# CS 3824: The Louvain and Leiden Algorithms

T. M. Murali

September 27 and 29, 2022

September 27 and 29, 2022

#### **Problem Formulation**







• Given a protein interaction network G = (V, E, W), compute the modules (clusters) in it.

#### **Problem Formulation**

Input





- Given a protein interaction network G = (V, E, W), compute the modules (clusters) in it.
- First, define the quality of a set of modules. Then, develop algorithm to optimize the quality.

#### **Motivation**



- Given an undirected, unweighted graph G = (V, E) suppose we partition the nodes into k modules  $C = C_1, C_2, \ldots C_k$ .
- How do we measure the "quality" of C?
- Intuition: many more edges within modules than among modules.

#### **Motivation**



- Given an undirected, unweighted graph G = (V, E) suppose we partition the nodes into k modules  $C = C_1, C_2, \ldots C_k$ .
- How do we measure the "quality" of C?
- Intuition: many more edges within modules than among modules.

### **Initial Definition of Modularity**



• How do we count the number of edges within modules?

#### **Initial Definition of Modularity**



• How do we count the number of edges within modules?

• For every node  $u \in V$ , define c(u) as the index of u's module.

$$q(\mathcal{C}) = \frac{1}{m} \sum_{(u,v)\in E} \delta(c(u), c(v)), \text{ where } \delta \text{ is the Kronecker delta function}$$
$$= \frac{1}{2m} \sum_{u,v\in V} a(u,v)\delta(c(u), c(v)), \text{ where } a(u,v) = 1 \text{ iff } (u,v) \text{ is an edge}$$

#### **Initial Definition of Modularity**



• How do we count the number of edges within modules?

• For every node  $u \in V$ , define c(u) as the index of u's module.

$$\begin{split} q(\mathcal{C}) &= \frac{1}{m} \sum_{(u,v) \in E} \delta(c(u), c(v)), \text{ where } \delta \text{ is the Kronecker delta function} \\ &= \frac{1}{2m} \sum_{u,v \in V} a(u,v) \delta(c(u), c(v)), \text{ where } a(u,v) = 1 \text{ iff } (u,v) \text{ is an edge} \end{split}$$

# Optimising Modularity



 $q(\mathcal{C}) = \frac{1}{2m} \sum_{u,v \in V} a(u,v) \delta(c(u),c(v))$ 



• Should we maximise or minimise q(C)?



- Should we maximise or minimise q(C)? Maximise it.
- If we place all nodes in G in a single cluster, q(C) = 1!

## **Two Criteria for High Quality Partitions**

- Nodes are in highly cohesive modules, i.e., nodes within the same module will be strongly connected with each other.
- The amount of intramodule connectivity in a good partition will be greater than expected by chance, as defined by a network in which edges are placed between nodes at random.
- Proposed by Newman and Girvan, 2004.

#### **Final Definition of Modularity**



• What is the range of q(C)?

#### **Final Definition of Modularity**



• What is the range of q(C)? Between -1/2 and 1.

- ► q(C) > 0: C has higher intramodule connectivity than expected by chance from configuration model.
- ► q(C) = 0: C has same intramodule connectivity as expected in a random graph.
- q(C) < 0: C has no modular structure.

# **Limitations of Modularity**

- Modularity generally increases as number of nodes and modules in a graph increase.
- Many very similar partitions have similar values of q.
- Modularity has a resolution limit: small modules may be combined simply to increase *q*.
- Random graph model is quite simple: assumes every node has an equal probability of connecting to every other node.

# **Limitations of Modularity**

- Modularity generally increases as number of nodes and modules in a graph increase.
- Many very similar partitions have similar values of q.
- Modularity has a resolution limit: small modules may be combined simply to increase *q*.
- Random graph model is quite simple: assumes every node has an equal probability of connecting to every other node.
- Many alternatives proposed to address these limitations.

# **Greedy Algorithm**

- Proposed by Newman, 2004.
- Start with every node in its own module.
- While there are at least two modules
  - Compute the pair of modules whose merger will result in the largest increase or smallest decrease in *q*.
  - Ø Merge this pair of modules into one.
- **3** Return the clustering with the largest value of q.

# **Greedy Algorithm**

- Proposed by Newman, 2004.
- Start with every node in its own module.
- While there are at least two modules
  - Compute the pair of modules whose merger will result in the largest increase or smallest decrease in *q*.
  - Ø Merge this pair of modules into one.
- **3** Return the clustering with the largest value of q.
  - Hierarchical clustering algorithm built directly around maximisation of *q*.
  - Allows *q* to decrease to preserve the principle of hierarchical clustering.
  - Why is the algorithm "greedy"?

