Modularity

T. M. Murali

CS 3824: The Louvain and Leiden Algorithms

T. M. Murali
September 27 and 29, 2022

September 27 and 29, 2022 Modules

Modularity

Problem Formulation
Input Output

mRNA
Cleavage/ meg,
Polyadenylation

Lsm Complex
Lme

Lam7

Module
finding
algorithm

Apes Promoting
19S Proteasome Complex

\Human Interactomy Set of modules

@ Given a protein interaction network G = (V, E, W), compute the modules
(clusters) in it.

September 27 and 29, 2022 Modules

Modularity

Problem Formulation
Input Output

mRNA
:
:>°

Module
finding 7
algorithm m ‘ N e ANaphase

Ros Ron3 Pt e e Promoting
19S Proteasome Complex

\Human Interactomy Set of modules

@ Given a protein interaction network G = (V, E, W), compute the modules
(clusters) in it.

@ First, define the quality of a set of modules. Then, develop algorithm to
optimize the quality.

T. M. Murali September 27 and 29, 2022 Modules

Modularity Louvain Algorithm Leiden Algorithm

Motivation

@ Given an undirected, unweighted graph G = (V, E) suppose we
partition the nodes into kK modules C = 3, Gy, ... Cy.

@ How do we measure the “quality” of C?

@ Intuition: many more edges within modules than among modules.

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Motivation

@ Given an undirected, unweighted graph G = (V, E) suppose we
partition the nodes into kK modules C = 3, G, ... Cy.

@ How do we measure the “quality” of C?

@ Intuition: many more edges within modules than among modules.

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Initial Definition of Modularity

@ How do we count the number of edges within modules?

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Initial Definition of Modularity

@ How do we count the number of edges within modules?
@ For every node u € V, define c(u) as the index of u's module.

q(C) = % Z 0(c(u), c(v)), where § is the Kronecker delta function
(u,v)€E

- a(u, v)d(c(u), c(v)), where a(u,v) = 1iff (u, v) is an edge

- 2m
u,veV

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Initial Definition of Modularity

@ How do we count the number of edges within modules?
@ For every node u € V, define c(u) as the index of u's module.

q(C) = & Z 5(c(u),c(v)), where § is the Kronecker delta function
™ (uv)cE
= % a(u, v)d(c(u),c(v)), where a(u,v) = 1iff (u,v) is an edge
u,veV

T. M. Murali September 27 and 29, 2022 Modules

Optimising Modularity

September 27 and 29, 2022

Optimising Modularity

aC) = 5 n 2 20), ()

@ Should we maximise or minimise g(C)?

September 27 and 29, 2022

Modularity

Optimising Modularity

aC) = 5 3 alu v)5(e(u), c(v)

@ Should we maximise or minimise g(C)? Maximise it.
@ If we place all nodes in G in a single cluster, g(C) = 1!

T. M. Murali September 27 and 29, 2022 Modules

Two Criteria for High Quality Partitions

© Nodes are in highly cohesive modules, i.e., nodes within the same
module will be strongly connected with each other.

@ The amount of intramodule connectivity in a good partition will be
greater than expected by chance, as defined by a network in which
edges are placed between nodes at random.

© Proposed by Newman and Girvan, 2004.

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Final Definition of Modularity
(N—0G)—@

1 (a(u, V) — d(u)il(v))

D) s(cta).

@ What is the range of q(C)?

September 27 and 29, 2022

Modularity

Final Definition of Modularity

11

d(u)d(v))

2m

o0) = 5 3 (alwn) -
u,veV
@ What is the range of q(C)? Between -1/2 and 1.

» g(C) > 0: C has higher intramodule connectivity than expected by
chance from configuration model.

» g(C) = 0: C has same intramodule connectivity as expected in a
random graph.

» q(C) < 0: C has no modular structure.

)6(C(u), W)

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Limitations of Modularity

@ Modularity generally increases as number of nodes and modules in a
graph increase.

@ Many very similar partitions have similar values of q.

@ Modularity has a resolution limit: small modules may be combined
simply to increase q.

@ Random graph model is quite simple: assumes every node has an
equal probability of connecting to every other node.

T. M. Murali September 27 and 29, 2022 Modules

Modularity

Limitations of Modularity

@ Modularity generally increases as number of nodes and modules in a
graph increase.

