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Supplementary file contained list of 332 human proteins that interact
with SARS-CoV-2.
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Gordon et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals [...]. Nature, April 30, 2020.
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SARS-CoV-2 Life Cycle

Video on SARS-CoV-2 life cycle
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Funk, Laferrière, Ardakani, “A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic,”
Frontiers in Pharmacology, 11, 937, 2020

https://vimeo.com/477524152
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Vaccines
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Image credit: Veronica Falconieri Hays, Scientific American.
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Vaccines May Not Be Enough

Vaccines are not universal, can have side effects.

Worldwide production and distribution of vaccines takes many years.
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Khullar, “It Will Take More Than a Vaccine to Beat COVID-19,” The New Yorker, September 8, 2020.
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SARS-CoV-2 Life Cycle

Ward et al. COVID-19/SARS-CoV-2 Pandemic. 
Faculty of Pharmaceutical Medicine blog 2020

Administered after the body has already been infected.
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Drugs for COVID-19

Adapted from:
Ward et al. COVID-19/SARS-CoV-2 Pandemic. 
Faculty of Pharmaceutical Medicine blog 2020

Monoclonal antibodies,
convalescent plasma

Camostat mesylate

Lopinavir-ritonavir

Remdesivir

Administered after the body has already been infected.
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Antiviral Drugs
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Image credit: Veronica Falconieri Hays, Scientific American.
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Antiviral Drugs
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Host-Oriented Drugs
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Host-Oriented Drugs
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Host-Oriented Drugs for COVID-19

Adapted from:
Ward et al. COVID-19/SARS-CoV-2 Pandemic. 
Faculty of Pharmaceutical Medicine blog 2020

Monoclonal antibodies,
convalescent plasma

Camostat mesylate

Lopinavir-ritonavir

Remdesivir

Viruses require host cellular processes ⇒ human proteins are viable
drug targets.

Discover human proteins and processes exploited by SARS-CoV-2.
Repurpose approved drugs for human diseases against COVID-19.
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Results from Krogan’s Group
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Human Interactors 
of SARS-CoV-2 Proteins
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Human Interactors 
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Missing
Interactors
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Human Interactors 
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Human Interactors 
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Goals of Our Research
Human Interactors 

of SARS-CoV-2 Proteins

Predicted
Direct and Indirect

Interactors

1 Prioritize additional human proteins that may directly or indirectly
interact with the virus.

2 Identify drug targets among these proteins.

3 Develop strategies to explain predictions.
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Approach

Datasets Evaluation
Validation

Functional Enrichment

Drug Targets
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Network Propagation

Human proteins
that interact with 

SARS-CoV-2 
proteins

Other human proteins
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Network Propagation
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Cowen et al. Network propagation: a universal amplifier of genetic associations. Nat. Review Gen., 2017
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Network Propagation: Regularized Laplacian (RL)

G = (V ,E ,w): undirected, weighted network of human proteins
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Network Propagation: Regularized Laplacian (RL)

y: label vector

y(u) =

{
1 if u is a human interactor of virus (positive example)

0 otherwise
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Network Propagation: Regularized Laplacian (RL)

s: scores to compute
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Network Propagation: Regularized Laplacian (RL)

Minimize
∑
u∈V

(
s(u)− y(u)

)2
+ α

∑
(u,v)∈E

wuv

(
s(u)− s(v)

)2
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Network Propagation: Regularized Laplacian (RL)

Minimize
∑
u∈V

(
s(u)− y(u)

)2
+ α

∑
(u,v)∈E

wuv

(
s(u)− s(v)

)2
α = 0 : set s(u) = y(u) α very large: set s(u) = s(v)
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Network Propagation: Regularized Laplacian (RL)

Solve linear system of equations: s(v) =

α
∑

u∈N(v)

w(u, v)s(u) + y(v)

αd(v) + 1
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Matrix Formulation

s(v) =

α
∑

u∈N(v)

w(u, v)s(u) + y(v)

αd(v) + 1

s(v) + α

(
d(v)s(v)−

∑
u∈N(v)

w(u, v)s(u)

)
= y(v)

W : adjacency matrix of G
D: diagonal matrix where Duu =

∑
v wuv , for every node u in G

W̃ = D−1/2WD−1/2: normalized adjacency matrix of G
L̃ = D − W̃ : Laplacian of G

(I + αL̃)s = y

s = (I + αL̃)−1y

(I + αL̃)−1 is the regularized Laplacian.
Inverse exists if G is connected.
Each entry records propagation between pair of nodes.
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Algorithms

Network propagation:

Regularized Laplacian1 (RL)

GeneMANIA2: RL with negative examples.

SinkSource3: Like RL but fixes score of positive examples.

