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Graphs

Graph ≡ Network

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: gene and protein networks,
our bodies (nervous and circulatory systems, brains).

Other examples: computer networks, the World Wide Web, ecology
(food webs), social networks, software systems, job scheduling, VLSI
circuits, cellular networks, transportation networks, . . .

Problems involving graphs have a rich history dating back to Euler.
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Euler and Graphs

Devise a walk through the city that
crosses each of the seven bridges exactly once.
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Definition of an Undirected Graph
Undirected graph G = (V ,E ): set V of nodes and set E of edges.

▶ Each element of E is an unordered pair of nodes.
▶ Edge (u, v) is incident on u, v ; u and v are neighbours of each other.
▶ G contains no self loops.

a

b

c

d
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Paths and Cycles in Graphs

a
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d

A v1-vk path in an undirected graph G = (V ,E ) is a sequence of nodes
v1, v2, . . . , vk−1, vk ∈ V such that for every i , 1 ≤ i < k, (vi , vi+1) is an edge
in E .

A path is simple if all its nodes are distinct.
A cycle is a path where the first k − 1 nodes are distinct and v1 = vk . Poll

An undirected graph G is connected if for every pair of nodes u, v ∈ V ,
there is a u-v path in G .
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Bridges to Graphs

a

b
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d

Eulerian tour

Given an undirected graph G (V ,E ),

construct an Eulerian tour, i.e., a path in G that traverses each
edge in E exactly once,

if such a tour exists

.
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Examples of Euler Tours
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What Euler Proved (in English)
a
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Degree d(v) of a node v is the number of edges incident on it.

Euler’s conclusion:
1 If there are more than two nodes with odd degree, then the graph has

no Eulerian tour.
2 If exactly two nodes have odd degree, then there is tour that starts at

one of these nodes and ends at the other node.
3 If all nodes have even degree, then there exists a tour starting at any

node.

Is there a missing case?! Poll
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What Didn’t Euler Prove?

Implicit assumption: G is connected.

Euler’s conditions (1741) were necessary. Hierholzer proved their
sufficiency (1873).

What about constructing such a tour if it exists?

▶ We must go through the effort to write out a path that is correct.
▶ Method to accomplish this was trivial, and Euler did not want to spend

a great deal of time on it.

Hierholzer provided an algorithm.
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Hierholzer’s Algorithm
a

b
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d
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If there are two nodes in G with
odd degree, call them s and t.

Otherwise, let s be any node in
G .

u ← s #u denotes the currently-visited node.
while d(u) > 0 do

Output u.
Let v be a neighbour of u.
Delete the edge (u, v) from G .
u ← v

end while
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If there are two nodes in G with
odd degree, call them s and t.

Otherwise, let s be any node in
G .

u ← s #u denotes the currently-visited node.
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Properties of Heilholzer’s Algorithm
a
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u ← s
while d(u) > 0 do

Output u.
Let v be a neighbour of u.
Delete the edge (u, v) from G .
u ← v

end while

Will the algorithm terminate for every connected graph?

Yes, because
we traverse a new edge in each iteration.

If it terminates, what can we say about node u at termination?

▶ If G had no nodes of odd degree, then u = s.
▶ If G had two nodes of odd degree, then u = t.

Will all edges of G have been traversed upon termination?

No! Set u
to be any node in the remaining graph and repeat.
Algorithm’s running time is O(|V |+ |E |), i.e., linear in the size of G .
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▶ If G had two nodes of odd degree, then u = t.

Will all edges of G have been traversed upon termination? No! Set u
to be any node in the remaining graph and repeat.
Algorithm’s running time is O(|V |+ |E |), i.e., linear in the size of G .
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Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Representing Undirected Graphs
Graph G = (V ,E ) has two input parameters: |V | = n, |E | = m.

▶ Size of the graph is defined to be m + n.
▶ Strive for algorithms whose running time is linear in graph size, i.e.,

O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix: n × n Boolean matrix, where the entry in row i
and column j is 1 iff the graph contains the edge (i , j).
Adjacency list: array Adj, where Adj[v ] stores a linked list of all
nodes adjacent to v .

▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v ].

Poll

Operation/Space Adj. matrix Adj. list
Is (i , j) an edge?

O(1) time O(d(i)) time

Insert edge (i , j)

O(1) time O(1) time

Delete edge (i , j)

O(1) time O(d(i) + d(j)) time

Iterate over all nbours of node i

O(n) time O(d(i)) time

Space used

O(n2) O(n +
∑

v∈G d(v))
= O(n +m)
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Running Time of Hierholzer’s Algorithm
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If there are two nodes in G with
odd degree, call them s and t.

Otherwise, let s be any node in
G .

u ← s #u denotes the currently-visited node.
while d(u) > 0 do
Output u.
Let v be a neighbour of u.
Delete the edge (u, v) from G .
u ← v

end while
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Visiting Nodes Rather than Edges

a
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c

d

Eulerian tour

Given an undirected graph G (V ,E ),

construct an Eulerian tour, i.e., a path in G that traverses each
edge in E exactly once, if such a tour exists.
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Visiting Nodes Rather than Edges
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Hamiltonian cycle

Given an undirected graph G (V ,E ),

construct an Hamiltonian cycle, i.e., a cycle in G that traverses
each node in V exactly once, if such a tour exists.
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Conditions for Existence of Hamiltonian Cycle
a

b

c

d

G has a Hamiltonian cycle if G is a cycle.

An n-node graph G has a Hamiltonian cycle

▶ if each node has degree n − 1.
▶ each node has degree n − 2.
▶ each node has degree ≥ n/2 (Dirac, 1952).
▶ two disconnected nodes with sum of degrees ≥ n (Ore, 1952).
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Status of Hamiltonian Cycle Problem

Hamiltonian cycle

Given an undirected graph G (V ,E ),

construct an Hamiltonian cycle, i.e., a cycle in G that traverses
each node in V exactly once, if such a tour exists.

The Hamiltonian cycle problem is NP-complete,

it is very unlikely
that we will find a polynomial time algorithm to check if an
undirected graph contains such a cycle.

Algorithms for computing Hamiltonian cycle:

▶ Brute force: try all permutations.

Running time is O(n2n!).

▶ Dynamic programming: running time of O(n22n) (Held and Karp
1962).

▶ Fastest known algorithm runs in time O(1.657n) (Björklund 2010).
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