@ Many very similar partitions have similar values of q.

@ Modularity has a resolution limit: small modules may be combined
simply to increase q.

@ Random graph model is quite simple: assumes every node has an
equal probability of connecting to every other node.

@ Many alternatives proposed to address these limitations.

T. M. Murali September 27 and 29, 2022 Modules

Greedy Algorithm

@ Proposed by Newman, 2004.

@ Start with every node in its own module.
@ While there are at least two modules

® Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.
@ Merge this pair of modules into one.

© Return the clustering with the largest value of g.

T. M. Murali September 27 and 29, 2022 Modules

Greedy Algorithm

@ Proposed by Newman, 2004.

@ Start with every node in its own module.
@ While there are at least two modules

® Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.
@ Merge this pair of modules into one.

© Return the clustering with the largest value of g.

@ Hierarchical clustering algorithm built directly around maximisation of
qg.

@ Allows g to decrease to preserve the principle of hierarchical
clustering.

@ Why is the algorithm “greedy”?

T. M. Murali September 27 and 29, 2022 Modules

Modularity Louvain Algorithm Leiden Algorithm

Greedy Algorithm

@ Proposed by Newman, 2004.

@ Start with every node in its own module.
@ While there are at least two modules

® Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.
@ Merge this pair of modules into one.

© Return the clustering with the largest value of g.

@ Hierarchical clustering algorithm built directly around maximisation of
qg.

@ Allows g to decrease to preserve the principle of hierarchical
clustering.

@ Why is the algorithm “greedy”? Merging of two modules cannot be
undone.

T. M. Murali September 27 and 29, 2022 Modules

Louvain Algorithm: Phase 1

@ Proposed by Blondel et al., 2008.

@ Start with every node in its own module.

@ For every node u € V and every neighbour v of u, evaluate the
change in g when we remove u from its module and add it to v's
module.

© Move u to that neighbour's module for which increase in q is largest.

@ Repeat the previous two steps until g does not increase.

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Louvain Algorithm: Phase 1

11

Proposed by Blondel et al., 2008.

Start with every node in its own module.

For every node u € V and every neighbour v of u, evaluate the
change in g when we remove u from its module and add it to v's
module.

Move u to that neighbour's module for which increase in q is largest.
Repeat the previous two steps until g does not increase.

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Louvain Algorithm: Phase 1

11

Proposed by Blondel et al., 2008.

Start with every node in its own module.

For every node u € V and every neighbour v of u, evaluate the
change in g when we remove u from its module and add it to v's
module.

Move u to that neighbour's module for which increase in q is largest.
Repeat the previous two steps until g does not increase.

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Louvain Algorithm: Phase 1

11

Proposed by Blondel et al., 2008.

Start with every node in its own module.

For every node u € V and every neighbour v of u, evaluate the
change in g when we remove u from its module and add it to v's
module.

Move u to that neighbour's module for which increase in q is largest.
Repeat the previous two steps until g does not increase.

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Louvain Algorithm: Phase 1
@@

13

Proposed by Blondel et al., 2008.

Start with every node in its own module.

For every node u € V and every neighbour v of u, evaluate the
change in g when we remove u from its module and add it to v's
module.

Move u to that neighbour's module for which increase in q is largest.
Repeat the previous two steps until g does not increase.

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Louvain Algorithm: Phase 1

11

Proposed by Blondel et al., 2008.

Start with every node in its own module.

For every node u € V and every neighbour v of u, evaluate the
change in g when we remove u from its module and add it to v's
module.

Move u to that neighbour's module for which increase in q is largest.
Repeat the previous two steps until g does not increase.

T. M. Murali September 27 and 29, 2022 Modules

Louvain Algorithm

Louvain Algorithm: Phase 2

@ Construct a new graph where every module is a node and a weighted
edge represents (multiple) connections between two modules.

@ Repeat Phases 1 and 2 until no further gains in g are possible.