# **Greedy Algorithm**

- Proposed by Newman, 2004.
- Start with every node in its own module.
- While there are at least two modules
  - Compute the pair of modules whose merger will result in the largest increase or smallest decrease in *q*.
  - Ø Merge this pair of modules into one.
- **3** Return the clustering with the largest value of q.
  - Hierarchical clustering algorithm built directly around maximisation of *q*.
  - Allows *q* to decrease to preserve the principle of hierarchical clustering.
  - Why is the algorithm "greedy"? Merging of two modules cannot be undone.

- Proposed by Blondel et al., 2008.
- Start with every node in its own module.
- Por every node u ∈ V and every neighbour v of u, evaluate the change in q when we remove u from its module and add it to v's module.
- **(3)** Move u to that neighbour's module for which increase in q is largest.
- Sepeat the previous two steps until q does not increase.



- Proposed by Blondel et al., 2008.
- Start with every node in its own module.
- Por every node u ∈ V and every neighbour v of u, evaluate the change in q when we remove u from its module and add it to v's module.
- Move *u* to that neighbour's module for which increase in *q* is largest.
- **(9)** Repeat the previous two steps until q does not increase.



- Proposed by Blondel et al., 2008.
- Start with every node in its own module.
- Por every node u ∈ V and every neighbour v of u, evaluate the change in q when we remove u from its module and add it to v's module.
- Move *u* to that neighbour's module for which increase in *q* is largest.
- **(9)** Repeat the previous two steps until q does not increase.



- Proposed by Blondel et al., 2008.
- Start with every node in its own module.
- Por every node u ∈ V and every neighbour v of u, evaluate the change in q when we remove u from its module and add it to v's module.
- Move *u* to that neighbour's module for which increase in *q* is largest.
- **(9)** Repeat the previous two steps until q does not increase.



- Proposed by Blondel et al., 2008.
- Start with every node in its own module.
- Por every node u ∈ V and every neighbour v of u, evaluate the change in q when we remove u from its module and add it to v's module.
- Move *u* to that neighbour's module for which increase in *q* is largest.
- **(9)** Repeat the previous two steps until q does not increase.



- Proposed by Blondel et al., 2008.
- Start with every node in its own module.
- Por every node u ∈ V and every neighbour v of u, evaluate the change in q when we remove u from its module and add it to v's module.
- Move *u* to that neighbour's module for which increase in *q* is largest.
- **(9)** Repeat the previous two steps until q does not increase.



- Construct a new graph where every module is a node and a weighted edge represents (multiple) connections between two modules.
- **2** Repeat Phases 1 and 2 until no further gains in q are possible.

# Louvain Algorithm: Pseudocode

1: function LOUVAIN (Graph G, Partition  $\mathcal{P}$ ) 2. do 3  $\mathcal{P} \leftarrow \text{MOVENODES}(G, \mathcal{P})$ 4. done  $\leftarrow |\mathcal{P}| = |V(G)|$ if not done then 5:  $G \leftarrow \text{AggregateGraph}(G, \mathcal{P})$ 6:  $\mathcal{P} \leftarrow \text{SingletonPartition}(G)$ 7: 8: end if while not done 9: return flat<sup>\*</sup>( $\mathcal{P}$ ) 10. 11: end function 24: function AggregateGraph(Graph G, Partition  $\mathcal{P}$ )  $V \leftarrow P$ 25: $E \leftarrow \{ (C, D) \mid (u, v) \in E(G), u \in C \in \mathcal{P}, v \in D \in \mathcal{P} \}$ 26:27:return GRAPH(V, E)28: end function 29: function SINGLETON PARTITION (Graph G) 30: return  $\{\{v\} \mid v \in V(G)\}$ 31 end function

 $\,\triangleright\,$  Move nodes between communities  $\,\triangleright\,$  Terminate when each community consists of only one node

 $\triangleright \mbox{ Create aggregate graph based on partition } \mathcal{P}$  $\triangleright \mbox{ Assign each node in aggregate graph to its own community }$ 

 $\triangleright \ \text{Communities become nodes in aggregate graph} \\ \triangleright \ E \ \text{is a multiset}$ 

 $\triangleright$  Assign each node to its own community

### Louvain Algorithm: Pseudocode

12: function MOVENODES(Graph G, Partition  $\mathcal{P}$ ) 13:do  $\mathcal{H}_{old} = \mathcal{H}(\mathcal{P})$ 14: 15: for  $v \in V(G)$  do  $\begin{array}{l} C' \leftarrow \arg \max_{C \in \mathcal{P} \cup \emptyset} \Delta \mathcal{H}_{\mathcal{P}}(v \mapsto C) \\ \textbf{if } \Delta \mathcal{H}_{\mathcal{P}}(v \mapsto C') > 0 \textbf{ then} \end{array}$ 16: 17:  $v \mapsto C'$ 18: end if 19:20:end for 21: while  $\mathcal{H}(\mathcal{P}) > \mathcal{H}_{old}$ 22:return  $\mathcal{P}$ 