Supervised classification:

Linear SVM, Logistic Regression
▶ Feature vector = adjacency vector
▶ L2 regularization

Deep learning:

deepNF4: Autoencoder + Linear SVM

Guilt-by-association:

Local: weighted average of neighbors

T. M. Murali October 4, 6, 11, 2022

1. D. Zhou, B. Scholkopf. A regularization framework for learning from graph data. ICML Workshop 2004
2. Mostafavi et al. GeneMANIA: a real-time multiple association network [...] Genome Biology 2008
3. Murali et al. Network-based prediction and analysis of HIV dependency factors. PLoS Comput Biol 2011
4. Gligorijević, Barot, and Bonneau, deepNF: deep network fusion for protein function prediction. Bioinformatics, 2018
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Datasets

Datasets Evaluation
Validation

Functional Enrichment

Drug Targets

Algorithms and Software
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Datasets

SARS-CoV-2 interactors1

▶ 332 Human interactors, 26 SARS-CoV-2
proteins

Network of human proteins
(STRING2 version 11)

▶ Interactions are “universal”: independent
of SARS-CoV-2

▶ 19K nodes and 1M edges
▶ 328 human interactors in network

Drug-Target dataset
(DrugBank3 version 5.1.6)

▶ 6K drugs and 3K target (human) proteins
▶ 16K drug-protein target pairs
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1. Gordon et al. A SARS-CoV-2-Human Protein-Protein Interaction Map [...]. Nature 2020

2. Szklarczyk et al. STRING v11: protein-protein association networks [...]. Nucleic Acids Res 2019
3. Wishart et al. DrugBank 5.0: a major update to the DrugBank [...]. Nucleic Acids Res 2017
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Five-Fold Cross-Validation

1 n
Ranked
Nodes

Original
Labels

Recall:

ri =
true positives up to i

|P|

Precision:

pi =
true positives up to i

i

Area Under P-R Curve (AUPRC)

Early Precision (recall = 0.1)
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Negative Examples

1 n
Ranked
Nodes

Original
Labels

1 Required by methods
▶ GeneMANIA, SVM, Logistic Regression
▶ Averaged scores over 100 sets of randomly sampled negative examples

2 Needed to evaluate predictions
▶ Early Precision, Area Under the Precision Recall Curve (AUPRC)
▶ Repeated cross-validation 100 times
▶ Positive:Negative (P:N) ratios 1:1, 1:5, and 1:10

T. M. Murali October 4, 6, 11, 2022
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Five-Fold Cross-Validation (P:N ratio 1:1)
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Network propagation is a promising approach to
predict human proteins that interact with SARS-CoV-2
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Other Positive:Negative Ratios
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Prediction Analysis

Stratified sampling for estimating statistical significance of node
scores.

▶ Compare node’s score to distribution of 1,000 randomly selected nodes
with same degree.

▶ Retain nodes with p-value ≤ 0.05

Top 332 predictions of RL

Tested for significant overlap with experimental human-SARS-CoV-2
PPI datasets.

Tested for enrichment of GO Biological Process (BP) terms
▶ Benjamini-Hochberg-corrected p-value < 0.01
▶ 180+ terms for RL

Designed heuristic “Set-cover” algorithm to choose representative
non-overlapping terms

▶ 21 terms
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New SARS-CoV-2-Human PPI Datasets
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Overlap with New SARS-CoV-2-Human PPI Datasets

RL SVM Local

Top 332 Predictions
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2080 Interactors
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Functional Enrichment Summary
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Functional Enrichment Summary

Top-ranking 
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Provenance Tracing

s = (I + αL̃)−1y

K = (I + αL̃)−1

s(u) =
∑
v∈P

Kuv

Every score s(u) is a sum of
contributions from

SARS-CoV-2 interactors.

Compute a reproducible trace of every prediction back to
experimental sources.

For each node u with score s(u), rank every positive example

v in
decreasing order of Kuv

.

General purpose strategy for large class of network propagation
algorithms.

T. M. Murali October 4, 6, 11, 2022

Kasif and Roberts, We need to keep a reproducible trace of facts, predictions, and hypotheses from gene to function in the era
of big data, PLoS Biol., 2020.



Introduction Algorithms Evaluations Results Summary

Provenance Tracing

s = (I + αL̃)−1y

K = (I + αL̃)−1

s(u) =
∑
v∈P

Kuv

Every score s(u) is a sum of
contributions from

SARS-CoV-2 interactors.

Compute a reproducible trace of every prediction back to
experimental sources.

For each node u with score s(u), rank every positive example by the
contribution it makes to s(u)

v in decreasing order of Kuv

.

General purpose strategy for large class of network propagation
algorithms.

T. M. Murali October 4, 6, 11, 2022

Kasif and Roberts, We need to keep a reproducible trace of facts, predictions, and hypotheses from gene to function in the era
of big data, PLoS Biol., 2020.