T. M. Murali September 27 and 29, 2022 Modules

vain Algorithm

Louvain Algorithm: Pseudocode

1: function LouvaIN(Graph G, Partition P)

2 do

3: P+ MoveENODES(G, P) > Move nodes between communities
4 done « |P| = |V(G)| > Terminate when each community consists of only one node
5 if not done then

6: G + AGGREGATEGRAPH(G, P) > Create aggregate graph based on partition P
T P < SINGLETONPARTITION(G) > Assign each node in aggregate graph to its own community
8 end if

9: while not done

10: return flat™(P)
11: end function

24: function AGGREGATEGRAPH(Graph G, Partition P)
25: V<P

26: E+{(C,D)|(u,v) € E(G),uecCeP,veDeP}
27: return Grapu(V, E)

28: end function

> Communities become nodes in aggregate graph
> E is a multiset

29: function SINGLETONPARTITION(Graph G)
30: return {{v} |v € V(G)}

> Assign each node to its own community
31: end function

September 27 and 29, 2022 Modules

Louvain Algorithm

Louvain Algorithm: Pseudocode

12: function MovENODES(Graph G, Partition P)

13: do

14: Hoa = H(P)

15: for v € V(G) do > Visit nodes (in random order)
16: C' + argmaxgcpug AHp(v = C) > Determine best community for node v
17 if AHp(v+~ C') >0 then > Perform only strictly positive node movements
18: v C' > Move node v to community C’
19: end if

20: end for

21: while H(P) > Hoia > Continue until no more nodes can be moved

22: return P

September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Louvain Algorithm: Efficiency

o Efficient calculation of change in g upon swapping makes this
algorithm very fast.
@ Calculate change in modularity when we move node i to neighbour j's
community in two steps:
@ Remove i from its community and move it to an isolated community.
© Merge this new community with j's community.

T. M. Murali September 27 and 29, 2022 Modules

Louvain Algorithm: Moving Node / Out

a€) = 5 3 (st~ 22X)scw). cv))

2m
u,veV

@ In the first step, for which node pairs does §(C(u), C(v)) change?

Louvain Algorithm: Moving Node | Out

a€) = 5 3 (st~ 22X)scw). cv))

u,veV

@ In the first step, for which node pairs does §(C(u), C(v)) change?
Only if u or v equals i.

AG@)=-= 3 <(- (U)d()))

2m ueC(i)

— - Lai.cin+ 29 S ()

ueC(i)

Louvain Algorithm: Moving Node / Out

a€) = 5 3 (st~ 22X)scw). cv))

2m
u,veV

@ In the first step, for which node pairs does §(C(u), C(v)) change?
Only if u or v equals i.

AN = - X (atwi) - 22

September 27 and 29, 2022

Leiden Algorithm

Louvain Algorithm

Louvain Algorithm: Moving Node / In

Modularit;

@ In the second step, for which node pairs does 6(C(u), C(v)) change?
Only if u or v equals i.

o Alternately, change in modularity is the negative of the change when
we move i out of C(j).

Aq(€) = —d(i. C(j)) — 5 3 > d(u)
@ Compare to the formula in the Louvain paper and the Wikipedia page.

T. M. Murali September 27 and 29, 2022 Modules

Comparisons to Other Algorithms

Web
WebBase
Karate Arxiv Internet ‘Web nd.edu Phone Web uk-2005 2001
Nodes/ 34/77 9k/24k T0k/351k 325k/1IM 2.04M/5.4M 39M/783M 118M/1B
links
CNM 0.38/0s 0.772/3.6 s 0.692/799 s 0.927/5034s —/— —/— —/—
PL 0.42/0s 0.757/3.3s 0.729/575 s 0.895/6666 s —/— —/— —/—
wWT 0.42/0s 0.761/0.7s 0.667/62s 0.898/248s 0.553/367s —/— —/—
QOur 0.42/0s 0.813/0s 0.781/1s 0.935/3 s 0.76/44 s 0.979/738 s 0.984/152 mn
algorithm

T. M. Murali September 27 and 29, 2022 Modules

Leiden Algorithm

Modularity Again

11

1 d(u)d(v

00) = 5 3 ()~ 2D Ys(ctu). e
u,veV

@ In the formula for H, what are the definitions of e. and K.?

@ What role does ~y play?

T. M. Murali September 27 and 29, 2022 Modules

Leiden Algorithm

Constant Potts Model

11

@ In the formula for H, what is the definition of n.?
@ What role does ~ play?