▷ Visit nodes (in random order)
 ▷ Determine best community for node v
 ▷ Perform only strictly positive node movements
 ▷ Move node v to community C'

 $\triangleright$  Continue until no more nodes can be moved

# Louvain Algorithm: Efficiency





- Efficient calculation of change in *q* upon swapping makes this algorithm very fast.
- Calculate change in modularity when we move node *i* to neighbour *j*'s community in two steps:
  - **1** Remove *i* from its community and move it to an isolated community.
  - 2 Merge this new community with j's community.

#### Louvain Algorithm: Moving Node *i* Out





$$q(\mathcal{C}) = \frac{1}{2m} \sum_{u,v \in V} \left( a(u,v) - \frac{d(u)d(v)}{2m} \right) \delta(\mathcal{C}(u),\mathcal{C}(v))$$

• In the first step, for which node pairs does  $\delta(C(u), C(v))$  change?

#### Louvain Algorithm: Moving Node *i* Out





$$q(\mathcal{C}) = \frac{1}{2m} \sum_{u,v \in V} \left( a(u,v) - \frac{d(u)d(v)}{2m} \right) \delta(\mathcal{C}(u), \mathcal{C}(v))$$

In the first step, for which node pairs does δ(C(u), C(v)) change?
 Only if u or v equals i.

$$\Delta(q(\mathcal{C})) = -\frac{2}{2m} \sum_{u \in C(i)} \left( a(u,i) - \frac{d(u)d(i)}{2m} \right)$$
$$= -\frac{1}{m} d(i,C(i)) + \frac{d(i)}{2m^2} \sum_{u \in C(i)} d(u)$$

#### Louvain Algorithm: Moving Node *i* Out





$$q(\mathcal{C}) = \frac{1}{2m} \sum_{u,v \in V} \left( a(u,v) - \frac{d(u)d(v)}{2m} \right) \delta(\mathcal{C}(u),\mathcal{C}(v))$$

In the first step, for which node pairs does δ(C(u), C(v)) change?
 Only if u or v equals i.

$$\Delta(q(\mathcal{C})) = -\frac{2}{2m} \sum_{u \in C(i)} \left( a(u,i) - \frac{d(u)d(i)}{2m} \right)$$
$$= -\frac{1}{m} d(i,C(i)) + \frac{d(i)}{2m^2} \sum_{u \in C(i)} d(u)$$

### Louvain Algorithm: Moving Node i In



### Louvain Algorithm: Moving Node i In





- In the second step, for which node pairs does δ(C(u), C(v)) change?
   Only if u or v equals i.
- Alternately, change in modularity is the negative of the change when we move *i* out of *C*(*j*).

$$\Delta(q(\mathcal{C})) = \frac{1}{m}d(i, C(j)) - \frac{d(i)}{2m^2}\sum_{u \in C(j)}d(u)$$

• Compare to the formula in the Louvain paper and the Wikipedia page.

# **Comparisons to Other Algorithms**

|           | Karate       | Arxiv           | Internet        | Web nd.edu               | Phone                   | Web uk-2005             | Web<br>WebBase<br>2001 |
|-----------|--------------|-----------------|-----------------|--------------------------|-------------------------|-------------------------|------------------------|
| Nodes/    | 34/77        | 9k/24k          | 70k/351k        | 325k/1M                  | 2.04M/5.4M              | 39M/783M                | 118M/1B                |
| links     |              |                 |                 |                          |                         |                         |                        |
| CNM       | $0.38/0 \ s$ | 0.772/3.6  s    | $0.692/799 \ s$ | $0.927/5034 \mathrm{~s}$ | _/_                     | _/_                     | _/_                    |
| PL        | $0.42/0 \ s$ | $0.757/3.3 \ s$ | 0.729/575  s    | 0.895/6666 s             | _/                      | _/                      | _/                     |
| WT        | 0.42/0  s    | $0.761/0.7 \ s$ | $0.667/62 \ s$  | 0.898/248  s             | $0.553/367 \mathrm{~s}$ | _/                      | _/                     |
| Our       | $0.42/0 \ s$ | $0.813/0 \ s$   | 0.781/1  s      | 0.935/3  s               | 0.76/44  s              | $0.979/738 \mathrm{~s}$ | 0.984/152  mn          |
| algorithm |              |                 |                 |                          |                         |                         |                        |



In the formula for *H*, what are the definitions of *e<sub>c</sub>* and *K<sub>c</sub>*?
What role does *γ* play?

