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Costanzo et al., Cell, 2019.
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Goals of the Course

Emphasise a data-driven approach to biology.

Take a network-level view of cellular processes.

Abstract biological questions into computer science problems.

Describe graph algorithms to solve these problems.
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Wnt Signaling in a Pathway Database
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Wnt Signaling in a Pathway Database

Destruction Complex
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www.netpath.org/netslim
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Automated Reconstruction of Signaling Pathways

OutputInput

Receptors

Transcriptional
Regulators (TRs)

Human Interactome

PathLinker

Reconstruction
of the Wnt pathway

PathLinker and other algorithms can automatically reconstruct
signaling pathways.
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“Pathways on Demand: Automatic Reconstruction of Human Signaling Pathways,” Ritz et al., Systems Biology and
Applications, a Nature partner journal, 2, 16002, 2016.
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Problem Formulation
OutputInput

Human Interactome

Module
finding

algorithm

Set of modules

Given a protein interaction network G = (V ,E ,W ), compute the modules
(clusters) in it.

Given a protein interaction network G = (V ,E ,W ), compute one module in
it.
First, define what we mean by a module. Then, develop algorithm to
compute one or more modules.
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Modules and Clustering

Finding modules or clusters formed by a set of objects is a widely
studied problem.

Long history in mathematics, statistics, and computer science.

Module ≡ Cluster ≡ Community.
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Defining Modules
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How do we define a module in an undirected graph?
In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
clique or complete subgraph if for every pair of nodes u, v ∈ C , (u, v)
is an edge in E .

▶ A clique C is maximal if no node outside C can be added to it, i.e., for
every node x ∈ V − C , x is not connected to at least one node in C .

▶ A clique C is maximum if there is no clique C ′ in G with more nodes
than C .
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Maximum Clique
Given an undirected, unweighted graph G (V ,E ),
compute the largest clique in G .

Computing a maximum clique is NP-hard.
Any algorithm that can provably compute the maximum clique is
likely to have a running time that is exponential in the size of the
graph.
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Computing a Maximal Clique
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Maximal Clique
Given an undirected, unweighted graph G (V ,E ),
compute a maximal clique in G .

1 Select an arbitrary node v and add it to S (the clique we will output).
2 If there is a node u in V − S that is connected to every node in S ,

add u to S .
3 Repeat the previous step until no such node u is found.
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Running Time to Compute a Maximal Clique
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1 Select an arbitrary node v and add it to S (the clique we will output).

2 If there is a node u in V − S that is connected to every node in S ,
add u to S .

O(n|S |) checks for edge existence.

3 Repeat the previous step until no such node u is found.

O(n|S |2)
checks for edge existence.
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k-Cores
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In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
k-core if every node u ∈ C is connected in G to at least k nodes in C .

What is largest the 1-core of G?

G itself (without any nodes of
degree zero).

Does this graph have a 4-core?
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Problems related to k-cores
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k-core Existence

Given an undirected, unweighted graph G (V ,E ) and an integer k ,

compute the k-core with the largest number of nodes in G , if it
exists.

Largest k-core

Given an undirected, unweighted graph G (V ,E ),

compute the largest value of k for which G contains a k-core.
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Algorithm for k-Core Existence
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Repeatedly delete all nodes of degree < k until

every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Correctness of k-Core Existence Algorithm

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k.

Why should the resulting graph H be a k-core?

Why should the resulting graph H be the k-core with the largest
number of nodes?

Proof by contradiction.
▶ Suppose there is a k-core H ′ with more nodes than H.
▶ Then H ∪ H ′ is also a k-core.
▶ Moreover, no node in H ′ will be deleted by the algorithm.

How do we implement k-core algorithm efficiently?
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Cores vs. Cliques
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A clique with k nodes is a (k − 1)-core.
Can we use the k-core algorithm to find maximum cliques?

Idea: Compute the largest value of k for which a k-core H exists. If H is a
clique, it must be the largest clique (of size k + 1) in the graph.
Flaw is that H may not be a clique, in general. The largest clique may be
disjoint from H or be a subgraph of H.
Moreover, the maximum clique may have l nodes while there may be a
k-core where k > l − 1, e.g., k = 3 and l = 3. Create such an example.
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Given an undirected, unweighted graph G = (V ,E ) suppose we
partition the nodes into k modules C = C1,C2, . . .Ck .