T. M. Murali September 27 and 29, 2022 Modules

Problem with the Louvain Algorithm

T. M. Murali September 27 and 29, 2022 Modules

Problem with the Louvain Algorithm

a) ® ® b) ® ®
Q- |_® @ | ®

Rest of network > Rest of network >

~

@ The Louvain algorithm may find disconnected communities.

T. M. Murali September 27 and 29, 2022 Modules

Problem with the Louvain Algorithm

a) ® ® b) ® ®
Q- |_® @ | ®

PRATANN 2 RS
7NN AR
7 N e N
// // I’ \\ \ \\ ‘// y /I \\ \\ \\
Rest of network > Rest of network)

@ The Louvain algorithm may find disconnected communities.

@ In general, it may find arbitrarily badly connected communities.

T. M. Murali September 27 and 29, 2022 Modules

Guarantees of the Louvain Algorithm

@ At the end of each phase, communities are well separated, i.e., none
can be merged to increase modularity.

@ At the end of all phases, each node is optimally assigned.

T. M. Murali September 27 and 29, 2022 Modules

Leiden Algorithm

Innovations in the Leiden Algorithm

Move nodes Refine

d) e) f)
Move nodes Refine
Level 2 —_ —_—

@ Includes a previously-introduced “smart local move”.
@ Speeds up local moving of nodes.

@ Moves nodes to “random” neighbours.

@ Includes partition refinement before aggregation.

T. M. Murali September 27 and 29, 2022 Modules

Leiden Algorithm

Leiden Algorithm: Pseudocode

1: function LEIDEN(Graph G, Partition P)
2: do
3 P + MoveENODESFAsT(G,P) > Move nodes between communities
4: done + |P| = |V(G)] & Terminate when each community consists of only one node
50 if not done then
6: Prefinea + REFINEPARTITION(G, P) > Refine partition P
T G — AGGREGATEGRAPH(G, Prefinea) > Create aggregate graph based on refined partition Prefinea
8 P {{v|vCCrveV(G)}|CeP} > But maintain partition P
9: end if

10: while not done

11: return flat*(7)
12: end function

44: function AGGREGATEGRAPH(Graph G, Partition P)

45: V<P > Communities become nodes in aggregate graph
16: E+—{(C,D)|(u,v) € E(GuecCeP,veDeP} > E is a multiset
AT return Grapu(V, E)

48: end function

19: function SINGLETONPARTITION(Graph G)
50: return {{v} |v e V(G)}

& Assign each node to its own community
51: end function

September 27 and 29, 2022 Modules

Louvain vs. Leiden: MoveNodes vs MoveNodesFast

12: function MovENODES(Graph G, Partition P)

13: do

14: Hoa = H(P)

15: for v € V(G) do > Visit nodes (in random order)
16: C' + argmaxgcp,g AHp(v = C) > Determine best community for node v
17: if AHp(v+ C') >0 then > Perform only strictly positive node movements
18: v C' > Move node v to community C’
19: end if

20: end for

21: while H(P) > Hoia > Continue until no more nodes can be moved

22: return P

13: function MOVENODESFAST(Graph (7, Partition #)

14: @ + QUEUE(V(G)) > Make sure that all nodes will be visited (in random order)
15: do

16: v < @ remove() & Determine next node to visit
17: ' argmax._p g AHp(v = C) & Determine best community for node v
18: if AHp(v— C') >0 then © Perform only strictly positive node movements
19: v & Move node v to community €’
20: N« {u] (u,v) € E(G),ug C'} & Identify neighbours of node v that are not in community C*
21: Q.add(N - Q) > Make sure that these neighbours will be visited
22: end if

23: while @ # 0 & Continue until there are no more nodes to visit

24: return P
25: end function

September 27 and 29, 2022 Modules

Leiden Algorithm

Leiden: y-Connected

September 27 and 29, 2022 Modules

Leiden Algorithm

Leiden: y-Connected

® © @

A module C is y-connected (v = 0.3)

September 27 and 29, 2022 Modules

Leiden Algorithm

Leiden: y-Connected

® © @

A module C is y-connected (v = 0.3) if it has two subsets D and E such

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Leiden: y-Connected

® 00

A module C is y-connected (v = 0.3) if it has two subsets D and E such
|E(C, D)| = ~|D||E]|

T. M. Murali September 27 and 29, 2022 Modules

Modularit Louvain Algorithm Leiden Algorithm

Leiden: y-Connected

® © @

A module C is y-connected (v = 0.3) if it has two subsets D and E such
|E(C,D)| > ~|D||E| and D and E are also 7-connected.