T. M. Murali

# **Constant Potts Model** 9 11 3 8 10 12 5 13 4 $\mathcal{H} = \frac{1}{2m} \sum_{c} \left( \mathbf{e}_{c} - \gamma \frac{K_{c}^{2}}{2m} \right)$ $\mathcal{H} = \sum \left( \mathbf{e}_{c} - \gamma \begin{pmatrix} n_{c} \\ 2 \end{pmatrix} \right)$

- In the formula for  $\mathcal{H}$ , what is the definition of  $n_c$ ? • What role does  $\gamma$  play?
  - T. M. Murali

### Problem with the Louvain Algorithm

#### Problem with the Louvain Algorithm



• The Louvain algorithm may find disconnected communities.

#### Problem with the Louvain Algorithm



- The Louvain algorithm may find disconnected communities.
- In general, it may find arbitrarily badly connected communities.

### **Guarantees of the Louvain Algorithm**

- At the end of each phase, communities are *well separated*, i.e., none can be merged to increase modularity.
- At the end of all phases, each node is optimally assigned.

#### Innovations in the Leiden Algorithm



- Includes a previously-introduced "smart local move".
- Speeds up local moving of nodes.
- Moves nodes to "random" neighbours.
- Includes partition refinement before aggregation.

### Leiden Algorithm: Pseudocode

```
1: function LEIDEN(Graph G, Partition \mathcal{P})
 2:
         do
              \mathcal{P} \leftarrow \text{MOVENODEsFast}(G, \mathcal{P})
 3:
              done \leftarrow |\mathcal{P}| = |V(G)|
 4:
              if not done then
 5:
                   \mathcal{P}_{\text{refined}} \leftarrow \text{RefinePartition}(G, \mathcal{P})
 6:
 7:
                   G \leftarrow \text{AggregateGraph}(G, \mathcal{P}_{\text{refined}})
                   \mathcal{P} \leftarrow \{\{v \mid v \subseteq C, v \in V(G)\} \mid C \in \mathcal{P}\}
 8:
              end if
 9:
          while not done
10:
         return flat^*(\mathcal{P})
11:
12: end function
44: function AggregateGraph(Graph G. Partition \mathcal{P})
45:
           V \leftarrow P
46:
           E \leftarrow \{ (C, D) \mid (u, v) \in E(G), u \in C \in \mathcal{P}, v \in D \in \mathcal{P} \}
           return GRAPH(V, E)
47:
48: end function
49: function SINGLETON PARTITION (Graph G)
50:
           return \{\{v\} \mid v \in V(G)\}
51: end function
```

 $\triangleright$  Move nodes between communities  $\triangleright$  Terminate when each community consists of only one node

```
\triangleright \ \text{Communities become nodes in aggregate graph} \\ \triangleright \ E \ \text{is a multiset}
```

▷ Assign each node to its own community

#### Louvain vs. Leiden: MoveNodes vs MoveNodesFast

12: function MOVENODES(Graph G. Partition  $\mathcal{P}$ ) 13:do $\mathcal{H}_{\mathrm{old}} = \mathcal{H}(\mathcal{P})$ 14:15: for  $v \in V(G)$  do  $C' \leftarrow \arg\max_{C \in \mathcal{P} \cup \emptyset} \Delta \mathcal{H}_{\mathcal{P}}(v \mapsto C)$ 16: if  $\Delta \mathcal{H}_{\mathcal{P}}(v \mapsto C') > 0$  then 17:  $v \mapsto C'$ 18: end if 19:20. end for 21: while  $\mathcal{H}(\mathcal{P}) > \mathcal{H}_{old}$ 22:return  $\mathcal{P}$ 

13: function MOVENODESFAST(Graph G. Partition  $\mathcal{P}$ )  $Q \leftarrow \text{QUEUE}(V(G))$ 14: 15: do 16:  $v \leftarrow Q.remove()$  $\begin{array}{l} C' \leftarrow \operatorname*{arg\,max}_{C \in \mathcal{P} \cup \emptyset} \Delta \mathcal{H}_{\mathcal{P}}(v \mapsto C) \\ \mathbf{if} \ \Delta \mathcal{H}_{\mathcal{P}}(v \mapsto C') > 0 \ \mathbf{then} \end{array}$ 17: 18:  $v \mapsto C'$ 19: $N \leftarrow \{u \mid (u, v) \in E(G), u \notin C'\}$ 20:21: Q.add(N-Q)22:end if while  $Q \neq \emptyset$ 23:return  $\mathcal{P}$ 24:25: end function