Introduction Algorithms Evaluations Results Summary

Provenance Tracing

s = (I + αL̃)−1y

K = (I + αL̃)−1

s(u) =
∑
v∈P

Kuv

Every score s(u) is a sum of
contributions from

SARS-CoV-2 interactors.
Compute a reproducible trace of every prediction back to
experimental sources.

For each node u with score s(u), rank every positive example by the
contribution it makes to s(u)

v in decreasing order of Kuv

.

General purpose strategy for large class of network propagation
algorithms.

T. M. Murali October 4, 6, 11, 2022

Kasif and Roberts, We need to keep a reproducible trace of facts, predictions, and hypotheses from gene to function in the era
of big data, PLoS Biol., 2020.



Introduction Algorithms Evaluations Results Summary

Provenance Tracing

s = (I + αL̃)−1y

K = (I + αL̃)−1

s(u) =
∑
v∈P

Kuv

Every score s(u) is a sum of
contributions from

SARS-CoV-2 interactors.
Compute a reproducible trace of every prediction back to
experimental sources.

For each node u with score s(u), rank every positive example v in
decreasing order of Kuv .

General purpose strategy for large class of network propagation
algorithms.

T. M. Murali October 4, 6, 11, 2022

Kasif and Roberts, We need to keep a reproducible trace of facts, predictions, and hypotheses from gene to function in the era
of big data, PLoS Biol., 2020.



Introduction Algorithms Evaluations Results Summary

Results of Provenance Tracing

When α is small, expect highest contributing sources to be direct
neighbors of top-ranking proteins.

As α increases, expect more of the highest contributors to not be
directly connected by an edge to top-ranking proteins.

Evaluated six values of α between 0.01 and 100.

For every value of α and for every top-ranking protein u (till a rank of
1,000), the source protein with the highest contribution to s(u) was
always a neighbor of u.

Second and third highest contributors were more than one edge away
for as few as 2% of the top-ranking proteins for α = 0.01.

This number increased only to 25% for α = 100.

332 positive examples have 5,300 neighbours (out of 12,300 proteins
in STRING).
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Understanding Provenance Tracing Results

STRING (12,300)

Neighbours of human
interactors (5,300)

Human interactors
of SARS-CoV-2 

(332)

Top-ranked
proteins 

(332)

Viral 
proteins

(26)
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GO Term - Human-Viral Interactors Overview

# annotated 
predictions 708

nsp14
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nsp10 nsp6orf10
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Organelle
Organization PTMs

ER Stress

RespirationTranscription/
Translation
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GO Term - Human-Viral Interactors Overview
# annotated 

predictions 708

nsp14

nsp12 nsp4
nsp10 nsp6orf10

nsp8

Organelle
Organization PTMs

ER Stress

RespirationTranscription/
Translation

Literature support exists for most terms
(SARS-CoV-2 or closely related virus)
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Endoplasmic Reticulum Stress

Endoplasmic
Reticulum
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Chan et al. Modulation of the Unfolded Protein Response by the [SARS-CoV] Spike Protein. J. of Virology 2006
Diego et al. [SARS-CoV] Envelope Protein Regulates Cell Stress Response and Apoptosis. PLoS Pathogens 2011

Koseler et al. Endoplasmic Reticulum Stress Markers in SARS-CoV-2 Infection [...] In Vivo 2020
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Protein Folding in ER
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Predicted receptor for SARS-CoV-2 Spike protein4
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Figure: Ha et al. The stress-inducible molecular chaperone GRP78 as potential [...]. J. Infection 2020
1. Chu et al. [MERS] and bat coronavirus HKU9 both can utilize GRP78 for attachment [...]. J.B.C. 2018

2. Chan et al. Modulation of the Unfolded Protein Response by the [SARS-CoV] Spike Protein. J. Virology 2006
3. Wu et al. Japanese encephalitis virus co-opts the ER-stress response protein GRP78 [...]. Virology J 2011

4. Ibrahim et al. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infection 2020
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Predicted receptor for SARS-CoV-2 Spike protein4
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Protein Folding in ER: Connection to Blood Clotting
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HSPA5 and CANX are chaperones for pro-coagulant proteins
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Tang et al. Anticoagulant treatment is associated with decreased mortality [COVID-19] [...] J. Thromb H. 2020
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Clinical trials: Aspirin and Alteplase (derivative of Lanoteplase)
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Summary

Network propagation well-suited to pinpoint processes that may be
hijacked by the virus

Prioritized list of human proteins and drug targets
▶ Predictions supported by literature
▶ 6+ drugs already in clinical trials

Promising direction to target ER stress, HSPA5

Additional promising target: Cilium assembly and Tubulins

Substantial overlap new experimental datasets.

New method for provenace tracing for large class of network
propagation algorithms
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Availability

https://doi.org/10.1093/gigascience/giab082
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