T. M. Murali September 27 and 29, 2022 Modules

Leiden: RefinePartition

Move nodes Refine

Level 1

26: function REFINEPARTITION(Graph G, Partition P)

27: Prefined + SINGLETONPARTITION(G) & Assign each node to its own community
28: for C' € P do > Visit communities
29: Presined + MERGENODESSUBSET (G, Prefined, C) © Refine community C'
30: end for

31 return Prefined

32: end function

33 function MERGENODESSUBSET(Graph G, Partition P, Subset 5)

34 R={v|ve S ES—uv)>7|v|-(S]-v])} © Consider only nodes that are well connected within subset S
35 for v € R do & Visit nodes (in random order)
36: if v in singleton community then & Consider only nodes that have not yet been merged
37: T« {C|CeP,CCS ECS-C)=~|C|- (S| - IC|H} > Consider only well-connected communities
1 .
38 Pr(C'=C)~ {exp (;AH?(U - C)) i AHP_(U —z0 forCeT & Choose random community C*
0 otherwise

39: v CF > Move node v to community €’
40: end if

41 end for

42: return P

43: end function

September 27 and 29, 2022 Modules

Leiden Algorithm

Datasets
Nodes Degree Max. modularity

Louvain Leiden
DBLP 317,080 6.6 0.8262 0.8387
Amazon 334,863 5.6 0.9301 0.9341
IMDB 374,51 80.2 0.7062 0.7069
Live Journal 3,997,962 17.4 0.7653 0.7739
Web of Science 9,811,130 21.2 0.7911 0.7951
Web UK 39,252,879 39.8 0.9796 0.9801

September 27 and 29, 2022 Modules

Results: Badly Connected Communities

o A community C is badly connected if the Leiden algorithm run just on
nodes in C can find smaller communities.

T. M. Murali September 27 and 29, 2022 Modules

Results: Badly Connected Communities

o A community C is badly connected if the Leiden algorithm run just on
nodes in C can find smaller communities.

[Disconnected (Louvain) I Badly connected (Louvain)
Badly connected (Leiden)

DBLP ~ Amazon

30

25 & B == = = = n [

20

15 i = - =
b i)
¢ ENNNaNE_N _EEE
=) - I l l & l I l -
c 0
5
1S IMDB Live Journal
E 5 o _i = = o - _
8 O_i_xi_—i_-. I = = .
BN » Web of Science Web UK (2005)

20 & —

15 S

10 .L =

= N |

Iterations

T. M. Murali September 27 and 29, 2022 Modules

Results: Running Time

10,000

[Louvain

[Leiden '
1,000 i I
= 100 =) N N
(0]
E
: Ii II II

10 =
. . HTHER

Q N Q > & 2
N % Q & N
QQ? @rb’\, \Q xoé (oéa\é\ QQ
v & & Q‘l‘
v G &

T. M. Murali September 27 and 29, 2022 Modules

Quality

Quality

Quality

Results: Partition Quality

—e— Louvain —=— Leiden

0.835
0.83
0.825

0.704

0.702
0.7

0.698 -

0.79
0.785
0.78
0.775

DBLP Amazon
0.934 -
0.932 -
0.93
0.928 - /
g 0.926 -
[1 L u [L 1 |
1 2 3 4 1 2 3 4
IMDB Live Journal
077 F
0.76
K 075 k&

1 1
00 200

10 20 1
Web of Science Web UK
0.98
0.9798
0.9796
0.9794 1-
1 1 L] 1 L I)
1,000 2,000 2,000 4,000
Time (s) Time (s)

September 27 and 29, 2022

Leiden Algorithm

Modules

Summary

@ The Louvain algorithm is very popular but may yield disconnected
and badly connected communities.

@ lterating the algorithm worsens the problem.
@ The Leiden algorithm guarantees «-connected communities.

o It is also faster than the Louvain algorithm while computing
communities with higher modularity.

T. M. Murali September 27 and 29, 2022 Modules

	Modularity
	Louvain Algorithm
	Leiden Algorithm