How do we measure the “quality” of C?
Intuition: many more edges within modules than among modules.
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Initial Definition of Modularity
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How do we count the number of edges within modules?

For every node u ∈ V , define c(u) as the index of u’s module.

q(C) = 1

m

∑
(u,v)∈E

δ(c(u), c(v)), where δ is the Kronecker delta function

=
1

2m

∑
u,v∈V

a(u, v)δ(c(u), c(v)), where a(u, v) = 1 iff (u, v) is an edge
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Optimising Modularity
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q(C) = 1

2m

∑
u,v∈V

a(u, v)δ(c(u), c(v))

Should we maximise or minimise q(C)? Maximise it.

What is the value of q(C) if we place all nodes in G in a single cluster? 1!
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What is the value of q(C) if we place all nodes in G in a single cluster? 1!
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Two Criteria for High Quality Partitions

1 Nodes are in highly cohesive modules, i.e., nodes within the same
module will be strongly connected with each other.

2 The amount of intramodule connectivity in a good partition will be
greater than expected by chance, as defined by a network in which
edges are placed between nodes at random.

3 Proposed by Newman and Girvan, 2004.
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Configuration Model
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Method to generate random graphs.

Ensure that the random graphs have the same degree sequence as G ,
but allow self loops and multi-edges.

q(C) = 1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Configuration Model
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Cut each edge in G in half.
Each node u has d(u) stubs; total number of stubs is 2m.
For each stub select another stub uniformly at random and connect
them by an edge.

q(C) = 1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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What is the probability of an edge between nodes u and v?

d(u)d(v)
2m .

q(C) = 1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Configuration Model
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What is the probability of an edge between nodes u and v? d(u)d(v)
2m .

Therefore modularity of the partition of a random graph in the
configuration model into the same modules C = C1,C2, . . .Ck

q(C) = 1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Final Definition of Modularity
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q(C) = 1

2m

∑
u,v∈V

(
a(u, v)− d(u)d(v))

2m

)
δ(C (u),C (v))

What is the range of q(C)?

Between -1/2 and 1.
▶ q(C) > 0: C has higher intramodule connectivity than expected by

chance from configuration model.
▶ q(C) = 0: C has same intramodule connectivity as expected in a

random graph.
▶ q(C) < 0: C has no modular structure.
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Using Modularity

Now that we have defined a nice measure for the quality of a
partition, how do we use it?

Definition of q does not specify the number of clusters.

Hierarchical clustering: Compute modularity after every merge and
output the clustering with the largest value.

Any other clustering algorithm: compute the modularity of the result.

Develop a new algorithm to maximise modularity.
▶ Maximising modularity is NP-hard.
▶ We must rely on heuristics to make the modularity as large as possible.
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Greedy Algorithm

Proposed by Newman, 2004.

1 Start with every node in its own module.
2 While there are at least two modules

1 Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.

2 Merge this pair of modules into one.

3 Return the clustering with the largest value of q.

Hierarchical clustering algorithm built directly around maximisation of
q.

Allows q to decrease to preserve the principle of hierarchical
clustering.

Why is the algorithm “greedy”? Merging of two modules cannot be
undone.
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Introduction Cliques Cores Modularity

Louvain Algorithm: Phase 1

Proposed by Blondel et al., 2008.

1 Start with every node in its own module.

2 For every node u ∈ V and every neighbour v of u, evaluate the
change in q when we remove u from its module and add it to v ’s
module.

3 Move u to that neighbour’s module for which increase in q is largest.

4 Repeat the previous two steps until q does not increase.
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Louvain Algorithm: Phase 2
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2

2 3

1 Construct a new graph where every module is a node and a weighted
edge represents (multiple) connections between two modules.

2 Repeat Phases 1 and 2 until no further gains in q are possible.
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Louvain Algorithm: Efficiency
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Efficient calculation of change in q upon swapping makes this
algorithm very fast.
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Limitations of Modularity

Modularity generally increases as number of nodes and modules in a
graph increase.

Many very similar partitions have similar values of q.

Modularity has a resolution limit: small modules may be combined
simply to increase q.

Random graph model is quite simple: assumes every node has an
equal probability of connecting to every other node.

Many alternatives proposed to address these limitations.
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