmentation of the image.