▷ Visit nodes (in random order)
 ▷ Determine best community for node v
 ▷ Perform only strictly positive node movements
 ▷ Move node v to community C'

 $\triangleright$  Continue until no more nodes can be moved

▷ Make sure that all nodes will be visited (in random order)

 $\label{eq:constraint} \begin{array}{l} \triangleright \mbox{ Determine next node to visit} \\ \triangleright \mbox{ Determine best community for node } v \\ \triangleright \mbox{ Perform only strictly positive node movements} \\ \triangleright \mbox{ Move node } v \mbox{ community } C' \\ \triangleright \mbox{ Identify neighbours of node } v \mbox{ that are not in community } C' \\ \triangleright \mbox{ Make sure that these neighbours will be visited} \end{array}$ 

 $\triangleright$  Continue until there are no more nodes to visit







A module C is  $\gamma$ -connected ( $\gamma = 0.3$ ) if it has two subsets D and E such



A module C is  $\gamma$ -connected ( $\gamma = 0.3$ ) if it has two subsets D and E such  $|E(C,D)| \ge \gamma |D| |E|$ 



A module C is  $\gamma$ -connected ( $\gamma = 0.3$ ) if it has two subsets D and E such  $|E(C, D)| \ge \gamma |D| |E|$  and D and E are also  $\gamma$ -connected.

▷ Visit communities

 $\triangleright$  Refine community C

Assign each node to its own community





- 26: function RefinePartition(Graph G, Partition  $\mathcal{P}$ )
- 27:  $P_{\text{refined}} \leftarrow \text{SINGLETONPARTITION}(G)$
- 28: for  $C \in P$  do

```
29: P_{refined} \leftarrow MERGENODEsSUBSET(G, P_{refined}, C)
```

- 30: end for
- 31: return  $P_{refined}$
- 32: end function

33: function MergeNodesSubset(Graph G, Partition  $\mathcal{P}$ , Subset S)

34:  $R = \{v \mid v \in S, E(v, S - v) > \gamma \|v\| \cdot (\|S\| - \|v\|)\}$  Consider only nodes that are well connected within subset S for  $v \in R$  do ▷ Visit nodes (in random order) 35: if v in singleton community then Consider only nodes that have not yet been merged 36:  $\mathcal{T} \leftarrow \{ \overset{\circ}{C} \mid C \in \mathcal{P}, C \subseteq \overset{\circ}{S}, E(C, S - C) \ge \gamma \|C\| \cdot (\|S\| - \|C\|) \}$ ▷ Consider only well-connected communities 37:  $\Pr(C' = C) \sim \begin{cases} \exp\left(\frac{1}{\theta}\Delta\mathcal{H}_{\mathcal{P}}(v \mapsto C)\right) & \text{if } \Delta\mathcal{H}_{\mathcal{P}}(v \mapsto C) \ge 0 \\ 0 & \text{otherwise} \end{cases}$ for  $C \in \mathcal{T}$ 38:  $\triangleright$  Choose random community C' $v \mapsto C'$  $\triangleright$  Move node v to community C' 39. end if 40: end for  $41 \cdot$ 

- 42: return P
- 43: end function

#### **Datasets**

|                | Nodes      | Degree | Max. modularity |        |
|----------------|------------|--------|-----------------|--------|
|                |            |        | Louvain         | Leiden |
| DBLP           | 317,080    | 6.6    | 0.8262          | 0.8387 |
| Amazon         | 334,863    | 5.6    | 0.9301          | 0.9341 |
| IMDB           | 374,511    | 80.2   | 0.7062          | 0.7069 |
| Live Journal   | 3,997,962  | 17.4   | 0.7653          | 0.7739 |
| Web of Science | 9,811,130  | 21.2   | 0.7911          | 0.7951 |
| Web UK         | 39,252,879 | 39.8   | 0.9796          | 0.9801 |

#### **Results: Badly Connected Communities**

• A community *C* is *badly connected* if the Leiden algorithm run just on nodes in *C* can find smaller communities.

#### **Results: Badly Connected Communities**

• A community *C* is *badly connected* if the Leiden algorithm run just on nodes in *C* can find smaller communities.





### **Results: Partition Quality**



### Summary

- The Louvain algorithm is very popular but may yield disconnected and badly connected communities.
- Iterating the algorithm worsens the problem.
- The Leiden algorithm guarantees  $\gamma$ -connected communities.
- It is also faster than the Louvain algorithm while computing communities with higher modularity.